8流体力学的试验研究方法

合集下载

流体力学实验报告

流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。

2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。

在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。

在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。

流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。

若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。

三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。

水的流量由出口阀门调节,出口阀关闭时流体静止。

四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。

思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。

流体力学实验 (2)

流体力学实验 (2)

流体力学实验
流体力学实验是研究流体运动、流体性质和流体力学现象的实验方法和实验技术。

在流体力学实验中,通常会使用各种仪器设备和测量装置来观测、记录和分析流体的运动状态、流速、压力、温度等重要参数。

流体力学实验的目的可以是验证理论模型、研究流体流动的规律、探究流体与固体的相互作用等。

以下是一些常见的流体力学实验:
1. 流体的静力学实验:通过测量流体中的压力分布,来研究流体静力学的规律,常用的实验方法有水压实验和气压实验。

2. 流体的动力学实验:研究流体运动的规律,常见的实验包括流体的流速测量、流体的流线观测、流体的密度测量等。

3. 流体的粘性实验:用来研究流体粘性特性的实验方法,通常会测量流体的粘度和黏滞阻力。

4. 流体与固体相互作用的实验:研究流体在固体表面上的附着和流动的实验,如流体在管道中的摩擦阻力实验、流体在物体表面的湿润实验等。

5. 流体流动模拟实验:通过模拟实验方法来研究流体流动的现象和规律,常见的方法有模型试验和数值模拟。

流体力学实验通常需要使用精密的仪器设备和仔细的实验操作,以确保实验结果的准确性和可靠性。

实验结果可以为理论研究提供验证和支持,也可以为工程应用提供参考和指导。

流体力学的研究内容与研究方法

流体力学的研究内容与研究方法
流体力学的研究内容与研究方法
工程流体力学
流体力学的研究内容与研究方法
1.3 流体力学的应用及其分支
在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人 类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包 围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、 潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究 内容。
流体力学的研究内容与研究方法
1.2 流体力学的研究方法
理论分析
理论分析是根据流体运动的普遍规律,如质量守恒、动量守恒、能量守恒等,利 用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理 论分析的步骤大致如下:首先是建立“力学模型”,即针对实际流体的力学问题, 分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力 学模型”。流体力学中最常用的基本模型有:连续介质、牛顿流体、不可压缩流体、 理想流体、平面流动等。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速 发展。20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和 银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学 和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成 果的领域。
流体力学的研究内容与研究方法
流体力学的研究内容与研究方法
1.2 流体力学的研究方法
流体力学的 研究方法
现场观测
实验室模拟
理论分析
数值计算
流体力学的研究内容与研究方法
1.2 流体力学的研究方法
现场观测
现场观测是对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种 仪器进行系统观测,从而总结出流体运动的规律,并借以预测流动现象的演变。 过去对天气的观测和预报,基本上就是这样进行的。

流体力学的研究方法和实验技术

流体力学的研究方法和实验技术

流体力学的研究方法和实验技术流体力学是研究流体力学行为的科学领域,主要包括理论研究和实验技术。

在流体力学的研究过程中,科学家们积极探索各种研究方法和实验技术,以便更好地理解和解释流体行为。

本文将介绍流体力学的研究方法和实验技术。

一、研究方法1. 理论分析法理论分析法是流体力学研究中最基本的方法之一,它基于方程和模型的推导,通过数学和物理原理来描述流体力学行为。

在理论分析法中,科学家通过设立基本假设和方程,运用数学和物理方法,推导出描述流体力学行为的基本方程。

这些方程可以用来解释和预测流体的流动、压力、速度等特性。

2. 数值模拟法随着计算机技术的快速发展,数值模拟法在流体力学研究中得到广泛应用。

数值模拟法通过将流体力学问题抽象为数值计算问题,利用计算机大规模计算流体力学问题的解。

科学家们通过将流体力学模型离散化为有限元、有限差分等形式,利用数值计算方法求解离散化后的方程,从而得到流体流动的数值解。

数值模拟法不仅可以辅助理论预测,还可以对复杂流体力学问题进行模拟和仿真。

3. 实验观测法实验观测法是流体力学研究的另一种重要方法,它通过设计和搭建实验装置,对流体力学现象进行实际观测和测试。

实验观测法可以直接获得流体的物理参数和特性,例如流速、流量、压力等。

科学家们可以通过实验观测法验证理论模型,同时也可以发现和研究新的流体力学现象。

在实验观测法中,合理的实验设计和精确的测量技术对于研究结果的准确性和可靠性至关重要。

二、实验技术1. 流速测量技术流体力学研究中,流速是一个非常关键的参数。

科学家们发展了各种流速测量技术,例如静压法、热线法和激光多普勒测速法等。

静压法通过测量静压差来计算流速,热线法通过测量流体对热线的冷却效应来计算流速,激光多普勒测速法则通过测量被激光散射的光频来计算流速。

这些技术为流体流速的精确测量提供了可行的方法。

2. 压力测量技术在流体力学研究中,压力是另一个重要的参数。

科学家们发展了多种测量压力的技术,例如压电传感器、压阻传感器和毛细管压力测量法等。

物理实验技术中的流体力学实验方法与注意事项

物理实验技术中的流体力学实验方法与注意事项

物理实验技术中的流体力学实验方法与注意事项引言:流体力学是研究流体的运动规律和力学特性的学科。

在物理学和工程学等领域中,流体力学实验是非常重要的手段之一。

本文将介绍物理实验技术中的流体力学实验方法与注意事项。

一、流体静力学实验方法与注意事项1. 压力测量:在流体静力学实验中,常常需要测量流体的压力。

为此,可采用鞅管法、液柱法或压力传感器等多种方法进行测量。

在进行压力测量时,应注意排除空气泡和外界干扰,并保证测量系统的密封性和稳定性。

2. 测量巨大压力:当需要测量巨大压力时,常常采用高压流体静力学实验仪器。

在进行实验时,需注意选择适当的仪器,确保仪器的耐压性和安全性,以防止事故的发生。

3. 测量液体表面张力:液体表面张力的测量是流体静力学实验的重要内容之一。

测量方法多样,如静水柱、悬挂法等。

在进行测量时,需注意消除外界干扰,控制环境温度和湿度,并对实验仪器进行校正,以提高测量的准确性和可重复性。

二、流体动力学实验方法与注意事项1. 流体流动实验装置:进行流体动力学实验时,通常需设计和搭建适当的流动装置。

在设计装置时,需考虑流体的性质、流动模式和实验目标等因素,以确保实验的可靠性和有效性。

2. 流速测量:在流体动力学实验中,常常需要测量流体的流速。

可采用流量计、涡街流量计或热式流量计等多种方法进行测量。

在进行流速测量时,应注意选择适当的测量方法和仪器,并进行校正,以保证测量的精确性和可靠性。

3. 测量流体粘度:流体粘度的测量是流体动力学实验的一项重要任务。

可采用转子陀螺、滴管法或霍普金森法等多种方法进行测量。

在进行测量时,需注意消除测量装置的摩擦和振动,并对实验结果进行统计分析,以提高测量的准确性和可靠性。

三、流体力学实验的实例与应用1. 空气动力学实验:空气动力学实验是研究空气流动和空气力学特性的实验。

在航空、航天和汽车等领域中,空气动力学实验是非常重要的手段之一。

通过实验,可以获得空气流动的速度场、气压分布等相关数据,为产品设计和性能优化提供依据。

第六章 流体力学的试验研究方法相似原理和量纲分析

第六章 流体力学的试验研究方法相似原理和量纲分析

和管径d有关,试用瑞利量纲分析法建立Vc的公式结构。 和管径d有关,试用瑞利量纲分析法建立V 的公式结构。 [解] 假定 vc = kρ α ⋅ µ β ⋅ d γ 为无量纲常数。 式中k为无量纲常数。 将各物理量的量纲
vc ] = LT −1 , [ ρ ] = ML−3 [
µ ] = ML−1T −1 , [ d ] = L [
(8-5b) 5b)
§8.2 相似准则与量纲分析
若模型与原型系统相似, 若模型与原型系统相似, 几何相似 运动相似 满足相似条件
x p = Cl xm , y p = Cl ym , z p = Cl zm
v px = Cv vmx , v py = Cv vm y , v pz = Cv vm z , t p = Ct tm
∂vpz
∂vpz
∂vpz
(8-5a) 5a)
∂vmz ∂vmz ∂vmz ∂vmz 1 ∂pm µm ∂2vmz ∂2vmz ∂2vmz + vpx + vmy + vmz = −gm − + 2 + 2 + 2 ρm ∂zm ρm ∂x m ∂y m ∂z m ∂tm ∂xm ∂ym ∂zm
动力相似
p p = C p pm , g p = Cg g m ,
其他物理量
ρ p = C ρ ρ m , µ p = Cµ µ m ,
(8-6)
§8.2 相似准则与量纲分析
(8-6)代入(8-5),可得到以模型参数和相似比例尺 代入( ),可得到以模型参数和相似比例尺 表示的原型流动方程
2 CV ∂vmz CV ∂vmz ∂vmz ∂vmz + vmx + vmy + vmz = Ct ∂tm Cl ∂xm ∂ym ∂zm Cp 1 ∂pm Cv Cµ µm ∂2vmz ∂2vmz ∂2vmz −Cg gm − + 2 2 + 2 + 2 (8-7) CCρ ρm ∂zm C lCρ ρm ∂x m ∂y m ∂z m l

流体力学的研究方法

流体力学的研究方法
目前,解决流体力学问题的方法有实验、理论分析和数值方法等三种。
理论分析方法
理论分析的一般过程是:建立力学模型,用物理学基本定律推导流体力学数学方程,用数学方法 求解方程,检验和解释求解结果。理论分析结果能揭示流动的内在规律,具有普遍适用性,但分析范 围有限。
数值方法
数值研究的一般过程是:对流体力学数学方程作简化和数值离散化,编制程序作数值计算,将计 算结果与实验结果比较。
元计算秉承中国科学院数学与系统科学研究院有限元自动生成核心技术(曾获中科院科技进 步二等奖、国家科技进步二等奖),通过自身不懈的努力与完善,形成一系列范围广泛,目前有国内外专业客户300余家,涉及美、加、日、韩、澳、德、 新等国,遍布石油化工、土木建筑、电磁电子、国防军工、装备制造、航空航天……等多个领域。
首先,基础研究非常重要,打好基础对人的一生成长、成就至关重要,同时我们也要注意知 识的广度和交叉性。阿基米德能编写出《论浮体》这本书与他扎实的力学和数学功底是分不开的, 伯努力和欧拉方程的建立是离不开微积分的推导的 ,更离不开他们在其它学科上的造诣。
其次,我们要有一定的哲学和辩证唯物法的观点,在以后的研究过程中一定不要出现与自然 界的基本规律相矛盾的课题。从古到今很多优秀的人才为永动机等不可实现的东西耗费了大量的 时间和精力,有的甚至是毕生的,但最后一无所获,这一点我是深有体会,因为中学阶段我也曾 构思和制造过永动机。用纯理论推导得出的“达朗贝尔佯谬”这种理论在一些时期也有追随者, 这就是对哲学和大自然的一般规律无知的后果。学好哲学能够从战略上指导我们流体力学的研究。
统计学现在已经发展成一门比较成熟学科,其在量子物理等诸多方面都有十分重大的作用。 我觉得统计学很有可能发展成为一种流体力学分析方式。
元计算科技发展有限公司是一家既年青又悠久的科技型企业。年青是因为她正处在战略重组 后的初创期,悠久是因为她秉承了中国科学院数学研究所在有限元和数值计算方面所开创的光荣 传统。元计算的目标是做强中国人自己的计算技术,做出中国人自己的CAE软件。

流体力学的实验研究方法

流体力学的实验研究方法

流体力学的实验研究方法流体力学是研究液体和气体运动规律的学科,是物理学的一个重要分支。

在流体力学的研究中,实验方法是非常重要的手段之一。

本文将介绍几种常用的流体力学实验研究方法。

一、定量实验方法定量实验方法是通过对流体中各种参数的测量来获取数据,并进行定量分析。

最常用的定量实验方法包括流速测量、压力测量、流量测量等。

1. 流速测量流速是流体运动中的一个重要参数,在流体力学研究中具有重要意义。

常见的流速测量方法有浮标法、旋转测速法、超声波测速法等。

浮标法是通过在流体中放置一个浮标,并测量浮标的位移来确定流速。

旋转测速法则是利用测速仪表中的叶片旋转频率与流速成正比的原理进行测量。

超声波测速法则是通过发送超声波并测量其回波时间来计算流速。

2. 压力测量压力是流体力学研究中另一个重要的参数。

常用的压力测量方法有水柱法、压力传感器法、毛细管法等。

水柱法是利用流体的压力传递性质,通过测量流体压力对应的水柱高度来计算压力值。

压力传感器法则是利用压力传感器测量流体压力,通过变换电信号获得压力值。

毛细管法则是利用毛细管压力差与流动速度之间的关系来计算压力值。

3. 流量测量流量是流体力学研究中对流体运动强度的衡量。

常见的流量测量方法有流量计法、测地阀法、热敏电阻法等。

流量计法是通过使用流量计器来测量流体通过的体积或质量,从而得到流量值。

测地阀法则是利用流体通过定型孔等装置时的流动特性来计算流量。

热敏电阻法则是利用流体的传导特性,通过测量电阻值来计算流量值。

二、定性实验方法定性实验方法是通过观察流体现象的形态和规律来进行研究。

定性实验方法主要包括流动可视化、颗粒示踪、涡旋检测等。

1. 流动可视化流动可视化是将流体运动过程通过染色或其他方式使其可见,并观察流体现象。

常用的流动可视化方法有染色法、粒子轨迹法等。

染色法是通过向流体中加入染料,使染料在流动中呈现特殊颜色或变化,从而观察流体的运动情况。

粒子轨迹法则是通过在流体中加入颗粒物,在流动中观察颗粒物的轨迹,从而推测流体的流动方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档