初中数学 开放性试题及答案

合集下载

初中数学开放型试题含答案-

初中数学开放型试题含答案-

开放型试题开放型试题重在开发思维,促进创新,提高数学素养,所以是近几年中考试题的热点考题。

观察、实验、猜想、论证是科学思维方法,是新课标思维能力新添的内容,学习中应重视并应用。

例1.(2005年梅州)如图,四边形ABCD 是矩形,O 是它的中心,E 、F 是对角线AC上的点。

(1)如果 ,则ΔDEC ≌ΔBFA (请你填上能使结论成立的一个条件);(2)证明你的结论。

分析:这是一道探索条件、补充条件的开放型试题,解决这类问题的方法是假设结论成立,逐步探索其成立的条件。

解:(1)AE=CF (OE=OF ;DE ⊥AC ;BF ⊥AC ;DE ∥BF 等等)(2)∵四边形ABCD 是矩形,∴AB=CD ,AB ∥CD ,∠DCE=∠BAF 又∵AE=CF ,∴AC -AE=AC -CF ,∴AF=CE ,∴ΔDEC ≌ΔBAF 说明:考查了矩形的性质及三角形全等的判定。

练习一1. (2005年黑龙江课改)如图, E 、F 是□ABCD 对角线BD 上的两点,请你添加一个适当的条件: ___________ ,使四边形AECF 是平行四边形.2、(2005年金华)如图,在△ABC 中,点D 在AB 上,点E 在BC 上,BD =BE. (1)请你再添加一个条件,使得△BEA ≌△BDC ,并给出证明.你添加的条件是: . 证明:A D E FO F EDCBA(2)根据你添加的条件,再写出图中的一对全等三角形: . (只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程) 3、(2005年玉溪)如图,在梯形ABCD 中,AD ∥BC ,BD =CD ,AB <CD 且∠ABC 为锐角,若AD =4,BC =12,E 为BC 上一点。

问:当CE 分别为何值时,四边形ABED 是等腰梯形?直角梯形?请分别说明理由。

例2、(2005年长沙)己知点E 、F 在ABC ∆的边 AB 所在的直线上,且AE BF =,FH EG AC ,FH 、EG 分别交边BC 所在的直线于点H 、G .⑴如图l ,如果点E 、F 在边AB 上,那么EG FH AC +=;⑵如图2,如果点E 在边AB 上,点F 在AB 的延长线上,那么线段EG 、FH 、AC 的长度关系是_______________ ;⑶如图3,如果点E 在AB 的反向延长线上,点F 在AB 的延长线上,那么线段EG 、FH 、AC 的长度关系是_________ ; 对⑴⑵⑶三种情况的结论,请任选一个给予证明. 分析:这是一道探索、确定结论的开放型试题,解决这类问题的方法是根据条件,结合已学的知识、数学思想方法,通过分析、归纳逐步得出结论,或通过观察、实验、猜想、论证的方法求解。

初中数学开放试题及答案

初中数学开放试题及答案

初中数学开放试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14159B. √2C. 0.33333D. 2答案:B2. 一个长方形的长是宽的两倍,如果宽是4厘米,那么长方形的周长是多少厘米?A. 24B. 20C. 16D. 12答案:A3. 一个数的平方是36,这个数是多少?A. 6B. -6C. 6或-6D. 36答案:C4. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C5. 一个数的相反数是-3,这个数是?A. 3B. -3C. 0D. 6答案:A6. 计算下列算式的结果:(2x - 3) + (5x + 4) = ?A. 7x + 1B. 7x - 1C. 7x + 4D. 7x - 4答案:A7. 一个数的立方是-27,这个数是?A. 3B. -3C. 3或-3D. 0答案:B8. 一个数的倒数是2,这个数是?A. 1/2B. 2C. -1/2D. -2答案:A9. 计算下列算式的值:(3x^2 - 2x + 1) - (2x^2 - 5x + 3) = ?A. x^2 + 3x - 2B. x^2 - 3x - 2C. x^2 + 3x + 2D. x^2 - 3x + 2答案:A10. 一个数的平方根是4,这个数是?A. 16B. -16C. 16或-16D. 4答案:A二、填空题(每题4分,共20分)11. 如果一个角的补角是120°,那么这个角的度数是______。

答案:60°12. 一个数的平方是16,这个数是______。

答案:±413. 一个数的绝对值是3,这个数是______。

答案:±314. 一个数的立方是-8,这个数是______。

答案:-215. 一个数的倒数是1/3,这个数是______。

答案:3三、解答题(每题10分,共50分)16. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求这个直角三角形的斜边长。

初中数学专题复习开放性题

初中数学专题复习开放性题
Δ AEC∽Δ CFB, EC=FC,AE=DF,AE+BF=AB, EC2=AE*BF,FC2=FD*FB,
AC2/BC2=AE/BF
各班级分数段人数分布情况 三、策略开放型
例 有一块方角形钢板如下图所示,请你用一 条直线将其分为面积相等的两部分(不写作法, 保留作图痕迹,在图中直接画出)。
策略开放题,一般是指 解题方法不唯一或解题路 径不明确的问题。
1、写出一个一元二次方程,使得这个方程的两根之和是-2 . 2、三角形的周长是20,若三边比为2:5: 3、如图,∠DAB=∠CAB,请添加一个条 件: ,使得ΔDAB≌ΔCAB . 4、如图4,在ΔABC中,AB=AC,D为AC 边上的一点,要使得ΔABC∽ΔBCD, 还需要添加一个条件,这个条件可以是 5、如图5,在梯形ABCD中,E、F、G、H分别 是梯形ABCD各边的中点,当梯形ABCD ,求三条边.
( 第二轮专题训练 )
前言
“创新是一个民族的灵魂”
培养创新精神和实践能力是当前全面 推进素质教育的重点.开放性、探索性的试 题是考查这种能力的新题型.这类试题涉及 知识面宽,综合性强,要求学生有扎实的基 础知识和熟练的基本技能.是近几年的热门 考题.
开放性问题
数学开放题是指那些条件不完整,结论不确定,解 法不限制的数学问题。 它的显著特点:正确答案不唯一。
一个圆形街心花园,有三个出口A、B、C,每两个出口之间 有一条60米长的道路,组成正三角形ABC,在中心点O处有 一个亭子。为使亭子与原有的道路相通,需再修三条小路 OD、OE、OF,使另一出口D、E、F分别落在△ABC的三 边上,且这三条小路把△ABC分成三个全等的多边形,以备 种不同品种的花草。
题型: 条件开放 结论开放

初中数学开放性问题

初中数学开放性问题

初中数学开放性问题1. 8×86=688,这个算式,把乘数的个位数6放在被乘数之首,十位数8放在被乘数之尾, 得688即乘积,还有没有这样的算式?若有,请写出它们。

2.有一些合数分解成质数的积,等式两边的数码的和相等,如:6036=2×2×3×503,6+ 0+3+6=2+2+3+5+0+3。

数学爱好者史密斯发现493 777 5=3×5×5×65 837,4+9+3+7+7+7+5=3+5+5+6+5+8+3+7,493 777 5恰为史密斯家的电话号码,这个数又是已知的具有上述性质的最大的数。

在10000以内的合数有360个具有这样的性质,请你尽可能多地写出它们。

3.现有四个有理数3,4,-6,10。

将这四个数(每个数用且只用一次)进行加、减、乘、 除四则运算,使其结果等于24,其三种本质不同的运算式如下:(1)__________(2)___________(3)_________ 另有四个数3,-5,7,-13,可通过运算式(4)_____________使其结果等于24。

4.某位老师在讲“实数”时,画了一个图(如图),即“以数轴上的单位长线段作一个正方 形,然后以原点O 为圆心,正方形的对角线长为半径画弧交x 轴于点A ”,作这样的图是用来说明_______。

5.用实际例子说明绝对值的几何意义。

6.定义一种运算“∧”,对任何两个正数a 和b 有ba ab b a +=∧。

验证运算“∧”是否具有 交换律、结合律、对加法的分配律?即 )()()(),()(,c a b a c b a c b a c b a a b b a ∧+∧=+∧∧∧=∧∧∧=∧是否成立?请你给出另一种新的运算定义,使其具有交换律、结合律或者对他运算的分配律。

7.已知1,2,2三个数,请你添上一个数,写出一个比例式:__________。

8.写出一个只含有字母X 的代数式(要求:(1)要使此代数式有意义,字母X 必须取全体 正数;(2)此代数式的值恒为负数):______________________。

初中数学拓展试题及答案

初中数学拓展试题及答案

初中数学拓展试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 如果一个角是直角的一半,那么这个角是:A. 45°B. 90°C. 180°D. 360°答案:A4. 一个长方形的长是10cm,宽是5cm,那么它的面积是:A. 25cm²B. 50cm²C. 75cm²D. 100cm²答案:B5. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C6. 下列哪个是无理数?A. 2B. 3C. πD. 4答案:C7. 一个数的立方是-27,那么这个数是:A. 3B. -3C. 9D. -9答案:B8. 一个数的平方是16,那么这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C9. 一个数的倒数是它本身,那么这个数是:A. 1B. -1C. 1或-1D. 0答案:C10. 一个数的平方根是它本身,那么这个数是:A. 0B. 1C. 0或1D. -1答案:C二、填空题(每题4分,共20分)1. 一个数的平方等于36,这个数是______。

答案:±62. 一个数的立方等于-8,这个数是______。

答案:-23. 一个数的绝对值是4,这个数可能是______。

答案:4或-44. 一个数的倒数是1/3,这个数是______。

答案:35. 一个数的平方根是2,这个数是______。

答案:4三、解答题(每题10分,共50分)1. 计算下列表达式的值:(3x - 2)(x + 4),其中x = 2。

答案:将x = 2代入表达式,得到(3*2 - 2)(2 + 4) = (6 - 2)(6) = 4 * 6 = 24。

2. 一个数的平方减去这个数的两倍再加上1等于0,求这个数。

中考数学专题之开放性问题解析及练习和答案

中考数学专题之开放性问题解析及练习和答案

中考数学专题之开放性问题解析及练习和答案开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一 条件开放型例1 (2014·巴中)如图,在四边形ABCD 中,点H 是边BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连接BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE 是平行四边形,然后根据矩形的判定方法,得出EH 与BH 应满足的条件.【解答】(1)添加条件:答案不唯一,如:BE ∥CF 或EH =FH 或∠EBH =∠FCH 或∠BEH =∠CFH 等. 选择EH =FH ,证明如下:证明:∵点H 是边BC 的中点,∴BH =CH . 在△BEH 和△CFH 中,,,BH CH EHB FHC EH FH =⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△CFH (SAS ).(2)如图,当BH =EH 时,四边形BFCE 是矩形.理由如下:∵BH =CH ,EH =FH ,∴四边形BFCE 是平行四边形. 又∵BH =EH ,∴EF =B C. ∴四边形BFCE 是矩形.方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(2014·湘潭)如图,直线a 、b 被直线c 所截,若满足 ,则a 、b 平行.2.(2014·内江)如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,AD ∥BC ,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线).3.(2013·六盘水)如图,添加一个条件: ,使△ADE ∽△AC B.(写出一个即可)4.(2014·娄底)先化简241193x x x ⎛⎫⎪⎝-÷--⎭-,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.5.(2013·邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,请添加一个条件,使得四边形ABCD 为矩形,并说明理由.题型之二结论开放型例2 (2013·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+12(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】(1)当p=12时,y=x+12(100-x).即y=12x+50.∴y随着x的增大而增大,即p=12时,满足条件(Ⅱ);又当20≤x≤100时,12×20+50≤y≤12×100+50.即60≤y≤100.即满足条件(Ⅰ).综上可知,当p=12时,这种变换满足要求.(2)由题意可知,只要满足:①h≤20;②若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求.如取h=20,y=a(x-20)2+k.∵a>0,∴当20≤x≤100时,y随着x的增大而增大,令x=20,y=60,得k=60.令x=100,y=100,得a×802+k=100.则a=1 160.∴y=1160(x-20)2+60.方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(2014·滨州)写出一个运算结果是a6的算式.2.(2013·赤峰)请你写出一个大于0而小于1的无理数.3.(2014·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(2013·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(2014·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内? (4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg ).题型之三 综合开放型例3 (2013·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x ,y 满足图示的函数关系,要求: (1)指出变量x 和y 的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】(1)本题答案不唯一,如下列解法:某市出租车计费方法是当载客行驶里程为x (千米),则车费为y (元).该函数图象就是表示y 随x 的变化过程. (2)①出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式; ②若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程. 解:①由图象得:出租车的起步价是8元. 设当x >3时,y 与x 的函数关系式为y =kx +b , 由函数图象,得83,125.k b k b =+⎧⎨=+⎩解得2,2.k b =⎧⎨=⎩ 故y 与x 的函数关系式为:y =2x +2. ②当y =32时,32=2x +2.解得x =15. 答:这位乘客乘车的里程是15千米.方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B 地.请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.参考答案题型之一 条件开放型1.答案不唯一,如∠1=∠22.(答案不唯一)AD =BC (或AB ∥DC )3.∠ADE =∠C (答案不唯一)4.原式=()()431333x x x x x ---÷+--=()()43·334x x x x x --+--=13x +. 解不等式2x -3<7得x <5. 取x =1时,原式=113+=14. 提示:本题最后答案不唯一,x 不能取±3,4.5.本题答案不唯一,如:∠B =90°或∠BAC +∠BCA =90°,或OB =OA =OC 或AB 2+BC 2=AC 2等. 以∠B =90°为例说明.理由: ∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形. 又∵∠B =90°,∴□ABCD 为矩形.题型之二 结论开放型1.答案不唯一,如:2a 6-a 6,a 2×a 4,(a 2)3,a 8÷a 2(a ≠0)2.答案不唯一,如:2,3,4π3.(1)△ABE ≌△CDF ,△ABC ≌△CD A. (2)∵AF =CE ,∴AE =CF . ∵AB ∥CD ,∴∠BAE =∠DCF . 又∵∠ABE =∠CDF ,∴△ABE ≌△CDF .4.根据题意,函数可以是一次函数,反比例函数或二次函数.例如: ① 此函数的解析式为y =kx(k >0), ∵此函数经过点(1,1),∴k =1. ∴此函数可以为:y =1x; ②设此函数的解析式为y =kx +b (k <0), ∵此函数经过点(1,1),∴k +b =1,k <0. ∴此函数可以为:y =-x +2,y =-2x +3,…; ③设此函数的解析式为y=a(x-m)2+n(a<0,m≤0),∵此函数经过点(1,1),∴a(1-m)2+n=1(a<0,m≤0).∴此函数可以为:y=-x2+2,y=-2x2+3,y=-(x+1)2+5,….5.(1)如图所示.(2)其质量落在0.5 kg~0.8 kg范围内的可能性最大;(3)质量落在0.8~1.1 kg范围内;(4)方法一:用去尾平均数估计:去尾平均数x=0.680.715 1.018 1.25 1.6147⨯+⨯+⨯+⨯+⨯≈0.87(kg).50×50×0.87=2 175(kg).水库中成品鱼的总质量约为2 175 kg.方法二:平均数x=(0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×2)×150=0.904(kg).50×50×0.904=2 260(kg).水库中成品鱼的总质量约为2 260 kg.方法三:利用组中值计算平均数:x=0.65240.9518 1.255 1.551 1.85250⨯+⨯+⨯+⨯+⨯=0.884(kg).50×50×0.884=2 210(kg).水库中成品鱼的总质量约为2 210 kg.方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×1.0=2 500(kg).水库中成品鱼的总质量约为2 500 kg.题型之三综合开放型1.答案不唯一,如:(1)该函数图象表示小明开车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系;(2)小明以0.4 km/min的速度匀速开了5 min,在原地休息了6 min,然后以0.5 km/min的速度匀速开车回出发地.2.答案不唯一,如:甲从A地到B地步行所用时间是多久?设甲从A地到B地步行所用时间为x小时,由题意得301x-=15x+10.化简得2x2-5x-3=0,解得x1=3,x2=-1 2 .经检验知x=3符合题意,∴x=3.∴甲从A地到B地步行所用时间为3小时.3.(1)设y =k x, ∵A (1,10)在图象上,∴10=1k.即k =10. ∴y =10x(1≤x ≤10). (2)答案不唯一.例如:小明家离县城10 km ,某天小明骑自行车以x km /h 的速度去县城,那么小明从家去县城所需的时间y =10x(h ).。

初三数学第二轮复习开放性综合题

初三数学第二轮复习开放性综合题
参考答案:
练兵平台1.D.2.19.3.153.4.9: .3(k-2): .5.120°:90°:72°:
6.(1)7+2l+23+25+39=23×5 (2)(a-l)+(a-2)+a+(a+2)+(a+16)=5a
(3)仍有这种规律:由(2)将十字框上、下、左、右平移:框住的五个数的和始终等于中间数的5倍
3.(扬州市)请选择一组你喜欢的a、b、c的值:使二次函数 的图像同时满足下列条件:①开口向下;②当 时:y随x的增大而减小:当 时:y随x的增大而增大.这样的二次函数的解析式可以是____________________.
4.(广东)设四边形ABCD是边长为1的正方形:以正方形ABCD的对角线AC为边作第二个正方形ACEF:再以第二个正方形的对角线AE为边作第三个正方形AEGH:如此下去···。
n=时:顶点P第一次回到原来的起始位置.
(3)请你猜测:使顶点P第一次回到原来的起始位置的n值与k之间的关系(请用含k的代数式表示n).
1)12次
(2)24次:12次
(3)当k是3的倍数时:n=4k:当k不是3的倍数时:n=12k.
点评:为了引导学生在实践中探求规律:本题给出了一种探求的方法——变直为曲:将绕正方形的边翻转的问题转化为在直线上翻转的问题:使问题简化:更便于发现规律。
1. (镇江)正方体的表面涂满了颜色:按如图所示将它切成27个大小相等的小立方块:设其中仅有 个面(1:2:3)涂有颜色的小立方块的个数为 :则 、 、 之间的关系为()
(A) - + =1(B) + - =1
(C) + - =2(D) - + =2
2.(深圳)已知: : : :……:

人教版初中八年级数学下册第十九章《一次函数》经典测试卷(含答案解析)(2)

人教版初中八年级数学下册第十九章《一次函数》经典测试卷(含答案解析)(2)

一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .B 解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.2.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤-D 解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.3.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2C .3D .4B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 4.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,4A 解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 5.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.6.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫-⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-B 解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx 中,得k=6(8)-=34-. 【详解】∵点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-,.【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 7.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.8.函数2y x x =+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则 ∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D .D 解析:D【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得.【详解】A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C 、由图象知,0(3)0p p <⎧⎨-->⎩,解得0p <,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;D 、由图象知,0(3)0p p <⎧⎨--<⎩,不等式组无解,即它不可能是关于x 的一次函数(3)y px p =--的图象,此项符合题意;故选:D .【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.10.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+B 解析:B【分析】设一次函数关系式为y kx b =+,y 随x 增大而增大,则0k >;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】解:设一次函数关系式为y kx b =+,图象经过点(1,2),2k b ∴+=; y 随x 增大而增大,0k ∴>.即k 取正数,满足2k b +=的k 、b 的取值都可以.故选:B .【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题,答案不唯一.只要满足条件即可.二、填空题11.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.【分析】一次函数中k=-1<0y 将随x 的增大而减小根据-1<2即可得出答案【详解】解:∵在一次函数中k=-1<0y 将随x 的增大而减小又∵-1<2∴y1>y2故答案为:y1>y2【点睛】本题考查一次函解析:12y y >【分析】一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,根据-1<2即可得出答案.【详解】解:∵在一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,又∵-1<2,∴y 1>y 2.故答案为:y 1>y 2.【点睛】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b (k 、b 为常数,k≠0),当k>0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.12.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键.13.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:52【分析】依据题意得到三个关系式:a+b=355c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点35(1)5P ,在“勾股一次函数”a b y x c c =+的图象上,把35(1)5P ,代入得: 355a b c c=+,即355a b c +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10,∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22352205c c ⎛⎫-⨯= ⎪ ⎪⎝⎭,故24405c =, 解得:52c =.故答案为:52.【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.14.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________. 【分析】先分别计算出P 在直线和直线上时a 的值然后结合题意即可解答【详解】解:当P 在直线y=2x+2上时a-1=2+2解得a=5;当P 在直线y=2x+4上时a-1=2+4解得a=7则当时点P 在两直线之解析:57a <<【分析】先分别计算出P 在直线22y x =+和直线24y x =+上时a 的值,然后结合题意即可解答.【详解】解:当P 在直线y=2x+2上时,a-1=2+2,解得a=5;当P 在直线y=2x+4上时,a-1=2+4,解得a=7则当57a <<时,点P 在两直线之间.故答案为:57a <<.【点睛】本题主要考查了一次函数与一元一次不等式,掌握一次函数图象经过的点,必能使解析式左右相等成为解答本题的关键.15.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.【分析】由一次函数的图象与轴交于点可得A (60)B (08)由勾股定理AB=由点B 与点C 关于x 轴对称可求C (0-8)AB=AC=10可证△BPQ ≌△CAP(AAS)由性质可得PB=CA=10由线段和差解析:(0,2)-【分析】由一次函数483y x =-+的图象与,x y 轴交于点,A B ,可得A (6,0),B (0,8),由勾股定理2222OA +OB =6+8=10,由点B 与点C 关于x 轴对称,可求C (0,-8),AB=AC=10,可证△BPQ ≌△CAP(AAS),由性质可得PB=CA=10,由线段和差OP=BP-OB=2即可.【详解】解:∵一次函数483y x =-+的图象与,x y 轴交于点,A B , ∴x=0,y=8;y=0,48=03x -+,解得x=6, ∴A (6,0),B (0,8),∴2222OA +OB =6+8=10,∵点B 与点C 关于x 轴对称,∴C (0,-8),AB=AC=10,∵∠QPA=∠ABC=∠ACB ,∴∠BPQ+∠APC=108°-∠QPA ,∵∠PAC+∠APC=180°-∠BCA=180°-∠QPA ,∴∠BPQ=∠CAP ,∵PQ=PA ,∴△BPQ ≌△CAP(AAS),∴PB=CA=10,∴OP=BP-OB=10-8=2,P(0,-2),故答案为:(0,-2).【点睛】本题考查一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,掌握一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,解题关键发现并会利用一线三等角构造全等.16.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点解析:152【分析】先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.17.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.(6)【分析】如图作点D 关于直线AB 的对称点H 连接CH 与AB 的交点为E 此时△CDE 的周长最小先求出直线CH 解析式再求出直线CH 与AB 的交点即可解决问题【详解】解:如图作点D 关于直线AB 的对称点H 连接解析:(6,83)【分析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【详解】解:如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (3,0),A (6,0),B (6,8),∴H (9,0),C (0,8),设直线CH 解析式为8y kx =+,∴098k =+, ∴89k =-, ∴直线CH 解析式为y =−89x +8, ∴x =6时,y =83, ∴点E 坐标(6,83). .【点睛】本题考查矩形的性质、坐标与图形的性质、轴对称−最短问题、一次函数等知识,解题的关键是利用轴对称找到点E 位置,学会利用一次函数解决交点问题,属于中考常考题型. 18.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.19.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元 解析:43 【分析】分别画出函数1y x =+,22y x =-+的图象,根据图象可知min{1,22}x x +-+在13x =时有最大值,求出此时的值即可.【详解】解:令函数1y x =+,22y x =-+, 联立122y x y x =+⎧⎨=-+⎩得1343x y ⎧=⎪⎪⎨⎪=⎪⎩, 函数图象如下,根据函数图象可知,当时13x =,min{x+1,-2x+2}的最大值为43, 故答案为:43.【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键.20.平面直角坐标系中,点A坐标为(),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=-的图象上,则a的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A坐标为(23)∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y=-计算即可.【详解】解:∵A坐标为3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是-a,3),∵恰好落在正比例函数y=-的图象上,∴)3a-=,解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.已知直线l1:y=kx+b经过点A(12,2)和点B(2,5).(1)求直线l1的表达式;(2)求直线l1与坐标轴的交点坐标.解析:(1)y=2x+1;(2)(0,1)和(﹣12,0)【分析】(1)由待定系数法可求得直线l1的解析式;(2)令x=0可求得其与y轴的交点坐标,令y=0,可求得其与x轴的交点坐标.【详解】解:(1)∵直线l1:y=kx+b经过点A(12,2)和点B(2,5).∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.22.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x 人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y (元)与x 之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.解析:(1)()13025y x x =-≥;(2)当x =8时,可获得的最大利润为2510元.【分析】(1)根据乙产品的利润和数量之间的关系,可得出y 与x 之间的函数关系式;(2)根据每天甲、丙两种产品的产量相等得到m 与W 之间的关系式,再利用一次函数的性质求解即可.【详解】解:(1)在乙每件120元获利的基础上,每增加1件,当天平均每件利润减少2元,则乙产品的每件利润为120-2(x-5)=130-2x .∴y =130﹣2x (x ≥5).(2)设该企业安排m 人生产甲产品,则安排2m 人生产丙产品,安排(65-3m )人生产乙产品,依题意,得:W=15×2m+30×2m+100(65-3m)=-210m+6500,∵2≤65-3m≤10, 解得:118212≤≤m , 又∵k=-210<0, ∴W 随m 的增大而减小,∵m 是非负整数,∴取m=19时,W 最大值=-210×19+6500=2510,∴x=65-3m=65-57=8(人),答:安排19人生产甲产品,安排38人生产丙产品,安排8人生产乙产品时,可获得的最大利润为2510元.【点睛】本题考查一次函数的实际应用,解题的关键是理解题意,理清题中的数量关系.23.每年“双11"天猫商城都会推出各种优惠活动进行促销,今年,王阿姨的“双11“到来之前准备在两家天期店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已如网家店铺在活动明间分别给子以下优惠:A店铺:"双11"当天购实所有商品可以享受8折优惠:B店铺:买2条被子,赠送1个预椎枕、同时“双11"当天下单,还可立减160元;设购买颈椎枕x(个),若王阿姨在“双11"当天下单,A,B两个店铺优惠后所付金额分别为y A(元)、y B(元).(1)试分别表示y A、y B与x的函数关系式;(2)王阿姨准备在”双11"当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱?解析:(1)y A=480x+1600,y B=600x+1240;(2)在A店铺购买更省钱.【分析】(1)根据两个店铺的优惠方案即可得到结果;x 代入到(1)的式子中,即可得解;(2)把4【详解】(1)解:由题意得:.y A=1000×2×0.8+0.8×600x=480x+1600;y B=1000×2+600(x-1)-160=600x+1240;(2)解:当x=4时,y a=480×4+1600=3520;y B=600×4+1240=3640;∵3520<3640,∴在A店铺购买更省钱.【点睛】本题主要考查了一次函数的应用,准确理解题意列式计算是解题的关键.24.天府七中科创小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,经过7min同时到达C 点,乙机器人始终以60m/min的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的图象,请结合图象,回答下列问题.(1)A、B两点之间的距离是________m,甲机器人前2min的速度为________m/min.(2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.25.某草莓种植基地迎来了收获旺季.草莓的销售有两种形式,即直接销售和加工销售,假设当天都能销售完并且没有损耗.已知直接销售是4元/kg ,加工销售是15元/kg ,该基地聘用采摘工人与加工工人共20人,每人每天可采摘60kg 或加工30 kg 草莓.(1)设采摘工人x 人,剩下的工人加工草莓,若基地一天的总销售额为y 元,请列出y 与x 的函数表达式;(2)为了使得一天的销售额最大,如何分配工人?试求出销售额的最大值.解析:(1)y =-90x +6600;(2)安排7名工人采摘,13名工人加工,最大值是5970元【分析】(1)根据题意可以列出相应的函数关系式,注意加工之前必须先采摘才可以; (2)根据题意和(1)中的函数解析式可以解答本题.【详解】解:(1)由题意可得,y =[60x -(20-x )×30]×4+30(20-x )×15=-90x +6600,即y 与x 的函数关系式是y =-90x +6600;(2)∵60x ≥30(20-x ),∴x ≥203, ∵x 是整数且x ≤20,∴7≤x ≤20,∵y =-90x +6600,-90<0,∴当x =7时,y 取得最大值,此时y =-90×7+6600=5970,20-x =13,答:安排7名工人采摘,13名工人加工,才能使一天的销售收入最大,最大值是5970元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用一次函数的性质解答.26.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标. 解析:(1)2,k =1b =-;(2)()4,3D -.【分析】(1)依据一次函数4y kx =+与12y x b =-+的图象都经过点A (−2,0),将点A 的坐标分别代入两个一次函数表达式,即可得到k 和b 的值; (2)根据解析式求得B 、C 两点的坐标,然后依据S △ABC +S △BCD =15,即可得到点D 的横坐标,进而得出点D 的坐标.【详解】()1将()20A -,代入4y kx =+,得:240k -+= 解得2k =.将()20A -,代入12y x b =-+,得:10b +=, 解得:1b =-. ()2如图,过D 作DE y ⊥轴于E ,在24y x =+中,令0x =,则4y =,所以点B 的坐标为()04,. 在112y x =--中, 令0x =,则1y =-. 所以点C 的坐标为()01-,. 所以5BC =.15ABD ABC BCD S S S ∆∆∆=+=,即1111255152222AO BC DE BC DE ⨯+⨯=⨯⨯+⨯⨯=. 解得4DE =在112y x =--中,令4x =,得3y =-. 所以点D 的坐标为()43-,. 【点睛】本题主要考查了一次函数的图象问题,关键是掌握一次函数图象上点的坐标特征,并弄清题意,学会综合运用其性质解决问题.27.去年我县某学校计划租用6辆客车送240名师生到县学生实训基地参加社会实践活动.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元.(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?解析:(1)y =﹣80x +1680;(2)0≤x ≤2且x 为整数;(3)租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【分析】(1)根据题意和表格中的数据,可以得到y (元)与x (辆)之间函数关系式; (2)根据题意和表格中的数据,可以计算出自变量的取值范围;(3)根据一次函数的性质和x 的取值范围,可以得到选择怎样的租车方案所需的费用最低,最低费用多少元.【详解】解:(1)由题意可得,y =200x +280(6﹣x )=﹣80x +1680,即y (元)与x (辆)之间函数关系式是y =﹣80x +1680;(2)由题意可得,30x +45(6﹣x )≥240,解得,x ≤2,又∵x ≥0,∴自变量的取值范围是0≤x ≤2且x 为整数;(3)由(1)知y =﹣80x +1680,故y 随x 的增大而减小,∵0≤x ≤2且x 为整数,∴当x =2时,y 取得最小值,此时y =1520,6﹣x =4,即租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.28.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?解析:(1)143y x =,2210003y x =+;(2)当每月行驶1500千米时,租两家的费用相同;(3)当每月行驶的路程为2400千米时,选择出租车公司合算.【分析】 (1)1y 是正比例函数,2y 是一次函数,利用待定系数法求解即可;(2)根据函数图象分析即可;(3)当路程为2400千米时,求出1y ,2y ,比较大小即可;【详解】解:(1)设11y k x =,根据题意,得120001500k =,解得143k =, ∴143y x =, 设22y k x b =+,根据题意,得,1000b =,①220001500k b =+②,将①代入②得223=k , ∴2210003y x =+; (2)当每月行驶1500千米时,租两家的费用相同.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开放性试题及答案1、用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.2、电脑CPU 蕊片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄型圆片,叫“晶圆片”。

现为了生产某种CPU 蕊片,需要长、宽都是1cm 的正方形小硅片若干。

如果晶圆片的直径为10.05cm 。

问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由。

(不计切割损耗)E B A C B A M C D M 图3 图4 图1 图2 第21题图3、在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB 的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?4、如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1.试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的95,请说明理由(写出证明及计算过程).5、甲船在点O处发现乙船在北偏东600的B处以每小时a海里的速度向北航行,甲船的速度是每小时3a海里,问甲船应以什么方向航行才能追上乙船。

A DEHFB CG(方案一)A DEFB C(方案二)第23题图6、已知:如图,AB是⊙O的直径,E是AB上的点,过点E作CG⊥AB,F是直线CG上任意上点,连结AF交⊙O于D,连结DC、AC、AG。

(1)探索AC、AD、AF、DC、FC间关系;(2)若CD=12,AD=16,AC=24,你能求出图中其它哪些线段?7. 已知:关于x的二次函数y=(c-a)x2-22bx+c+a,其中a、b、c是一三角形的三边,且∠C=900,(1)求证:二次函数的图象与x轴必有两个不同的交点;(2)如果A(x1,0)、B(x2,0)是上述图象和x轴的两交点,且满足x12+x22=12,求a:b:c;(3)已知n为大于1的自然数,设二次函数图象的顶点为C,连接AC、BC,点A1,A2,……,A n-1,把AC分成n 等分,过各分点作x轴的平行线,分别交BC于B1,B2,……,B n-1,求线段A1B1,A2B2,……,A n-1 B n-1的和。

(可用含n的式子来表示)(据题意可画出草图)8、已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,-1),(1)求经过B、E、C三点的二次函数的解析式;(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连结PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围。

9、如图,在直角坐标系中,等腰梯形ABB1A1的对称轴为y轴。

(1)请画出:点A、B关于原点O的对称点A2 、B2(应保留画图痕迹,不必写画法,也不必证明);(2)连结A1A2、B1B2(其中A2、B2为(1)中所画的点),试证明:x轴垂直平分线段A1A2、B1B2;(3)设线段AB两端点的坐标分别为A(-2 ,4)、B(-4 ,2),连结(1)中A2B2 ,试问在χ轴上是否存在点C ,使△A1B1C与△A2B2C的周长之和最小?或存在,求出点C的坐标(不必说明周长之和最小的理由);若不存在,请说明理由。

x10、周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发。

设甲、乙两组行进同一段所用的时间之比为2∶3 。

(1)直接写出甲、乙两组行进速度之比;(2)当甲组到达山顶时,乙组行进到山腰A 处,且A 处离山顶的路程尚有1.2千米。

试问山脚离山顶的路程有多远?(3)在题(2)所述内容(除最后的问句外)的基础上,设乙组从A 处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇。

请你先根据以上情景提出一个相应的问题,再给予解答(要求:○1问题的提出不得再增添其他条件;○2问题的解决必须利用上述情景提供的所有..已知条件)答案:1、(1)如图(2)由题可知AB =CD =AE ,又BC =BE =AB +AE∴BC =2AB , 即a b 2=由题意知 a a 2,是方程01)1(2=++--m x m x 的两根∴⎩⎨⎧+=⋅-=+1212m a a m a a 消去a ,得 071322=--m m 解得 7=m 或21-=m 经检验:由于当21-=m ,0232<-=+a a ,知21-=m 不符合题意,舍去. 7=m 符合题意.∴81=+==m ab S 矩形答:原矩形纸片的面积为8c m 2.2、答案:可以切割出66个小正方形。

方法一:(1)我们把10个小正方形排成一排,看成一个长条形的矩形,这个矩形刚好能放入直径为10.05cm 的圆内,如图中矩形ABCD 。

∵AB =1 BC =10∴对角线2AC =100+1=101<205.10(2)我们在矩形ABCD 的上方和下方可以分别放入9个小正方形。

GF H ED C BA∵新加入的两排小正方形连同ABCD 的一部分可看成矩形EFGH ,矩形EFGH 的长为9,高为3,对角线9098139222=+=+=EG <205.10。

但是新加入的这两排小正方形不能是每排10个,因为:109910031022=+=+>205.10(3)同理:8925645822=+=+<205.1010625815922=+=+>205.10∴可以在矩形EFGH 的上面和下面分别再排下8个小正方形,那么现在小正方形已有了5层。

(4)再在原来的基础上,上下再加一层,共7层,新矩形的高可以看成是7,那么新加入的这两排,每排都可以是7个但不能是8个。

∵9849497722=+=+<205.10 11349647822=+=+>205.10(5)在7层的基础上,上下再加入一层,新矩形的高可以看成是9,这两层,每排可以是4个但不能是5个。

∵9781169422=+=+<205.1010681259522=+=+>205.10现在总共排了9层,高度达到了9,上下各剩下约0.5cm 的空间,因为矩形ABCD 的位置不能调整,故再也放不下一个小正方形了。

∴10+2×9+2×8+2×7+2×4=66(个)方法二:学生也可能按下面的方法排列,只要说理清楚,评分标准参考方法一。

可以按9个正方形排成一排,叠4层,先放入圆内,然后:(1)上下再加一层,每层8个,现在共有6层。

(2)在前面的基础上,上下各加6个,现在共有8层。

(3)最后上下还可加一层,但每层只能是一个,共10层。

这样共有:4×9+2×8+2×6+2×1=66(个)3、答案:(方案一) 4151254622AEHS S S =-=⨯-⨯⨯⨯V 矩形菱形 230(cm )=(方案二)设BE=x ,则CE=12-xAE ∴由AECF 是菱形,则AE 2=CE 22225(12)x x ∴+=- 11924x ∴= 2ABE S S S -V 矩形菱形= 111912525224=⨯-⨯⨯⨯35.21(m)≈比较可知,方案二张丰同学所折的菱形面积较大.4、:剪法是:当AA 1=BB 1=CC 1=DD 1=31或32时, 四边形A 1B 1C 1D 1为正方形,且S=95. 在正方形ABCD 中,AB=BC=CD=DA=1,∠A=∠B=∠C=∠D=90°.∵AA 1=BB 1=CC 1=DD 1,∴A 1B=B 1C=C 1D=D 1A.∴△D 1AA 1≌△A 1BB 1≌△B 1CC 1≌△C 1DD 1.∴D 1A 1=A 1B 1=B 1C 1=C 1D 1,∴∠AD 1A 1=∠BA 1B 1=∠CB 1C 1=∠DC 1D 1.∴∠AA 1D+∠BA 1B 1=90°,即∠D 1A 1B 1=90°.∴四边形A 1B 1C 1D 1为正方形.设AA 1=x ,则AD 1=1-x.∵正方形A 1B 1C 1D 1的面积=95, ∴S △AA1D1=91 即21x(1-x)=91, 整理得9x 2-9x+2=0.解得x 1=31,x 2=32. 当AA 1=31时,AD 1=32, 当AA 1=32时,AD 1=31. ∴当AA 1=BB 1=CC 1=DD 1=31或32时,四边形A 1B 1C 1D 1仍为正方形且面积是原面积的95. 5 解:设两船行驶t 小时后在A 处相遇,则BA =at ,OA =3at 。

延长AB 交OM 于C ,则AC ⊥OM ,∵∠NOB =600,∴∠BOC =300,设BC =b ,则OC =3b 。

(3at)2=(at+b)2+(3b)2,解得at =2b ,∴OA =3at =23b ,∴cos ∠AOC =OC/OA =1/2,即∠AOC =600,因此甲船的行驶方向应为北偏东300。

6. 解:(1)连结BD ,∵∠F 与∠FAB 互余,∠FAB 与∠B 互余,∴∠F =∠B ,∴∠F =∠ACD ,∴△FCA ∽△CDA ,DC :FC =AC :AF =AD :AC ,上述线段之间的关系有:①DC ·AF=AC ·FC ;②AC 2=AF ·AD ;③DC ·AC =FC ·AD 。

(2)①由DC ·AC =FC ·AD ,得FC =18;②由AC2=AF ·AD ,得AF =36,所以DF =20;③由垂径定理得AG =AC =24;④由△FDC ∽△FGA 得,FG =40,所以CE =11;⑤由勾股定理得AE =455;⑥由三角形相似得AB =455455576。

(注意:本类题目答得越多,挖掘得越深,得分越多。

)7.解:(1)∵∠C =900,∴c 2=a 2+b 2,△=4b 2+4(a 2+b 2-c 2)=4b 2>0,所以抛物线与x 轴必有两个不同的交点。

相关文档
最新文档