图的遍历实验报告讲解

图的遍历实验报告讲解
图的遍历实验报告讲解

实验四:图的遍历

题目:图及其应用——图的遍历

班级:姓名:学号:完成日期:

一.需求分析

1.问题描述:很多涉及图上操作的算法都是以图的遍历操作为基础的。试写一个程序,演示在连通的无向图上访问全部结点的操作。

2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。

3.测试数据:教科书图7.33。暂时忽略里程,起点为北京。

4.实现提示:设图的结点不超过30个,每个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。通过输入图的全部边输入一个图,每个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。

5.选作内容:

(1).借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。

(2).以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或树形打印生成树。

二.概要设计

1.为实现上述功能,需要有一个图的抽象数据类型。该抽象数据类型的定义为:

ADT Graph

{

数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:

R={VR}

VR={ | v,w v且P(v,w),表示从v到w得弧,谓词P(v,w)定义了弧的意义或信息}

} ADT Graph

2.此抽象数据类型中的一些常量如下:

#define TRUE 1

#define FALSE 0

#define OK 1

#define max_n 20 //最大顶点数

typedef char VertexType[20];

typedef enum{DG, DN, AG, AN} GraphKind;

enum BOOL{False,True};

3.树的结构体类型如下所示:

typedef struct

{ //弧结点与矩阵的类型

int adj; //VRType为弧的类型。图--0,1;网--权值int *Info; //与弧相关的信息的指针,可省略

}ArcCell, AdjMatrix[max_n][max_n];

typedef struct

{

VertexType vexs[max_n];//顶点

AdjMatrix arcs; //邻接矩阵

int vexnum, arcnum; //顶点数,边数

}MGraph;

//队列的类型定义

typedef int QElemType;

typedef struct QNode

{

QElemType data;

struct QNode *next;

}QNode, *QueuePtr;

typedef struct

{

QueuePtr front;

QueuePtr rear;

}LinkQueue;

4.本程序包含三个模块

1).主程序模块

void main( )

{

创建树;

深度优先搜索遍历;

广度优先搜索遍历;

}

2).树模块——实现树的抽象数据类型

3).遍历模块——实现树的深度优先遍历和广度优先遍历

各模块之间的调用关系如下:

主程序模块

树模块

遍历模块

三.详细设计

#include "stdafx.h"

#include

using namespace std;

#define TRUE 1

#define FALSE 0

#define OK 1

#define max_n 20 //最大顶点数

typedef char VertexType[20];

typedef enum{DG, DN, AG, AN} GraphKind;

enum BOOL{False,True};

typedef struct

{ //弧结点与矩阵的类型

int adj; //VRType为弧的类型。图--0,1;网--权值int *Info; //与弧相关的信息的指针,可省略

}ArcCell, AdjMatrix[max_n][max_n];

typedef struct

{

VertexType vexs[max_n]; //顶点

AdjMatrix arcs; //邻接矩阵

int vexnum, arcnum;//顶点数,边数

}MGraph;

//队列的类型定义

typedef int QElemType;

typedef struct QNode

{

QElemType data;

struct QNode *next;

}QNode, *QueuePtr;

typedef struct

{

QueuePtr front;

QueuePtr rear;

}LinkQueue;

//初始化队列

int InitQueue(LinkQueue *Q)

{

return OK;

}

//判断队列是否为空

int EmptyQueue(LinkQueue Q)

{

if(Q.front==Q.rear)

return TRUE;

else

return FALSE;

}

//入队列

int EnQueue(LinkQueue *Q, QElemType e) {

QueuePtr p;

p->data=e;

p->next=NULL;

(*Q).rear->next=p;

(*Q).rear=p;

return OK;

}

//出队列

int DeQueue (LinkQueue *Q, QElemType *e) {

QueuePtr p;

if((*Q).front==(*Q).rear) return -1;

p=(*Q).front->next;

*e=p->data;

(*Q).front->next=p->next;

if((*Q).rear==p)

(*Q).rear=(*Q).front;

delete p;

return OK;

}

/* 顶点在顶点向量中的定位*/

int Locate(MGraph G, VertexType v)

{

int i;

for(i=0;i

if(strcmp(v,G.vexs[i])==0) break;

return i;

void CreateGraph(MGraph &G)

{ // 图G用邻接矩阵表示,创建图

int k,i,j;

VertexType vi,vj;

cout<<"请输入图的顶点个数和边的数目: ";

cin>>G.vexnum>>G.arcnum;

cout<<"请输入顶点: ";

for(k=0;k

cin>>G.vexs[k];

for(i=0;i

for(j=0;j

G.arcs[i][j].adj=0;

cout<<"请输入边集: "<

for(k=0; k

{

cin>>vi>>vj;

i=Locate(G,vi); j=Locate(G, vj); //求Vi和Vj的下标

G.arcs[i][j].adj=1;

G.arcs[j][i].adj=1;

}

}

int FirstAdjVex(MGraph G, int V)

{ // 图G用邻接矩阵表示,求下标为V的顶点的第一个邻接点int i=0;

while(i

{

i++;

}

if(i>=G.vexnum) return -1;

else return i; //返回V的第一个邻接点的下标

}

int NextAdjVex(MGraph G,int V,int w)

{ // 图G用邻接矩阵表示

int i=w+1;

while(i

if(i>=G.vexnum)

return -1; //V的w邻接点之后没有邻接点

else

return i; //返回V行w列之后第一个非0元的下标

}

int visited[100]; /* 设置全局的访问标志数组*/

void DFS(MGraph G, int v)

{//从序号为v的顶点出发,对图G做一次深度优先搜索遍历int w;

visited[v]=1;

cout<

for(w=FirstAdjVex(G,v);w>=0;w=NextAdjVex(G,v,w))

{

if(!visited[w]) DFS(G,w);

}

}

//深度优先搜索遍历图G

void DFSTraverse(MGraph G)

{

int v;

for(v=0;v

for(v=0;v

if(!visited[v])

DFS(G,v);//若顶点v未被访问,从v开始遍历

}

void BFSTraverse(MGraph G)

{

int v,w,u;

LinkQueue Q;

for(v=0;v

InitQueue(&Q); //初始化队列

for(v=0;v

{

if(!visited[v])

{

visited[v]=1;

cout<

EnQueue(&Q,v); //v入队

while(!EmptyQueue(Q))

{

DeQueue(&Q,&u); //队头元素u出队

for(w=FirstAdjVex(G,u);w>=0;w=NextAdjVex(G,u,w))

{

if(!visited[w])

{

visited[w]=1;

cout<

EnQueue(&Q,w);

}

}

}

}

}

}

int main()

{

MGraph G;

CreateGraph(G);

cout<<"深度优先搜索遍历顺序为: ";

DFSTraverse(G);

cout<

cout<<"广度优先搜索遍历序列为: ";

BFSTraverse(G);

cout<

return 0;

}

四.调试分析

1.先建立一幅图,然后依次进行深度优搜索先遍历。

2.利用队列来实现广度优先搜索遍历。

五.用户手册

1.本程序的运行环境为Win7 操作系统,执行文件为:Debug/图的遍历.exe 2.进入演示程序后,即现实文本方式的用户界面:

六.测试结果

依次输入数据

图的遍历操作实验报告

. .. . .. .. 实验三、图的遍历操作 一、目的 掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS及BFS对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。 二、要求 采用邻接矩阵和邻接链表作为图的存储结构,完成有向图和无向图的DFS 和BFS操作。 三、DFS和BFS 的基本思想 深度优先搜索法DFS的基本思想:从图G中某个顶点Vo出发,首先访问Vo,然后选择一个与Vo相邻且没被访问过的顶点Vi访问,再从Vi出发选择一个与Vi相邻且没被访问过的顶点Vj访问,……依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则回退到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样方法向前遍历。直到图中所有的顶点都被访问。 广度优先算法BFS的基本思想:从图G中某个顶点Vo出发,首先访问Vo,然后访问与Vo相邻的所有未被访问过的顶点V1,V2,……,Vt;再依次访问与V1,V2,……,Vt相邻的起且未被访问过的的所有顶点。如此继续,直到访问完图中的所有顶点。 四、示例程序 1.邻接矩阵作为存储结构的程序示例

#include"stdio.h" #include"stdlib.h" #define MaxVertexNum 100 //定义最大顶点数 typedef struct{ char vexs[MaxVertexNum]; //顶点表 int edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,可看作边表int n,e; //图中的顶点数n和边数e }MGraph; //用邻接矩阵表示的图的类型 //=========建立邻接矩阵======= void CreatMGraph(MGraph *G) { int i,j,k; char a; printf("Input VertexNum(n) and EdgesNum(e): "); scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数 scanf("%c",&a); printf("Input Vertex string:"); for(i=0;in;i++) { scanf("%c",&a); G->vexs[i]=a; //读入顶点信息,建立顶点表 }

MATLAB基本操作实验报告

南昌航空大学 数学与信息科学学院 实验报告 课程名称:数学实验 实验名称: MATLAB基本操作 实验类型:验证性■综合性□ 设计性□ 实验室名称:数学实验室 班级学号: 10 学生姓名:钟 X 任课教师(教师签名): 成绩: 实验日期: 2011-10- 10

一、实验目的 1、熟悉MATLAB基本命令与操作 2、熟悉MATLAB作图的基本原理与步骤 3、学会用matlab软件做图 二、实验用仪器设备、器材或软件环境 计算机MATLAB软件 三、实验原理、方案设计、程序框图、预编程序等 问题1:在区间【0,2π】画sinx 实验程序: >> x=linspace(0,2*pi,30); >> y=sin(x); >> plot(x,y) 问题2:在【0,2π】用红线画sinx,用绿圈画cosx,实验程序:

>> x=linspace(0,2*pi,30); >> y=sin(x); >> z=cos(x); >> plot(x,y,'r',x,z,'co') >> 问题3:在【0,π】上画y=sinx的图形。 实验程序: >> ezplot('sin(x)',[0,pi]) >> 问题4:在【0,π】上画x=cos3t,y=sin3t星形图形。

实验程序: >> ezplot('cos(t).^3','sin(t).^3',[0,pi]) >> 问题5:[-2,0.5],[0,2]上画隐函数 实验程序: >> ezplot('exp(x)+sin(x*y)',[-2,0.5,0,2]) >> 问题6:在[-2,2]范围内绘制tanh的图形。实验程序: >> fplot('tanh',[-2,2])

数据结构课程设计图的遍历和生成树求解

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 6014389 题目: 图的遍历和生成树求解实现 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 12 月 09 日 完成时间: 2012 年 12 月 26 日 课程设计成绩: 指导教师签名:年月日

目录 摘要 (3) 引言 (4) 1 需求分析 (5) 1.1任务与分析 (5) 1.2测试数据 (5) 2 概要设计 (5) 2.1 ADT描述 (5) 2.2程序模块结构 (7) 软件结构设计: (7) 2.3各功能模块 (7) 3 详细设计 (8) 3.1结构体定义 (19) 3.2 初始化 (22) 3.3 插入操作(四号黑体) (22) 4 调试分析 (22) 5 用户使用说明 (23) 6 测试结果 (24) 结论 (26)

摘要 《数据结构》课程主要介绍最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。进行数据结构课程设计要达到以下目的: ?了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; ?初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; ?提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。 这次课程设计我们主要是应用以前学习的数据结构与面向对象程序设计知识,结合起来才完成了这个程序。 因为图是一种较线形表和树更为复杂的数据结构。在线形表中,数据元素之间仅有线性关系,每个元素只有一个直接前驱和一个直接后继,并且在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,本程序是采用邻接矩阵、邻接表、十字链表等多种结构存储来实现对图的存储。采用邻接矩阵即为数组表示法,邻接表和十字链表都是图的一种链式存储结构。对图的遍历分别采用了广度优先遍历和深度优先遍历。 关键词:计算机;图;算法。

数据结构实验报告-图的遍历

数据结构实验报告 实验:图的遍历 一、实验目的: 1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表 2、掌握图的构造方法 3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法 4、掌握图的深度优先遍历和广度优先原理 二、实验内容: 1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。 2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图 3、深度优先遍历第一步中构造的图G,输出得到的节点序列 4、广度优先遍历第一部中构造的图G,输出得到的节点序列 三、实验要求: 1、无向图中的相关信息要从终端以正确的方式输入; 2、具体的输入和输出格式不限; 3、算法要具有较好的健壮性,对错误操作要做适当处理; 4、程序算法作简短的文字注释。 四、程序实现及结果: 1、邻接矩阵: #include #include #define VERTEX_MAX 30 #define MAXSIZE 20 typedef struct { int arcs[VERTEX_MAX][VERTEX_MAX] ; int vexnum,arcnum; } MGraph; void creat_MGraph1(MGraph *g) { int i,j,k; int n,m; printf("请输入顶点数和边数:"); scanf("%d%d",&n,&m); g->vexnum=n; g->arcnum=m; for (i=0;iarcs[i][j]=0;

图的遍历实验报告

实验四:图的遍历 题目:图及其应用——图的遍历 班级:姓名:学号:完成日期: 一.需求分析 1.问题描述:很多涉及图上操作的算法都是以图的遍历操作为基础的。试写一个程序,演示在连通的无向图上访问全部结点的操作。 2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。 3.测试数据:教科书图7.33。暂时忽略里程,起点为北京。 4.实现提示:设图的结点不超过30个,每个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。通过输入图的全部边输入一个图,每个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。 5.选作内容: (1).借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。 (2).以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或树形打印生成树。 二.概要设计 1.为实现上述功能,需要有一个图的抽象数据类型。该抽象数据类型的定义为: ADT Graph { 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R: R={VR} VR={ | v,w v且P(v,w),表示从v到w得弧,谓词P(v,w)定义了弧的意义或信息} } ADT Graph 2.此抽象数据类型中的一些常量如下: #define TRUE 1 #define FALSE 0 #define OK 1 #define max_n 20 //最大顶点数 typedef char VertexType[20]; typedef enum{DG, DN, AG, AN} GraphKind; enum BOOL{False,True}; 3.树的结构体类型如下所示:

实验报告1windows的基本操作范例

实验名称:Windows的基本操作 一、实验目的 1.掌握桌面主题的设置。 2.掌握快捷方式的创建。 3.掌握开始菜单的组织。 4.掌握多任务间的数据传递——剪贴板的使用。 5.掌握文件夹和文件的创建、属性查看和设置。 6.掌握文件夹和文件的复制、移动和删除与恢复。 7.熟悉文件和文件夹的搜索。 8.熟悉文件和文件夹的压缩存储和解压缩。 二、实验环境 1.中文Windows 7操作系统。 三、实验内容及步骤 通过上机完成实验4、实验5所有内容后完成该实验报告 1.按“实验4--范例内容(1)”的要求设置桌面,将修改后的界面复制过来。 注:没有桌面背景图“Autumn”的,可选择其它背景图。 步骤:在桌面空白区域右击,选择菜单中的“个性化”,在弹出的窗口中点击“桌面背景”,在背景栏内选中“某一张图片”,单击“确定”。 修改后的界面如下图所示: 2.将画图程序添加到“开始”菜单的“固定项目列表”上。 步骤:右击“开始/所有程序/附件”菜单中的画图程序项,在弹出的快捷菜单中选“附到「开始」菜单”命令。 3.在D盘上建立以“自己的学号+姓名”为名的文件夹(如01108101刘琳)和其子文件 夹sub1,然后:

步骤:选定D:\为当前文件夹,选择“文件/新建/文件夹”命令,并将名字改为“学号+姓名”;选定“ D:\学号+姓名”为当前文件夹,选择“文件/新建/文件夹”命令,并将名字改为“sub1” ①在C:\WINDOWS中任选2个TXT文本文件,将它们复制到“学号+姓名”文件夹中;步骤:选定“C:\WINDOWS”为当前文件夹,随机选取2个文件, CTRL+C复制,返回“D:\学号+姓名”的文件夹,CTRL+V粘贴 ②将“学号+姓名”文件夹中的一个文件移到其子文件夹sub1中; 步骤:选定“ D:\学号+姓名”为当前文件夹,选中其中任意一个文件将其拖拽文件到subl ③在sub1文件夹中建立名为“”的空文本文档; 步骤:选定“ D:\学号+姓名\ sub1”为当前文件夹,在空白处单击右键,选择“新建\文本文档”,把名字改为test,回车完成。 ④删除文件夹sub1,然后再将其恢复。 步骤:选定“ D:\学号+姓名”为当前文件夹,右键单击“sub1”文件夹,选择“删除”,然后打开回收站,右键单击“sub1”文件夹,在弹出的快捷菜单中选择“还原”。 4.搜索C:\WINDOWS\system文件夹及其子文件夹下所有文件名第一个字母为s、文件长 度小于10KB且扩展名为exe的文件,并将它们复制到sub1文件夹中。 步骤:选定“ C:\WINDOWS\system”为当前文件夹,单击“搜索”按钮,在左侧窗格选择“所有文件和文件夹”,在“全部或部分文件名”中输入“s*.exe”,在“大小”中,选择“0~10KB”。 5.用不同的方法,在桌面上创建名为“计算器”、“画图”和“剪贴板”的三个快捷方式, 它们应用程序分别为:、和。并将三个快捷方式复制到sub1文件夹中。 步骤:①在"开始"菜单的"所有程序"子菜单中找到"计算器",单击右键,在弹出的快捷菜单中选择“发送到\桌面快捷方式”。 ②在"开始"菜单的"所有程序"子菜单中找到"画图",将其拖至桌面空白处。 ③在桌面上单击右键,在弹出的快捷菜单中选择“新建\快捷方式”,在“创建快捷方式”

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

学号: 姓名: 实验日期: 2016.1.7 实验名称: 图的存贮与遍历 一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 V0 V1 V2 V3 V4 三、附录: 在此贴上调试好的程序。 #include #include #include V0 V1 V4 V3 V2 ??? ? ??? ? ????????=010000000101010 1000100010A 1 0 1 0 3 3 4

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

数据结构实验图的基本操作

浙江大学城市学院实验报告 课程名称数据结构 实验项目名称实验十三/十四图的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期2014/06/09 一.实验目的和要求 1、掌握图的主要存储结构。 2、学会对几种常见的图的存储结构进行基本操作。 二.实验内容 1、图的邻接矩阵定义及实现: 建立头文件test13_AdjM.h,在该文件中定义图的邻接矩阵存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时建立一个验证操作实现的主函数文件test13.cpp(以下图为例),编译并调试程序,直到正确运行。 2、图的邻接表的定义及实现: 建立头文件test13_AdjL.h,在该文件中定义图的邻接表存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时在主函数文件test13.cpp中调用这些函数进行验证(以下图为例)。

3、填写实验报告,实验报告文件取名为report13.doc。 4、上传实验报告文件report13.doc到BB。 注: 下载p256_GraphMatrix.cpp(邻接矩阵)和 p258_GraphAdjoin.cpp(邻接表)源程序,读懂程序完成空缺部分代码。 三. 函数的功能说明及算法思路 (包括每个函数的功能说明,及一些重要函数的算法实现思路) 四. 实验结果与分析 (包括运行结果截图、结果分析等)

五.心得体会

程序比较难写,但是可以通过之前的一些程序来找到一些规律 (记录实验感受、上机过程中遇到的困难及解决办法、遗留的问题、意见和建议等。) 【附录----源程序】 256: //p-255 图的存储结构以数组邻接矩阵表示, 构造图的算法。 #include #include #include #include typedef char VertexType; //顶点的名称为字符 const int MaxVertexNum=10; //图的最大顶点数 const int MaxEdgeNum=100; //边数的最大值 typedef int WeightType; //权值的类型 const WeightType MaxValue=32767; //权值的无穷大表示 typedef VertexType Vexlist[MaxVertexNum]; //顶点信息,定点名称 typedef WeightType AdjMatrix[MaxVertexNum][MaxVertexNum]; //邻接矩阵typedef enum{DG,DN,AG,AN} GraphKind; //有向图,有向网,无向图,无向网typedef struct{ Vexlist vexs; // 顶点数据元素 AdjMatrix arcs; // 二维数组作邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧数 GraphKind kind; // 图的种类标志 } MGraph; void CreateGraph(MGraph &G, GraphKind kd)// 采用数组邻接矩阵表示法,构造图G {//构造有向网G int i,j,k,q; char v, w; G.kind=kd; //图的种类 printf("输入要构造的图的顶点数和弧数:\n"); scanf("%d,%d",&G.vexnum,&G.arcnum); getchar();//过滤回车 printf("依次输入图的顶点名称ABCD...等等:\n"); for (i=0; i

数据结构图的遍历

#include"stdlib.h" #include"stdio.h" #include"malloc.h" #define INFINITY 32767 #define MAX_VERTEX_NUM 20 typedef enum{FALSE,TRUE}visited_hc; typedef enum{DG,DN,UDG,UDN}graphkind_hc; typedef struct arccell_hc {int adj; int*info; }arccell_hc,adjmatrix_hc[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct {char vexs[MAX_VERTEX_NUM]; adjmatrix_hc arcs; int vexnum,arcnum; graphkind_hc kind; }mgraph_hc; typedef struct arcnode_hc {int adjvex; struct arcnode_hc *nextarc; int*info; }arcnode_hc; typedef struct vnode_hc {char data; arcnode_hc *firstarc; }vnode_hc,adjlist_hc[MAX_VERTEX_NUM]; typedef struct {adjlist_hc vertices; int vexnum,arcnum; graphkind_hc kind; }algraph_hc; int locatevex_hc(mgraph_hc*g,char v) {int i,k=0; for(i=0;ivexnum;i++) if(g->vexs[i]==v){k=i;i=g->vexnum;} return(k);}

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作 (4) :实验目的 (4) :实验任务和要求 (4) :实验步骤和结果 (5) :结果分析 (8) 实验二:图像的灰度变换和直方图变换 (9) :实验目的 (9) :实验任务和要求 (9) :实验步骤和结果 (9) :结果分析 (13) 实验三:图像的平滑处理 (14) :实验目的 (14) :实验任务和要求 (14) :实验步骤和结果 (14) :结果分析 (18) 实验四:图像的锐化处理 (19) :实验目的 (19) :实验任务和要求 (19) :实验步骤和结果 (19) :结果分析 (21)

实验一:数字图像的基本处理操作 :实验目的 1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用; 2、实现图像的读取、显示、代数运算和简单变换。 3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。:实验任务和要求 1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分 成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分 别显示,注上文字标题。 3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换, 显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。 4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里 叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的 对应关系。 :实验步骤和结果 1.对实验任务1的实现代码如下: a=imread('d:\'); i=rgb2gray(a); I=im2bw(a,; subplot(1,3,1);imshow(a);title('原图像'); subplot(1,3,2);imshow(i);title('灰度图像'); subplot(1,3,3);imshow(I);title('二值图像'); subplot(1,3,1);imshow(a);title('原图像'); 结果如图所示:

数据结构课程设计之图的遍历和生成树求解

##大学 数据结构课程设计报告题目:图的遍历和生成树求解 院(系):计算机工程学院 学生: 班级:学号: 起迄日期: 2011.6.20 指导教师:

2010—2011年度第 2 学期 一、需求分析 1.问题描述: 图的遍历和生成树求解实现 图是一种较线性表和树更为复杂的数据结构。在线性表中,数据元素之间仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继;在树形结构中,数据元素之间有着明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素(及其孩子结点)相关但只能和上一层中一个元素(即双亲结点)相关;而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。 生成树求解主要利用普利姆和克雷斯特算法求解最小生成树,只有强连通图才有生成树。 2.基本功能 1) 先任意创建一个图; 2) 图的DFS,BFS的递归和非递归算法的实现 3) 最小生成树(两个算法)的实现,求连通分量的实现 4) 要求用邻接矩阵、邻接表等多种结构存储实现 3.输入输出

输入数据类型为整型和字符型,输出为整型和字符 二、概要设计 1.设计思路: a.图的邻接矩阵存储:根据所建无向图的结点数n,建立n*n的矩阵,其中元素全是无穷大(int_max),再将边的信息存到数组中。其中无权图的边用1表示,无边用0表示;有全图的边为权值表示,无边用∞表示。 b.图的邻接表存储:将信息通过邻接矩阵转换到邻接表中,即将邻接矩阵的每一行都转成链表的形式将有边的结点进行存储。 c.图的广度优先遍历:假设从图中的某个顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后再访问此邻接点的未被访问的邻接点,并使“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中还有未被访问的,则另选未被访问的重复以上步骤,是一个非递归过程。 d.图的深度优先遍历:假设从图中某顶点v出发,依依次访问v的邻接顶点,然后再继续访问这个邻接点的系一个邻接点,如此重复,直至所有的点都被访问,这是个递归的过程。 e.图的连通分量:这是对一个非强连通图的遍历,从多个结点出发进行搜索,而每一次从一个新的起始点出发进行搜索过程中得到的顶点访问序列恰为其连通分量的顶点集。本程序利用的图的深度优先遍历算法。 2.数据结构设计: ADT Queue{ 数据对象:D={a i | a i ∈ElemSet,i=1,2,3……,n,n≥0} 数据关系:R1={| a i-1 ,a i ∈D,i=1,2,3,……,n} 基本操作: InitQueue(&Q) 操作结果:构造一个空队列Q。 QueueEmpty(Q) 初始条件:Q为非空队列。 操作结果:若Q为空队列,则返回真,否则为假。 EnQueue(&Q,e) 初始条件:Q为非空队列。 操作结果:插入元素e为Q的新的队尾元素。 DeQueue(&Q,e) 初始条件:Q为非空队列。 操作结果:删除Q的队头元素,并用e返回其值。}ADT Queue

数据结构图的遍历实验报告

实验项目名称:图的遍历 一、实验目的 应用所学的知识分析问题、解决问题,学会用建立图并对其进行遍历,提高实际编程能力及程序调试能力。 二、实验容 问题描述:建立有向图,并用深度优先搜索和广度优先搜素。输入图中节点的个数和边的个数,能够打印出用邻接表或邻接矩阵表示的图的储存结构。 三、实验仪器与设备 计算机,Code::Blocks。 四、实验原理 用邻接表存储一个图,递归方法深度搜索和用队列进行广度搜索,并输出遍历的结果。 五、实验程序及结果 #define INFINITY 10000 /*无穷大*/ #define MAX_VERTEX_NUM 40 #define MAX 40 #include #include #include #include

typedef struct ArCell{ int adj; }ArCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct { char name[20]; }infotype; typedef struct { infotype vexs[MAX_VERTEX_NUM]; AdjMatrix arcs; int vexnum,arcnum; }MGraph; int LocateVex(MGraph *G,char* v) { int c = -1,i; for(i=0;ivexnum;i++) if(strcmp(v,G->vexs[i].name)==0) { c=i; break;} return c;} MGraph * CreatUDN(MGraph *G)//初始化图,接受用户输入{ int i,j,k,w; char v1[20],v2[20]; printf("请输入图的顶点数,弧数:"); scanf("%d%d",&G->vexnum,&G->arcnum);

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作....................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验二:图像的灰度变换和直方图变换............................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验三:图像的平滑处理....................................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验四:图像的锐化处理......................................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。

数据结构 图的存储、遍历与应用 源代码

实验四图的存储、遍历与应用姓名:班级: 学号:日期:一、实验目的: 二、实验内容: 三、基本思想,原理和算法描述:

四、源程序: (1)邻接矩阵的存储: #include #include #define INFINITY 10000 //定义最大值无穷大 #define MAX_VERTEX_NUM 20 //最大顶点个数 typedef int AdjMatrix[MAX_VERTEX_NUM ][MAX_VERTEX_NUM ]; typedef struct{ int vexs[MAX_VERTEX_NUM ]; //顶点向量 AdjMatrix arcs; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和弧或边数 }MGraph; void CreatGragh(MGraph G) //用邻接矩阵构造图 { int i,j,k,w; printf("请输入顶点个数和边数:\n"); scanf("%d %d",&G.vexnum,&G.arcnum); printf("请按顺序输入顶点中间用‘空格’间隔\n"); for(i=0;i #include

数据结构实验 - 图的储存与遍历

一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 三、附录: 在此贴上调试好的程序。 #include #include #include ????????????????=010******* 010101000100010A

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

图的基本操作 实验报告

实验五图的基本操作 一、实验目的 1、使学生可以巩固所学的有关图的基本知识。 2、熟练掌握图的存储结构。 3、熟练掌握图的两种遍历算法。 二、实验内容 [问题描述] 对给定图,实现图的深度优先遍历和广度优先遍历。 [基本要求] 以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。 【测试数据】 由学生依据软件工程的测试技术自己确定。 三、实验前的准备工作 1、掌握图的相关概念。 2、掌握图的逻辑结构和存储结构。 3、掌握图的两种遍历算法的实现。 四、实验报告要求 1、实验报告要按照实验报告格式规范书写。 2、实验上要写出多批测试数据的运行结果。 3、结合运行结果,对程序进行分析。

五、算法设计 1、程序所需头文件已经预处理宏定义和结构体定义如下 #include #define MaxVerNum 100 struct edgenode { int endver; int inform; edgenode* edgenext; }; struct vexnode { char vertex; edgenode* edgelink; }; struct Graph { vexnode adjlists[MaxVerNum]; int vexnum; int arcnum; }; 2、创建无向图 void CreatAdjList(Graph* G) { int i,j,k; edgenode* p1; edgenode* p2; cout<<"请输入顶点数和边数:"<>G->vexnum>>G->arcnum; cout<<"开始输入顶点表:"<vexnum;i++) { cin>>G->adjlists[i].vertex; G->adjlists[i].edgelink=NULL; } cout<<"开始输入边表信息:"<arcnum;k++) { cout<<"请输入边对应的顶点:"; cin>>i>>j; p1=new edgenode; p1->endver=j; p1->edgenext=G->adjlists[i].edgelink; G->adjlists[i].edgelink=p1;

相关文档
最新文档