珠海市2018年中考数学试题及答案

合集下载

2018年广东省中考数学真题(含答案)

2018年广东省中考数学真题(含答案)

2018年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13 C . 3.14- D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯ 3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D . 4.数据1、5、7、4、8的中位数是 A .4 B .5 C .6D .7 5.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12B .13C .14D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60° 9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m <B .94m ≤C .94m >D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是ο100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x = .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+ 18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?21.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图21-1图和题21-2图所示的不完整统计图.(1)被调查员工人数为______人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.如图,矩形ABCD 中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:△ADF ≌△CED ;(2)求证:△DEF 是等腰三角形.23.如图,已知顶点为()0,3C -的抛物线()20y ax b a =+≠与x 轴交于,A B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数()20y ax b a =+≠的解析式 (3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.24.如图,四边形ABCD 中,AB AD CD ==,以AB 为直径的O e 经过点C ,连接,AC OD 交于点E .(1)证明://OD BC ;(2)若tan 2ABC ∠=,证明:DA 与O e 相切;(3)在(2)条件下,连接BD 交于O e 于点F ,连接EF ,若1BC =,求EF 的长.25.已知OAB Rt ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将OAB Rt ∆绕点O 顺时针旋转60︒,如题251-图,连接BC .(1)填空:OBC ∠= °;(2)如题251-图,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如题252-图,点,M N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5/单位秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?2017年广东省初中毕业生学业考试数学说明:1.全卷共6页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A .15B .5C .-15D .-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示.2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A .0.4×910B .0.4×1010C .4×910D .4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A .110︒B .70︒C .30︒D .20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .-1D .-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A .95B .90C .85D .80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .平行四边形 C .正五边形 D .圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A .(-1,-2)B .(-2,-1)C .(-1,-1)D .(-2,-2) 8.下列运算正确的是( )A .223a a a += B .325·a a a = C .426()a a = D .424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°, 则∠DAC 的大小为( )A .130°B .100°C .65°D .50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的是( )题7图A .①③B .②③C .①④D .②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n = . 13.已知实数a ,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB =5,BC =3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书.若干男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本,求男生、女生志愿者各有多少人?四、解答题(二)(本大题共3题,每小题7分,共21分)20.如是20图,在ABC∆中,A B∠>∠.(1)作边AB的垂直平分线DE,与AB、BC分别相交于点D、E(用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,连接AE,若50∠=︒,求AECB∠的度数.21.如图21图所示,已知四边形ABCD、ADEF都是菱形,BAD FAD BAD、为锐角.∠=∠∠(1)求证:AD BF⊥;(2)若BF=BC,求ADC∠的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如题22图表所示,请根据图表信息回答下列问题:(1) 填空:①m= (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2) 如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(三)(本大题共3题,每小题9分,共27分)23.如图23图,在平面直角坐标系中,抛物线2=-++交x轴于A(1,0),B(3,0)两点,点y x ax bP是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线2=-++的解析式;y x ax b(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件,求sin OCB∠的值.24.如题24图,AB是⊙O的直径,,点E为线段OB上一点(不与O、B重合),作,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,于点F,连结C B.(1)求证:CB是的平分线;(2)求证:CF=CE;(3)当时,求劣弧»BC的长度(结果保留π).25.如题25图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A、C的坐标分别是和,点D是对角线AC上一动点(不与A、C重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:;②设,矩形BDEF的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值2017年广东省中考数学试卷参考答案一、选择题1 2 3 4 5 6 7 8 9 10D C A B B D A B C C二、填空题 11.a (a +1) 12.6 13.> 14.52 15.-1 16.10 三、解答题(一) 17.计算:()1-031-1-7-⎪⎭⎫ ⎝⎛+π 解:原式=7-1+3 =918.先化简,再求值:()5421212=-⋅⎪⎭⎫⎝⎛++-x x x x ,其中解:()()()()222222-++--++=x x x x x x 原式x 2= 当5=x 时,上式=5219.解:设男生x 人,女生y 人,则有⎩⎨⎧==⎩⎨⎧=+=+1612124040506802030y x y x y x 解得 答:男生有12人,女生16人. 四、解答题(二) 20.(1)作图略(2)∵ED 是AB 的垂直平分线 ∴EA =EB∴∠EAC =∠B =50° ∵∠AEC 是△ABE 的外角 ∴∠AEC =∠EBA +∠B =100°21.(1)如图,∵ABCD 、ADEF 是菱形 ∴AB =AD =AF 又∵∠BAD =∠F AD由等腰三角形的三线合一性质可得 AD ⊥BF (2)∵BF =BC ∴BF =AB =AF ∵△ABF 是等比三角形 ∴∠BAF =60° 又∵∠BAD =∠F AD ∴∠BAD =30°∴∠ADC =180°-30°=150° 22.(1)①、52 (2)144 (3)(人)720%1002008052121000=⨯++⨯ 答:略 五、解答题(三)23.解(1)把A (1,0)B (3,0)代入b ax x y ++-=2得⎩⎨⎧-==⎩⎨⎧=++-=++3403901-b a b a b a 解得 ∴342-+-=x x y (2)过P 做PM ⊥x 轴与M ∵P 为BC 的中点,PM ∥y 轴 ∴M 为OB 的中点 ∴P 的横坐标为23把x =23代入342-+-=x x y 得43=y∴⎪⎭⎫⎝⎛43,23P (3)∵PM ∥OC∴∠OCB =∠MPB ,2343==MB PM , ∴54349169=+=PB∴sin ∠MPB =55254323==PB BM ∴sin ∠OCB =55224.证明:连接AC , ∵AB 为直径, ∴∠ACB =90°∴∠1+∠2=90°,∠2+∠3=90° ∴∠1=∠3 又∵CP 为切线 ∴∠OCP =90° ∵DC 为直径 ∴∠DBC =90°∴∠4+∠DCB =90°,∠DCB +∠D =90° ∴∠4=∠D 又∵弧BC =弧BC ∴∠3=∠D∴∠1=∠4即:CB 是∠ECP 的平分线 (2)∵∠ACB =90°∴∠5+∠4=90°,∠ACE +∠1=90° 由(1)得∠1=∠4 ∴∠5=∠ACE在Rt △AFC 和Rt △AEC 中AEC AFC AC AC ECA FCA AEC F ≌△△∴⎪⎩⎪⎨⎧=∠=∠︒=∠=∠90 ∴CF =CE(3)延长CE 交DB 于Qxx x EQ x CQ CP PQCB QCB CB x CE CF x CP x CF CP CF =-=∴==∴⊥∠=====344324343的角平分线是∵)得由(,设:ππ332321806032346060-60-18060333tan 33290219019022=⨯∴=∴=︒=︒︒︒=∠∴︒=∠∴===∠=∴=⋅⋅=∴=∴∴∠=∠∴︒=∠+∠︒=∠+∠︒=∠⊥的长度为:弧∵中,在△即∽△△,,,BC OB AB CBE CBE x x EB CE CBE CEB xEB EB x x EQ CE EB EQEB EB CE BEQCEB CQBCQB CBQ EB CE Θ25.(1)()232,(2)存在理由:①如图1 若ED =EC由题知:∠ECD =∠EDC =30°∵DE ⊥DB∴∠BDC =60°∵∠BCD =90°-∠ECD =60°∴△BDC 是等边三角形,CD =BD =BC =2∴AC =422=+OC OA ∴AD =AC -CD =4-2=2②如图2 若CD =CE依题意知:∠ACO =30°,∠CDE =∠CED =15°∵DE ⊥DB ,∠DBE =90°∴∠ADB =180°-∠ADB -∠CDE =75° ∵∠BAC =∠OCA =30° ∴∠ABD =180°-∠ADB -∠BAC =75°∴△ABD 是等腰三角形,AD =AB =32③:若DC =DE 则∠DEC =∠DCE =30°或∠DEC =∠DCE =150° ∴∠DEC >90°,不符合题意,舍去综上所述:AD 的值为2或者32,△CDE 为等腰三角形(3)①如图(1),过点D 作DG ⊥OC 于点G ,DH ⊥BC 于点H . ∵∠GDE + ∠EDH = ∠HDB + ∠EDH = 90° ∴∠GDE = ∠HDB在△ DGE 和△ DHB 中,0DGE = 90GDE HDB DHB ∠=∠∠∠=⎧⎨⎩ ∴DGE DHB V V ∽ ∴ DG DE =DH DB ∵ 3DH=GC ,tan DG ACO GC =∠= ∴DE 3DB 3= ②如图(2),作 I DI AB ⊥于点。

2018年广东省中考数学试题含答案解析

2018年广东省中考数学试题含答案解析

2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x +1和x ﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x 的方程,解之可得.【解答】解:根据题意知x +1+x ﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b ﹣1|=0,则a +1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a ,b 的值进而得出答案.【解答】解:∵+|b ﹣1|=0,∴b ﹣1=0,a ﹣b=0,解得:b=1,a=1,故a +1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 (2,0) .【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B 6的坐标.【解答】解:如图,作A 2C ⊥x 轴于点C ,设B 1C=a ,则A 2C=a , OC=OB 1+B 1C=2+a ,A 2(2+a ,a ). ∵点A 2在双曲线y=(x >0)上, ∴(2+a )•a=, 解得a=﹣1,或a=﹣﹣1(舍去), ∴OB 2=OB 1+2B 1C=2+2﹣2=2, ∴点B 2的坐标为(2,0);作A 3D ⊥x 轴于点D ,设B 2D=b ,则A 3D=b ,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N 在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

广东省2018年中考数学试题(有答案)(精编)

广东省2018年中考数学试题(有答案)(精编)

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是A .0B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为 A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是 A .30° B .40° C .50° D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m <B .94m ≤C .94m >D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x . 13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)的度数.(2)在(1)条件下,连接BF,求DBF20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。

广东省2018年中考数学试题(有答案)(精品推荐)

广东省2018年中考数学试题(有答案)(精品推荐)

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14、2中,最小的数是A .0 B .13 C . 3.14 D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210B .70.144210C .81.44210 D.80.1442103.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4 B .5 C .6 D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是A .圆 B.菱形 C .平行四边形 D .等腰三角形6.不等式313x x 的解集是A .4x B .4x C .2x D .2x 7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ,40C ,则B 的大小是A .30° B .40°C .50°D .60°9.关于x 的一元二次方程230xx m 有两个不相等的实数根,则实数m 的取值范围为A .94m B .94m C .94m D .94m 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11.同圆中,已知弧AB 所对的圆心角是100,则弧AB 所对的圆周角是 . 12.分解因式:122x x . 13.一个正数的平方根分别是51xx 和,则x= . 14.已知01b b a ,则1a .15.如图,矩形ABCD 中,2,4CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为.(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3x x y 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-18.先化简,再求值:.2341642222a a a a a a,其中19.如图,BD 是菱形ABCD 的对角线,75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF 的度数.20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。

广东省2018年中考数学试题(有答案)(精品)

广东省2018年中考数学试题(有答案)(精品)

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是A .0B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为 A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是 A .30° B .40° C .50° D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m <B .94m ≤C .94m >D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。

(完整版)2018年广东省珠海市中考数学试卷(试卷+答案+解析)

(完整版)2018年广东省珠海市中考数学试卷(试卷+答案+解析)

2018年广东省珠海市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3。

14、2中,最小的数是( )A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A.1。

442×107B.0。

1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是( )A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100°,则所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知+|b﹣1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x 轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1。

2018年珠海市中考数学试题与答案

2018年珠海市中考数学试题与答案

2018年珠海市中考数学试题与答案(试卷满分150分,考试用时120分钟)第一部分 选择题(共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.四个实数0、13、 3.14-、2中,最小的数是A .0B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯ B .70.144210⨯ C .81.44210⨯ D .80.144210⨯ 3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .7 5.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形 6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12 B .13 C .14D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是 A .30° B .40° C .50° D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为 A .94m <B .94m ≤C .94m >D .94m ≥10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为第二部分(非选择题 共120分)二、填空题(本大题6小题,每小题3分,共18分)11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 . 12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= . 14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(本大题 共9个小题,满分102分)17.(本小题满分9分)计算:1-0212018-2-⎪⎭⎫⎝⎛+18.(本小题满分9分)先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.(本小题满分10分)如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.(本小题满分10分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

2018年广东省珠海市中考数学试题含答案

2018年广东省珠海市中考数学试题含答案

2018年广东省珠海市中考数学试卷一、选择题<本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑1.<3分)<2018?珠海)实数4的算术平方根是<)A .﹣2B .2C .±2D .±4 2.<3分)<2018?珠海)如图两平行线a 、b 被直线l 所截,且∠1=60°,则∠2的度数为<)A .30°B .45°C .60°D .120°3.<3分)<2018?珠海)点<3,2)关于x 轴的对称点为<)A .<3,﹣2)B .<﹣3,2)C .<﹣3,﹣2)D .<2,﹣3)4.<3分)<2018?珠海)已知一元二次方程:①x 2+2x+3=0,②x 2﹣2x ﹣3=0.下列说法正确的是<)b5E2RGbCAPA .①②都有实数解B .①无实数解,②有实数解C .①有实数解,②无实数解D .①②都无实数解5.<3分)<2018?珠海)如图,?ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为<)p1EanqFDPwA .36°B .46°C .27°D .63°二、填空题<本大题5小题,每小题4分,共20分)请将行李各题的正确答案填写在答题卡相应的位置上。

6.<4分)<2018?珠海)使式子有意义的x 的取值范围是_________.7.<4分)<2018?珠海)已知,函数y=3x 的图象经过点A<﹣1,y 1),点B<﹣2,y 2),则y 1_________y 2<填“>”“<”或“=”)DXDiTa9E3d8.<4分)<2018?珠海)若圆锥的母线长为5cm ,地面半径为3cm ,则它的测面展开图的面积为_________cm 2<结果保留π)RTCrpUDGiT9.<4分)<2018?珠海)已知a 、b 满足a+b=3,ab=2,则a 2+b 2=_________.5PCzVD7HxA10.<4分)<2018?珠海)如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1,由顺次连接正方形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2…,以此类推,则第六个正方形A 6B 6C 6D 6周长是_________.jLBHrnAILg三、解答题<一)<本大题5小题,每小题6分,共30分)11.<6分)<2018?珠海)计算:﹣<)0+||12.<6分)<2018?珠海)解方程:.13.<6分)<2018?珠海)某初中学校对全校学生进行一次“勤洗手”的问卷调查,学校七、八、九三个年级学生人数分别为600人、700人、600人,经过数据整理将全校的“勤洗手”调查数据绘制成统计图.xHAQX74J0X<1)根据统计图,计算八年级“勤洗手”学生人数,并补全下列两幅统计图.<2)通过计算说明那个年级“勤洗手”学生人数占本年级学生人数的比例最大?14.<6分)<2018?珠海)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.15.<6分)<2018?珠海)某渔船出海捕鱼,2017年平均每次捕鱼量为10吨,2018年平均每次捕鱼量为8.1吨,求2017年﹣2018年每年平均每次捕鱼量的年平均下降率.LDAYtRyKfE16.<7分)<2018?珠海)一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62M,到达D点,在测得山顶点A的仰角为60°<B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC<结果精确的1M,参考数值:)Zzz6ZB2Ltk17.<7分)<2018?珠海)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点 A <1)求证:BC为⊙O的切线;<2)求∠B的度数.18.<7分)<2018?珠海)把分别标有数字2、3、4、5的四个小球放入A袋内,把分别标有数字、、、、的五个小球放入B袋内,所有小球的形状、大小、质地完全相同,A、B两个袋子不透明、dvzfvkwMI1<1)小明分别从A、B两个袋子中各摸出一个小球,求这两个小球上的数字互为倒数的概率;<2)当B袋中标有的小球上的数字变为_________时<填写所有结果),<1)中的概率为.19.<7分)<2018?珠海)已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数y=的图象与线段AB交于M点,且AM=BM.rqyn14ZNXI<1)求点M的坐标;<2)求直线AB的解读式.20.<9分)<2018?珠海)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式<分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=<﹣x2+1)<x2+a)+b则﹣x4﹣x2+3=<﹣x2+1)<x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣<a﹣1)x2+<a+b)EmxvxOtOco∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:<1)将分式拆分成一个整式与一个分式<分子为整数)的和的形式.<2)试说明的最小值为8.21.<9分)<2018?珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转<点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.SixE2yXPq5<1)求证:∠CBP=∠ABP;<2)求证:AE=CP;<3)当,BP′=5时,求线段AB的长.22.<9分)<2018?珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m<m>0),D为边AB的中点,一抛物线l经过点A、D及点M<﹣1,﹣1﹣m).6ewMyirQFL<1)求抛物线l的解读式<用含m的式子表示);<2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;kavU42VRUs<3)在满足<2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.2018年广东省珠海市中考数学试卷参考答案与试卷解读一、选择题<本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑y6v3ALoS891.<3分)<2018?珠海)实数4的算术平方根是<)A.﹣2 B.2C.±2 D.±4考点:算术平方根.分析:根据算术平方根的定义解答即可.解答:解:∵22=4,∴4的算术平方根是2,即=2.故选B.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2.<3分)<2018?珠海)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为<)A.30°B.45°C.60°D.120°考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解答:解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.3.<3分)<2018?珠海)点<3,2)关于x 轴的对称点为<)A .<3,﹣2)B .<﹣3,2)C .<﹣3,﹣2)D .<2,﹣3)考点:关于x 轴、y 轴对称的点的坐标.分析:根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点<3,2)关于x 轴的对称点为<3,﹣2),故选:A .点评:此题主要考查了关于x 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.4.<3分)<2018?珠海)已知一元二次方程:①x 2+2x+3=0,②x 2﹣2x ﹣3=0.下列说法正确的是<)M2ub6vSTnPA .①②都有实数解B .①无实数解,②有实数解C .①有实数解,②无实数解D .①②都无实数解考点:根的判别式.分析:求出①、②的判别式,根据:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.即可得出答案.解答:解:方程①的判别式△=4﹣12=﹣8,则①没有实数解;方程②的判别式△=4+12=20,则②有两个实数解.故选B .点评:本题考查了根的判别式,解答本题的关键是掌握跟的判别式与方程根的关系.5.<3分)<2018?珠海)如图,?ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为<)0YujCfmUCwA .36°B .46°C .27°D .63°考点:圆周角定理;平行四边形的性质.分析:根据BE 是直径可得∠BAE=90°,然后在?ABCD 中∠ADC=54°,可得∠B=54°,继而可求得∠AEB 的度数.解答:解:∵四边形ABCD 是平行四边形,∠ADC=54°,∴∠B=∠ADC=54°,∵BE 为⊙O 的直径,∴∠BAE=90°,∴∠AEB=90°﹣∠B=90°﹣54°=36°.故选A .点评:本题考查了圆周角定理及平行四边形的性质,解答本题的关键是根据平行四边形的性质得出∠B=∠ADC .二、填空题<本大题5小题,每小题4分,共20分)请将行李各题的正确答案填写在答题卡相应的位置上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

珠海市2018年中考数学试题及答案
(试卷满分150分,考试用时120分钟)
注意事项:
1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考点考场号、座位号。

2.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.四个实数0、13
、 3.14-、2中,最小的数是 A .0 B .13
C . 3.14-
D .2
2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为
A .71.44210⨯
B .70.144210⨯
C .81.44210⨯
D .80.144210⨯
3.如图,由5个相同正方体组合而成的几何体,它的主视图是
A .
B .
C .
D .
4.数据1、5、7、4、8的中位数是
A .4
B .5
C .6
D .7
5.下列所述图形中,是轴对称图形但不是..
中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形
6.不等式313x x -≥+的解集是
A .4x ≤
B .4x ≥
C .2x ≤
D .2x ≥
7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为
A .12
B .13
C .14
D .16 8.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是
A .30°
B .40°
C .50°
D .60°
9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为
A .94
m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为
第二部分(非选择题 共120分)
二、填空题(本大题6小题,每小题3分,共18分)
11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .
12. 分解因式:=+-122x x .
13. 一个正数的平方根分别是51-+x x 和,则x= .
14. 已知01=-+-b b a ,则=+1a .
15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)
16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x x y 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为
三、解答题(本大题 共9个小题,满分102分)
17.(本小题满分9分)计算:1
-0212018-2-⎪⎭⎫ ⎝⎛+ 18.(本小题满分9分)先化简,再求值:.2
341642222=--⋅+a a a a a a ,其中 19.(本小题满分10分)如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,
(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF ,求DBF ∠的度数.
20.(本小题满分10分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

(1)求该公司购买的A 、B 型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?
21.(本小题满分12分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图21-1图和题21-2图所示的不完整统计图.
(1)被调查员工人数为人:
(2)把条形统计图补充完整;
(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?
22.(本小题满分12分)如图,矩形ABCD 中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .
(1)求证:△ADF ≌△CED ;
(2)求证:△DEF 是等腰三角形.
23.(本小题满分12分)如图,已知顶点为()0,3C -的抛物线
()20y ax b a =+≠与x 轴交于,A B 两点,
直线y x m =+过顶点C 和点B .
(1)求m 的值;
(2)求函数()2
0y ax b a =+≠的解析式 (3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求
出点M 的坐标;若不存在,请说明理由.
24.(本小题满分14分)如图,四边形ABCD 中,AB AD CD ==,以AB 为直径的O 经过点C ,连接,AC OD 交于点E .
(1)证明://OD BC ;
(2)若tan 2ABC ∠=,证明:DA 与O 相切;
(3)在(2)条件下,连接BD 交于O 于点F ,连接EF ,若1BC =,求EF 的长.
25.(本小题满分14分)已知OAB Rt ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将OAB Rt ∆绕点O 顺时针旋转60︒,如题251-图,连接BC .
(1)填空:OBC ∠= °;
(2)如题251-图,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;
(3)如题252-图,点,M N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为
1.5/单位秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?
11。

相关文档
最新文档