杂散发射的测定方法
TD—LTE移动基站杂散发射测试方案

TD—LTE移动基站杂散发射测试方案作者:何占儿王慧陈伟来源:《移动通信》2018年第02期【摘要】杂散发射是衡量移动基站通信性能的重要指标之一,是指不必要的发射机引起的发射,主要包含谐波发射、寄生发射、互调产物以及变频产物,但带外发射除外。
从杂散发射的测试原理入手,提出一种双工滤波器和低噪放相结合的测试方法,并在此基础上实现了一种新型的共址杂散发射测试方案,该方案能够有效避免频谱仪灵敏度和动态范围不足的局限性,同时提高了杂散发射测试的准确性。
【关键词】移动基站;杂散发射;测试A Solution to Spurious Emission Testing of TD-LTE BTS TransmitterHE Zhaner1, WANG Hui1, CHEN Wei2[Abstract]Spurious emission is one of the most important performance metrics of mobile base station,which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission,intermodulation products and frequency conversion products except for out-of-band emissions. According to the principle of spurious emission testing, a method combined diplexer DPF with low noise amplifier (LNA) is proposed. Then, a novel solution to co-location spurious emission testing is implemented. It can not only effectively deal with the limitations of sensitivity and dynamic range of spurious analyzer, but also enhance the accuracy of spurious emission testing.[Key words]BTS; spurious emission; testing1 引言随着移动通信技术的高速发展,无线基站密度大幅提升,电磁环境愈加复杂,而其中的无线干扰问题尤为突出,已经成为影响移动基站通信性能和客户满意度的重要因素。
基站放大器驻波、杂散、互调的测试方法

一、杂散发射1.1 定义杂散发射是指除去工作载频以及与正常调制相关的边带以外的频率上的辐射。
1.2指标要求测试项目指标备注9kHz~1GHz ≤-36dBm,1GHz~12.75GHz ≤-30dBm,885~915MHz ≤-103dBm, GSM接收频段825~835MHz ≤-47dBm,870~880MHz ≤-47dBm,1.8~1.92GHz ≤-47dBm,3.4-3.53GHz ≤-47dBm,1.3 测量方法图1:杂散发射测量框图1.按图1所示连接测试系统:2.被测机输入端TX IN接信号发生器,输出端接对应的TX OUT端,其它端口接负载。
3.信号发生器设置为基站放大器工作频带范围内的中心频率;4.信号发生器的电平设置为20W,使基站放大器输出功率达到指标要求;5.用频谱分析仪测量杂散信号,其测试值加10dB应符合技术指标要求;6.将信号发生器接被测机的另一输入端TX IN,输出端接对应的TX OUT 端,其它端口接负载。
重复步骤3至5。
TX IN/RX IN/RX OUTTX TX OUTRX IN图2、基站放大器顶面图图3、主信号与杂散信号、、互调测试:2.1 指标要求2.1.1 当有两个或两个以上载波工作时,设备产生的互调在工作频带内不大于-36 dBm (对于GSM900系统), 或不大于-30 dBm (对于GSM1800系统)。
如互调信号落在带外,则必须满足杂散所要求的指标。
2.1.2当在设备输出端有低于发送信号30dB 的干扰信号存在时,它们产生的任一互调都应大于70dBc 。
2.2 测试方法:图4、 基站放大器互调测试框图1. 按图3连接测试系统.2.将信号发生器的频率f1设置为基站放大器的中心频率,将干扰信号的频率f2设置为高于(或低于)f1 800kHz 的频率,即f2=f1±800kHz 3. 设置f1的电平为20w, 同时设置f2的电平为2w 。
wifi 杂散 测试 标准

wifi 杂散测试标准"WiFi杂散测试标准"随着现代社会的不断发展,无线网络已经成为人们日常生活的重要组成部分。
而在日常使用中,我们常常会遇到WiFi信号杂散的问题,这使得我们在使用无线网络时经常会出现连接不稳定、速度慢等不良的用户体验。
因此,WiFi杂散测试标准成为了保证网络稳定性和提升用户体验的关键。
一、WiFi杂散的定义与影响WiFi杂散是指在无线网络环境中,除了目标WiFi信号以外的其他非目标信号的干扰。
这些非目标信号来自于其他网络设备、电器设备或者其他无线信号发射源。
当存在大量的WiFi杂散时,会产生以下几个方面的影响:1. 信号干扰:无线网络信号与其他干扰信号相互干扰,导致信号质量急剧下降,从而影响网络连接的稳定性和速度。
2. 带宽受限:WiFi杂散会导致频段的带宽受限,从而降低了无线网络的传输能力和速度。
3. 用户体验下降:连接不稳定、速度慢等问题会给用户带来极大的困扰,影响日常工作和生活。
二、WiFi杂散测试标准的必要性在现实中,网络环境的复杂性使得WiFi杂散成为了普遍存在的问题。
为了保证网络质量和提高用户体验,WiFi杂散测试标准的制定变得非常重要。
通过进行杂散测试,我们可以:1. 定位问题:通过测试,我们可以明确网络中存在的干扰源和其对信号的影响程度,从而更好地解决问题。
2. 优化网络:测试结果可以指导我们对网络环境进行优化,如位置调整、设备选择、信道调整等,以提升网络性能和稳定性。
3. 提高用户体验:通过杂散测试标准的制定,我们可以保证网络连接质量,提高用户的满意度和使用体验。
三、WiFi杂散测试标准1. 测试目标:明确测试的目标,即所要测试的无线网络设备或区域等。
2. 测试环境:建立合适的测试环境,包括设备选择、网络设置和信号源设置等。
3. 测试方法:选择合适的测试方法和设备,如无线网络分析仪、频谱仪等。
通过对目标设备或区域进行扫描和监测,获取网络信号的质量和干扰情况。
杂散

电磁兼容整改分析之辐射杂散2009-11-27 16:11:34 来源:摩尔实验室浏览次数:1839 文字大小:【大】【中】【小】关键字:电磁兼容整改辐射杂散EMC测试辐射杂散(简称RSE)是指当移动台与非辐射性纯阻负载相连接或者在接收机状态时,由移动台产生或放大的通过移动台机壳、电源、控制设备、音频各电缆辐射的工作频率外上的发射。
在目前的国际标准中“辐射杂散”基本都将其划分在了射频项目(RF)里面,而国内标准(以YD1032为典型)则将其划分在电磁兼容(EMC)的测试内容内。
相信接触过无线发射产品认证的朋友都对辐射杂散比较了解,也许还会带点感情色彩认为这个项目比较讨厌,因为无论是在做国内或国际认证中,任何的无线发射产品都逃不掉此项测试要求。
从设计及整改角度来讲,对工程人员来说辐射杂散的整改也是其最为头痛的工作内容之一,尤其针对高功率发射产品,如2G,3G设备跟是如此。
本文根据摩尔实验室(MORLAB)日常工作经验,以典型的手机产品为例,在此抛砖引玉与大家一起分享一下手机在辐射杂散方面的整改心得。
一.测试场地的布局:标准辐射杂散的布局如下,其中图一为原理图,图二为摩尔实验室辐射杂散的实景图。
图一:辐射杂散实验布置图图二:辐射杂散实景图二.辐射杂散的测试方法:辐射杂散骚扰的功率点是通过“置换测试法”来确定的。
用电波暗室先进行预校正(由信号源和基准天线组成)再置换移动台来进行发射,通过测试接收机得到相同的功率后,则此时预校正器的发射功率就是EUT(被测物)辐射杂散骚扰的功率电平。
三.辐射杂散的指标:根据不同的产品所对应的标准,辐射杂散的相关指标要求也有所差别,但大体可归纳如下:发射机的辐射杂散测试要求:30MHz –1GHz1GHz –4GHz, 12.75G Hz-57dBm-47dBm欧盟及中国各类标准四.可能引起辐射杂散骚扰的原因(发射机):由于辐射杂散是通过无线空间传播出去的,因此可能辐射干扰的点是多种多样的。
无线电发射设备杂散发射的测试方法探讨

1772020年34期 (12月上旬)产能经济摘要:近几年来,随着我国科学技术不断提升,我国在很多工作上也有了全新的技术保障,这使得各行各业在发展的过程中获得了新的动力。
然而,对于无线电维修保障工作来讲,其自身在开展设备保养和维修的过程中,必须要实现降低通信干扰问题,这样才能确保无线电发射设备可以正常运转,因此在进行维修检测的过程中,对其杂散发射测试则是一个必须进行的重点检测项目。
对此,本文主要讨论的是无线电设备杂散发射的测试方法,并希望能够以此来实现提高无线电设备的应用质量。
关键词:无线电发射设备;信号干扰;杂散发射;测试方法前言在当前阶段中,针对无线电发射设备而言,在进行检测信号干扰问题时,主要通过应用测量杂散发射仪表来实现对其数据的有效分析,因此在进行测量的过程中,对于待测设备而言,必须要充分地了解相关设备的性能以及工作原理,并实现对其杂散发射测试的相关内容进行全面分析,这样才能保证在结合实际测试的过程中,能够实现对相关理念和技术的有效应用,这样才能保证在进行测试的过程中,可以降低由于人工操作失误而导致的不良问题。
一、无线电发射设备杂散发射的相关概述(一)带宽参考对于杂散发射电频值的检测而言,其带宽参考其实指的就是在带宽内对其电频值进行了规定。
因为在参考的过程中,其实它有一定的固定规律,并且在实际检测时,其按照表固定不变时,一般在空间无线电作业中其自身有着特定频率,这也使得在检测的过程中,就能对其进行有效识别[1]。
但是由于不同国家在进行杂散发射标准制定时,存在着范围值波动的问题,所以这需要在进行检测的过程中,进行其他辅助系统的共同测量,这样才能保证其测试的结果更加精准。
值得注意的是,在进行辅助检测时,必须要重新计算带宽参考数值,这样才能保证其检测结果的精准性。
(二)带外发射带外发射与杂散发着有着本质性的区别,因为带外发射一般是出现在带宽的外侧,而且它会在调制设备时出现多个频率的发射,所以在进行检测时,它与杂散发射有着明显性的区别。
wifi 杂散 测试 标准

wifi 杂散测试标准Wifi杂散测试是指对wifi信号的杂散干扰进行测试和评估的过程。
在无线通信中,杂散干扰是指无线信号发射中,除了目标信号外,其他不相关的信号对目标信号的干扰。
这些杂散干扰会导致信号质量下降,影响WiFi网络的稳定性和传输速率。
因此,对WiFi的杂散干扰进行测试和评估可以帮助我们了解当前网络环境中的干扰源,并采取相应的措施来提高网络性能。
首先,进行WiFi杂散测试需要准备一些测试设备和工具,如无线网络分析仪、频谱分析仪等。
这些设备可以帮助我们监测当前环境中的信号强度、频谱使用情况和杂散干扰源。
在进行WiFi杂散测试时,我们通常需要关注以下几个方面:1.信号强度:使用无线网络分析仪对当前环境中的WiFi信号强度进行测试。
信号强度越强,WiFi的覆盖范围越大,信号质量越好。
2.频谱使用情况:使用频谱分析仪对当前环境中的频谱使用情况进行测试。
频谱使用情况反映了当前环境中的WiFi信道的占用情况。
在选择WiFi信道时,需要避开已经被其他无线设备占用的信道,以减少互相干扰。
3.杂散干扰源:使用无线网络分析仪对当前环境中的杂散干扰源进行测试。
杂散干扰源可能来自其他无线设备、电磁干扰或邻近的WiFi网络等。
通过测试和识别这些干扰源,我们可以采取相应的措施来减少干扰,并提高WiFi网络的性能。
在进行WiFi杂散测试时,我们需要注意以下几个方面:1.测试环境的选择:测试环境应当尽量符合日常使用条件。
如果在办公室中进行测试,应当考虑到办公场所中的杂散干扰源,如打印机、电脑等。
2.测试位置的选择:为了全面评估WiFi的杂散干扰情况,我们需要在不同的位置进行测试。
可以在办公室的不同角落或不同楼层进行测试,以获取更全面的数据。
3.测试时间的选择:不同的时间段可能会有不同的杂散干扰情况。
例如,在上班高峰期,办公室中的无线网络可能会受到其他员工设备的干扰。
因此,我们可以选择在不同的时间段进行测试,以获取更准确的测试结果。
调频广播发射机的杂散发射测试方法分析及实测应用

调频广播发射机的杂散发射测试方法分析及实测应用一、调频广播的特点和通用要求调频广播有以下几方面的优点:(一)干扰能力强:信号在传输过程中会受到周围环境的工业干扰或其他脉冲干扰,这些干扰多数是以幅度调制的形式存在。
由于调频波的幅度保持恒定,与调制信号电压的大小无关,所以,可以在接收设备内设置限幅电路,以消除幅度上的干扰,同时又不会影响到所传送的信息。
(二)没有串信现象:由于调频广播工作在超短波波段(87-108MHz),超短波的传播特点是以空间波的方式直线传播,所以调频广播的传播距离比较近,这样不同地区电台间互相干扰的可能性就减少了。
(三)信噪比高:调频广播可以利用限幅方式去除噪声,同时,在调频广播中采取了预加重和去加重技术,因此可以获得较高的信噪比。
(四)能进行高保真广播:由于调频广播工作在超短波波段,所以带宽可以用得比较宽,这样一来音频信号的最高频率可以选用得比较高(如可达15kHz);而调幅广播由于频带宽度的限制,音频信号的最高频率比较低(≤5kHz)。
因此,比起调幅广播来,调频广播的音质要优美动听得多。
另外,由于调频广播的发射、接收系统总的信噪比好,失真小,带宽宽,动态范围大,因此可实现高保真广播。
调频广播也有其自身的缺点,如覆盖范围有限、存在“门限”效应和多径失真等。
我国的调频广播分为调频单声广播、调频立体声广播、调频多路生广播和调频数据广播4种。
对于米波调频广播,其通用要求如下:调频广播的频率范围为87-108MHz。
具体从87.0-107.9MHz,按0.1MHz的频率间隔设置电台。
射频主载波的调制方式为频率调制,对应于100%调制的频偏为±75kHz;主节目调制信号为音频信号,频率上限不超过15kHz;基带信号的频率范围限制在从直流到99kHz范围内;主节目音频信号的预加重时间常数为50μs;载波频率允许偏差:发射机功率大于50W时,载波频率允许偏差为±1000Hz;发射机功率小于或等于50W时,载波频率允许偏差为±2000Hz;对于为下一级差转台提供信号的发射台或差转台,载波频率允许偏差为±1000Hz;残波辐射(即杂散发射):发射机功率大于或等于25W时,残波辐射功率应小于1mW并低于载波功率60dB;发射机功率小于25W时,残波辐射功率应小于1μW并低于载波功率40dB;同台或同塔有多套发射机使用共用天线时,其三阶互调产物小于1mW并低于各自射频主载波60dB。
无线电发射设备杂散发射的测试方法探讨

对于无线电管理工作来说,无线电发射设备的杂散发射是产生通信干扰的重要原因之一。
在无线电发射设备检测中,杂散发射测试是一个重要的必测项目。
被过滤广告目前被广泛使用的测量杂散发射的主要仪表是扫频式频谱分析仪。
因此要正确测量出待测设备的杂散发射分量必须深入了解扫频式频谱分析仪的性能和工作原理。
参考杂散发射测试的相关标准,结合实际测试中的一些心得和体会,提出了杂散发射的测试方法及应注意的一些问题。
杂散发射的定义根据国家标准GB/T13622-92《无线电管理术语》中3.6.9条的描述,杂散发射指的是在必要带宽之外的某个或某些频率的发射,其发射电平可降低而不致影响相应信息的传输。
它包括谐波发射、寄生发射、互调产物及变频产物,但带外发射除外。
带外发射是在调制过程产生的、刚超出必要带宽的一个或多个频率的发射,但杂散发射除外。
杂散发射的表示方法根据国家标准GB 13421-92《无线电发射机杂散发射功率电平的限值和测量方法》的规定,杂散发射的表示方法有两种。
一种是绝对电平表示法,它是以“mW”或“μW”表示的杂散发射的平均功率或波峰包络功率。
例如在GSM移动台的测试标准YD/T884-1996的8.2款中规定发射机在工作模式下在频段100 kHz~1 GHz的杂散限值为-36 dBm(相当于0.25 μW)。
另一种表示方法为相对电平表示法,它是以分贝表示的杂散发射平均功率或波峰包络功率相对于发射波峰包络功率的衰减量。
例如在调频无线电话机的测试标准GB/T15844.1-1995的5.2款中规定当发射机的载波功率大于等于25W时,基地台的杂散射频分量应小于等于70 dB。
杂散发射的测量条件和要求总的来说,测试时的交流供电电源、直流供电电源、环境条件、测试负载必须满足GB 13421-92中5.1.1款的规定。
具体实验中一般应注意满足以下几个重要条件:(1) 温度: 15℃~35℃;(2) 相对湿度: 45%~75%;(3) 大气压强: 86 kpa~106 kpa;(4) 电源: 直流电源电压为规定值±2%,交流电源电压为标称值±2%,交流电源频率为标称值±1%;(5) 测试应在屏蔽室内进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杂散发射的测定方法
简介
杂散发射是指在电子设备中产生的非意图发射信号。
准确测定设备的杂散发射是保证其电磁兼容性的重要步骤之一。
本文档将介绍杂散发射的测定方法。
测定设备
进行杂散发射测定时,可以采用专用的测量设备。
该设备应具备以下特征:
- 高分辨率和高灵敏度,以确保能够准确测量微弱的杂散发射信号;
- 宽频率范围,以涵盖设备可能产生的不同频率的杂散发射;
- 快速响应时间,以捕捉瞬时的杂散发射信号。
测定步骤
进行杂散发射测定时,可以按照以下步骤进行操作:
1. 设置测量环境
确保测量环境符合标准要求。
环境中的电磁干扰应尽量降低,以避免对测定结果的影响。
2. 连接设备
将待测设备与专用测量设备相连。
确保连接正确可靠,避免信号衰减或失真。
3. 预热设备
根据设备的要求,进行适当的预热时间,以确保设备处于稳定工作状态。
4. 开始测定
触发专用测量设备开始测定。
设备将记录并分析待测设备产生的所有杂散发射信号。
5. 分析结果
根据测定结果,分析设备的杂散发射情况。
确定是否存在异常或超出规定范围的杂散发射。
6. 优化设备
如有必要,根据测定结果进行设备优化。
通过改进设计或减少干扰源,降低杂散发射的水平。
测定结果报告
完成杂散发射测定后,应根据测定结果生成报告。
报告应包括以下内容:
- 测定设备的详细信息;
- 测定环境的描述;
- 测定步骤和参数的说明;
- 杂散发射测定结果的数据和分析;
- 设备优化建议(如适用)。
结论
杂散发射的测定方法是保证电子设备电磁兼容性的重要步骤。
通过准确测定设备的杂散发射,可以及时发现问题并进行优化,确保设备在工作中不会产生不必要的电磁干扰。