各种蒸发器冷凝器计算

合集下载

计算风冷冷凝器蒸发器计算

计算风冷冷凝器蒸发器计算

计算风冷冷凝器蒸发器计算
风冷冷凝器是一种常见的冷却设备,被广泛应用于空调、冷冻机组、制冷设备等领域。

下面将详细介绍风冷冷凝器的计算方法。

1.计算风冷冷凝器的热负荷:
热负荷是指在一定时间内,待冷却物质从其中一温度降低到另一温度所需要吸收的热量。

计算风冷冷凝器的热负荷需要考虑以下几个因素:-待冷却物质的初温和终温
-待冷却物质的质量或流量
-待冷却物质的比热容
热负荷=待冷却物质的质量/流量*待冷却物质的比热容*(终温-初温)
2.计算风冷冷凝器的冷却水需要量:
将热负荷转化为冷却水需要量时,需要考虑待冷却物质的温度变化速率,以及风冷冷凝器的传热效率。

冷却水需要量=热负荷/(待冷却物质的温度变化速率*传热效率)
3.计算风冷冷凝器的湿球温度及风速:
湿球温度和风速是影响风冷冷凝器传热效果的重要参数。

可以通过实验或模拟计算来确定最佳的湿球温度和风速。

4.计算风冷冷凝器的面积:
风冷冷凝器的传热面积是决定其传热效果的重要因素。

可以通过以下公式计算风冷冷凝器的面积:
面积=热负荷/(传热系数*温差)
其中,传热系数可以根据风冷冷凝器的类型和设计参数进行估算,温差取冷却水进出口温差。

5.计算风冷冷凝器的风量及排风面积:
风冷冷凝器的风量是指通过风扇传输的空气流量,可以通过以下公式计算:
风量=面积*风速
排风面积可以根据风量和风速来计算,具体方法可以根据实际情况采用不同的计算模型。

冷凝器蒸发器设计计算

冷凝器蒸发器设计计算

冷凝器蒸发器设计计算冷凝器和蒸发器是热交换装置中的两种重要设备,用于实现热量的传递和相变。

本文将详细介绍冷凝器和蒸发器的设计计算过程,包括设计参数的选择、热量传递计算和流体力学计算。

冷凝器是将气体或蒸汽冷却并转化为液体的装置。

在设计计算过程中,需要确定冷凝器的热负荷、冷凝温度差、冷却介质和冷凝器类型。

1.确定热负荷:热负荷是冷凝器设计的基础参数,可以通过计算得到。

对于气体冷凝器,热负荷可以通过质量流量和入口出口温度计算得到;对于蒸汽冷凝器,热负荷可以通过质量流量、蒸发焓和冷凝焓计算得到。

2.确定冷凝温度差:冷凝温度差是冷凝器设计中的重要参数,可以通过热负荷和冷凝器传热系数计算得到。

一般情况下,冷凝温度差应保持在适当的范围内,以确保冷却介质能够充分发挥作用。

3.确定冷却介质:冷却介质的选择与具体的工艺要求有关,可以是水、空气或其他特定介质。

冷却介质的性质和流量对冷凝器的设计和效果有着直接影响。

4.确定冷凝器类型:冷凝器的类型包括管壳式冷凝器、板式冷凝器和换热管式冷凝器等。

不同类型的冷凝器在设计和计算上存在差异,需要根据具体情况选择合适的冷凝器类型。

蒸发器是将液体转化为气体的装置,主要用于蒸发器或吸热器中。

在设计计算过程中,需要确定蒸发器的热负荷、蒸发温度差、蒸发介质和蒸发器类型。

1.确定热负荷:蒸发器的热负荷可以通过计算得到,其计算方式与冷凝器类似。

对于蒸发器,热负荷可以通过质量流量、入口出口温度和蒸发焓计算得到。

2.确定蒸发温度差:蒸发温度差是蒸发器设计中的重要参数,可以通过热负荷和蒸发器传热系数计算得到。

蒸发温度差的大小影响蒸发速率和蒸发效果,需要根据具体情况进行选择。

3.确定蒸发介质:蒸发介质的选择与具体的工艺要求有关,可以是液体、气体或其他特定介质。

蒸发介质的性质和流量对蒸发器的设计和效果有着直接影响。

4.确定蒸发器类型:蒸发器的类型包括管壳式蒸发器、板式蒸发器和换热管式蒸发器等。

不同类型的蒸发器在设计和计算上存在差异,需要根据具体情况选择合适的蒸发器类型。

蒸发器冷凝器选型参数.doc

蒸发器冷凝器选型参数.doc

选型参数计算表蒸发器简易选型 ( 仅供参考)压缩机输RT 104kcal/h 输入功率制冷量 KW 蒸发器片数 ( 冷冻水进 12°出 7°)入功率备注(kW)(COP3.33)(Hp)EATB25 EATB55 EATB85小1 0.62 0.124 0.65 2.17 16 2°蒸发1 0.7 0.22 0.75 2.5 18 2°蒸发1.5 1.05 0.33 1.13 3.76 22 2°蒸发2 1.4 0.43 1.50 5 26 2°蒸发3 2.1 0.65 2.25 7.5 34 18 2°蒸发4 2.8 0.86 3.00 10 44 22 2°蒸发5 3.5 1.1 3.75 12.5 54 26 2°蒸发6 4.2 1.29 4.50 15 30 2°蒸发7 5 1.5 5.25 17.5 32 2°蒸发8 5.7 1.7 6.00 20 36 2°蒸发9 6.4 1.9 6.75 22.5 40 2°蒸发10 7.1 2.1 7.50 25 46 2°蒸发11 7.9 2.4 8.25 27.5 50 2°蒸发12 8.5 2.6 9.00 30 56 36 2°蒸发13 9.4 2.8 9.75 32.5 60 40 2°蒸发14 10 3 10.50 35 64 42 2°蒸发15 11 3.26 11.25 37.5 70 46 2°蒸发16 11.3 3.44 12.00 40 74 48 2°蒸发17 12.2 3.7 12.75 42.5 78 52 2°蒸发18 12.7 3.87 13.50 45 84 56 2°蒸发19 13.6 4.13 14.25 47.5 60 2°蒸发20 14.2 4.3 15.00 50 64 2°蒸发21 15 4.5 15.75 52.5 68 2°蒸发22 15.6 4.7 16.50 55 74 2°蒸发23 16.5 5 17.25 57.5 80 2°蒸发24 17 5.16 18.00 60 84 2°蒸发25 18 5.6 18.25 62.5 90 2°蒸发26 20 6 19.00 65 98 2°蒸发选型参数计算表冷凝器简易选型一 ( 仅供参考)压缩机输104kcal/h 输入功率制冷量 KW×冷凝器片数( 进30°出 35°)备注入功率RT(kW) 1.25(Hp) EATB25 EATB55/50 EATB85 (COP3.33) 小1 0.62 0.124 0.65 2.70830625 10 40°冷凝1 0.7 0.22 0.75 3.125 12 40°冷凝2 1.4 0.43 1.50 6.25 20 40°冷凝3 2.1 0.65 2.25 9.375 28 40°冷凝4 2.8 0.86 3.00 12.5 36 40°冷凝5 3.5 1.1 3.75 15.625 46 20 40°冷凝6 4.2 1.29 4.50 18.75 54 22 40°冷凝7 5 1.5 5.25 21.875 62 26 40°冷凝8 5.7 1.7 6.00 25 30 40°冷凝9 6.4 1.9 6.75 28.125 32 40°冷凝10 7.1 2.1 7.50 31.25 36 40°冷凝11 7.9 2.4 8.25 34.375 40 40°冷凝12 8.5 2.6 9.00 37.5 42 40°冷凝13 9.4 2.8 9.75 40.625 46 40°冷凝14 10 3 10.50 43.75 48 40°冷凝15 11 3.26 11.25 46.875 52 40°冷凝16 11.3 3.44 12.00 50 56 40°冷凝17 12.2 3.7 12.75 53.125 58 40°冷凝18 12.7 3.87 13.50 56.25 62 40°冷凝19 13.6 4.13 14.25 59.375 66 40 40°冷凝20 14.2 4.3 15.00 62.5 68 42 40°冷凝21 15 4.5 15.75 65.625 72 44 40°冷凝22 15.6 4.7 16.50 68.75 74 46 40°冷凝23 16.5 5 17.25 71.875 78 48 40°冷凝24 17 5.16 18.00 75 82 50 40°冷凝25 18 5.6 18.25 78.125 84 52 40°冷凝26 20 6 19.00 81.25 88 54 40°冷凝27 20.25 84.375 90 56 40°冷凝28 21.00 87.5 94 58 40°冷凝29 21.75 90.625 96 62 40°冷凝30 22.50 93.75 100 64 40°冷凝35 26.25 109.375 74 40°冷凝40 29.98 125 86 40°冷凝50 37.47 156.25 108 40°冷凝60 44.96 187.5 130 40°冷凝选型参数计算表冷凝器简易选型二 ( 仅供参考)压缩机输104kcal/h 输入功率输入功率冷凝器片数( 进50°出 55°)备注入功率RT ( kW)×能(kW)(Hp) 效比 4.5 ×1.25 EATB25 EATB55/50 EATB85 (COP4.5) 小1 0.62 0.124 0.65 3.65625 18 60°冷凝1 0.7 0.22 0.75 4.21875 22 60°冷凝1.5 1.05 0.33 1.13 6.3563 26 60°冷凝2 1.4 0.43 1.50 8.4375 30 60°冷凝3 2.1 0.65 2.25 12.65625 42 20 60°冷凝4 2.8 0.86 3.00 16.875 54 26 60°冷凝5 3.5 1.1 3.75 21.09375 64 32 60°冷凝6 4.2 1.29 4.50 25.3125 74 38 60°冷凝7 5 1.5 5.25 29.53125 84 42 60°冷凝8 5.7 1.7 6.00 33.75 96 48 60°冷凝9 6.4 1.9 6.75 37.96875 54 60°冷凝10 7.1 2.1 7.50 42.1875 60 60°冷凝11 7.9 2.4 8.25 46.40625 66 60°冷凝12 8.5 2.6 9.00 50.625 72 42 60°冷凝13 9.4 2.8 9.75 54.84375 78 44 60°冷凝14 10 3 10.50 59.0625 82 48 60°冷凝15 11 3.26 11.25 63.28125 88 52 60°冷凝16 11.3 3.44 12.00 67.5 94 56 60°冷凝17 12.2 3.7 12.75 71.71875 100 62 60°冷凝18 12.7 3.87 13.50 75.9375 68 60°冷凝19 13.6 4.13 14.25 80.15625 72 60°冷凝20 14.2 4.3 15.00 84.375 76 60°冷凝21 15 4.5 15.75 88.59375 82 60°冷凝22 15.6 4.7 16.50 92.8125 86 60°冷凝23 16.5 5 17.25 97.03125 92 60°冷凝24 17 5.16 18.00 101.25 98 60°冷凝25 18 5.6 18.25 102.65625 104 60°冷凝26 20 6 19.00 106.875 110 60°冷凝27 20.25 113.90625 116 60°冷凝28 21.00 118.125 122 60°冷凝29 21.75 122.34375 130 60°冷凝30 22.50 126.5625 140 60°冷凝。

换热面积计算

换热面积计算

800KW蒸发器、冷凝器换热面积计算一、800KW蒸发器换热面积:A=Q/(K*△t), △t=︱t2-t1︱/ln(t c-t1/ t c-t2)A:换热面积m2(基于工作介质:水、R22);Q:压缩机制冷量KW,为800KW;K:传热系数,采用波纹状螺纹管取3.4t1为进水温度,为12℃;t2为出水温度,为7℃t c为蒸发温度= t2-(2-4)℃,取t c=4℃经计算A计=46.23 m2,实际A=A计*(1.1-1.15)=51.78 m2(取1.12)二、800KW冷凝器换热面积:A=Q*1.2/(K*△t), △t=(t2-t1)/ln(t c-t1/ t c-t2)A:换热面积m2(基于工作介质:水、R22);Q:压缩机制冷量KW,为800KW;K:传热系数,采用波纹状螺纹管取3.14t1为进水温度,为30℃;t2为出水温度,为35℃t c为冷凝温度= t2+5℃,取t c=40℃经计算A计=42.46 m2,实际A=A计*(1.1-1.15)=47.5 m2(取1.12)三、无锡约克公司蒸发器换热面积:无锡约克公司提供给我司一款直径为650mm,制冷量为967KW,蒸发温度为5.2℃干式蒸发器(基于工作介质:水、R134a)的设计参数为:采用直径为9.52 mm,壁厚0.8 mm波纹状螺纹管,铜管长度为2446mm,数量为1400根。

采用上述计算公式:换热面积A计=55.88m2,实际A=A计(1.1-1.15)=62.59m2(取1.12)根据GB151-1999管壳式换热器中3.7.1有关换热面积的解释及计算方法,1400根铜管的外表面积就为换热面积A。

A=3.14DL*1400=3.14*0.00952*(2.446-0.05*2)*1400=98.18m2(大于62.59 m2,满足设计要求)四、铜管数量的计算:按江苏萃隆铜业有限公司推荐的行业用铜管材料,蒸发器用¢12.7*0.85(名义壁厚)波纹状螺纹管;冷凝器用¢15.88*0.64(名义壁厚)波纹状螺纹管。

各种蒸发器冷凝器计算

各种蒸发器冷凝器计算

各种蒸发器冷凝器计算蒸发器和冷凝器是热力工程中常见的设备,用于蒸发和冷凝流体。

本文将介绍各种蒸发器和冷凝器的计算方法。

一、蒸发器蒸发器是将液体转化为蒸汽的设备。

根据蒸发器的类型有多种不同的计算方法。

1.蒸发器内换热面积计算蒸发器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。

2.各种蒸发器的计算常见蒸发器种类有多效蒸发器、喷雾式蒸发器、蒸镜式蒸发器等。

这些蒸发器的计算方法略有不同。

多效蒸发器的换热器内换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为蒸气侧的换热系数,ΔTmd为蒸汽的平均温差。

喷雾式蒸发器的蒸发速率计算可以使用以下公式:W = (G × H) / (λ × (hlg - hgf))量蒸发潜热,hlg为蒸汽的焓值,hgf为液体的焓值。

蒸镜式蒸发器的换热面积和蒸发速率计算方法类似多效蒸发器。

二、冷凝器冷凝器是将蒸汽或气体转变为液体的设备。

根据冷凝器的类型有多种不同的计算方法。

1.冷凝器的内换热面积计算冷凝器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。

2.各种冷凝器的计算常见冷凝器种类有冷却管束冷凝器、冷凝器冷凝管束冷凝器等。

这些冷凝器的计算方法略有不同。

冷却管束冷凝器的换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为冷却侧的换热系数,ΔTmd为冷却水的平均温差。

冷凝器冷凝管束冷凝器的冷凝速率计算可以使用以下公式:W = (G × H) / (λ × (hgf - hfg))量冷凝潜热,hgf为蒸汽的焓值,hfg为液体的焓值。

以上就是各种蒸发器和冷凝器的计算方法。

冷凝器换热面积计算方法

冷凝器换热面积计算方法

冷凝器换热⾯积计算⽅法冷凝器换热⾯积计算⽅法(制冷量+压缩机功率)/200~250=冷凝器换热⾯例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃制冷量12527W+压缩机功率11250W23777/230=⽓冷凝器换热⾯积103m2⽔冷凝器换热⾯积与⽓冷凝器⽐例=概算1⽐18;(103/18)= 6m2蒸发器的⾯积根据制冷量(蒸发温度℃×Δt进⽓温度)制冷量=温差×重量/时间×⽐热×安全系数例如:有⼀个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H,4冷冻物品(鲜鱼);5环境温度27℃;6安全系数1.23计算:62℃×1000/2/H×0.82×1.23=31266kcal/n可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/hNFB与MC选⽤⽆熔丝开关之选⽤考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V),低电压配线建议选⽤标准(单⼀压缩机)AF 取⼤于AT ⼀等级之值.(为接点耐电流的程度若开关会热表⽰AF选太⼩了)AT(A ) = 电动机额定电流×1 .5 ~2 .5(如保险丝的IC值)(多台压缩机)AT(A )=(最⼤电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和IC启断容量,能容许故障时的最⼤短路电流,如果使⽤IC:5kA的断路器,⽽遇到10kA的短路电流,就⽆法承受,IC值愈⼤则断路器部的消弧室愈⼤、体积愈⼤,愈能承受⼤⼀点的故障电流,担保⽤电安全。

要搭配电压来表⽰220V 5KA 电压380V时IC值是2.5KA。

电磁接触器之选⽤考虑使⽤电压、控制电压,連续电流I t h 之⼤⼩(亦即接点承受之电流⼤⼩),連续电流I th 的估算⽅式建议为I t h=马达额定电流×1.25/√3。

直接启动时,电磁接触器之主接点应选⽤能启闭其额定电流之10倍。

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积?【1】帖子创建时间: 2013年03月04日 08:34评论:1浏览:2520投稿1)风冷凝器换热面积计算方法制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m22)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。

3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构例如:有一个速冻库1)库温-35℃2)速冻量1T/H3)时间2/H内4)速冻物质(鲜鱼)5)环境温度27℃6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n冷凝器换热面积大于蒸发器换热面积有什么缺点如果通过加大冷凝风扇的风量可以吗rainbowyincai|浏览 1306 次发布于2015-06-07 10:19最佳答案冷凝器换热面积大于蒸发器换热面积的缺点:1、高压压力过低;2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。

风冷冷凝器和蒸发器换热面积计算方法:1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=1252 7W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m²。

2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m²,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。

蒸发器、冷凝器计算

蒸发器、冷凝器计算

137.20000
单位面积热负荷KW/m2
qf=
9.00000
蒸发器传热面积m2
F=
15.24444
冷冻水量kg/s
Gk=
0.00656
冷冻水量m3/h
Gk=
23.59866
三、蒸发器基本尺寸参数
换热器换热管间距m
A=
0.01700
排列方式
正三角形
换热管管径m
D=
0.01270Hale Waihona Puke 换热管内径mD1=
0.01170
单根换热管每米管长换热面积m2/m Fd=
0.03988
二、换热器物理参数计算
蒸发器组数
N=
1
每组蒸发器换热管数
N1=
244
每组蒸发器换热管长m
L=
1.9820
每组蒸发器换热管流程
N3=
4
每组蒸发器每流程换热管数
N4=
61
每组蒸发器水侧通流面积m2
Fy=
每组蒸发换热面积m2
Fz=
19.28532
蒸发器换热面积m2
tr=
5.00000
过冷度℃
tg=
5.00000
冷冻水进口温度℃
t1=
12.00000
冷冻水出口温度℃
t2=
7.00000
冷冻水出口温度范围℃
t2=
5.0-15
蒸发温度℃
to=
2.00000
传热温差℃
△tm=
7.21348
冷冻水进出口温差℃
△t=
5.00000
二、蒸发器热力计算求解
蒸发器制冷量KW
Qk=
F=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种蒸发器冷凝器计算
蒸发器和冷凝器是蒸发冷凝循环系统的两个重要组成部分。

蒸发器用于将液体转化为蒸汽,冷凝器则将蒸汽重新转化为液体。

在工业生产或空调系统中,蒸发器和冷凝器的设计和计算十分重要,因为它们的效率和性能直接影响到系统的运行效果。

下面将对各种蒸发器和冷凝器的计算进行详细介绍。

一、蒸发器的计算
蒸发器的主要作用是通过向环境中提供热量,将液体转变为蒸汽。

在计算蒸发器时,需要考虑以下参数:
1.蒸发器的热负荷:即单位时间内从蒸发器中蒸发的液体的热量。

热负荷可以通过以下公式计算:
热负荷=蒸发流量×蒸发潜热
2.蒸发器的换热面积:蒸发器的换热面积决定了热量的传递效率。

一般而言,换热面积越大,热量传递效率越高。

换热面积的计算常采用多种方法,如LMTD法和效能法。

3. 蒸发器的传热系数:传热系数是指单位面积上的热量传递速率。

蒸发器的传热系数一般由蒸发器的材料和工况条件决定。

常见的计算方法有Nu数法和Kern法。

4.蒸发器的风速:蒸发器通过风速来增加传热效果。

风速的选择应根据具体的应用环境和蒸发器的性能来确定。

二、冷凝器的计算
冷凝器的主要作用是将蒸汽重新冷凝为液体。

在计算冷凝器时,需要
考虑以下参数:
1.冷凝器的冷负荷:即单位时间内从冷凝器中冷凝的蒸汽的热量。


负荷可以通过以下公式计算:
冷负荷=冷凝流量×冷凝潜热
2.冷凝器的换热面积:冷凝器的换热面积决定了热量的传递效率。


般而言,换热面积越大,热量传递效率越高。

换热面积的计算方法与蒸发
器类似。

3. 冷凝器的传热系数:传热系数是指单位面积上的热量传递速率。

冷凝器的传热系数一般由冷凝器的材料和工况条件决定。

常见的计算方法
也是采用Nu数法和Kern法。

4.冷凝器的冷却水流量和温差:冷凝器通过冷却水来吸收蒸汽的热量。

冷却水的流量和温差会影响冷凝器的性能和效率。

一般而言,冷却水的流
量越大,温差越小,冷凝器的工作效果越好。

综上所述,不同类型的蒸发器和冷凝器在计算时,需要考虑的参数有
所差异。

对于蒸发器来说,主要需要考虑热负荷、换热面积、传热系数和
风速;而对于冷凝器来说,主要需要考虑冷负荷、换热面积、传热系数以
及冷却水的流量和温差。

根据具体的应用场景和需求,可以选择合适的计
算方法和参数,以确保蒸发器和冷凝器的设计和计算符合实际要求,从而
提高系统的效率和性能。

相关文档
最新文档