25mw凝汽式汽轮机组热力设计.
毕业设计(论文)-某300mw凝汽式汽轮机机组热力系统设计[管理资料]
![毕业设计(论文)-某300mw凝汽式汽轮机机组热力系统设计[管理资料]](https://img.taocdn.com/s3/m/0ce29819856a561253d36fb0.png)
目录第1章绪论 (1)热力系统简介 (1)本设计热力系统简介 (1)第2章基本热力系统确定 (3)锅炉选型 (3)汽轮机型号确定 (4)原则性热力系统计算原始资料以及数据选取 (6)全面性热力系统计算 (7)第3章主蒸汽系统确定 (15)主蒸汽系统的选择 (15)主蒸汽系统设计时应注意的问题 (17)本设计主蒸汽系统选择 (17)第4章给水系统确定 (19)给水系统概述 (19)给水泵的选型 (19)本设计选型 (22)第5章凝结系统确定 (23)凝结系统概述 (23)凝结水系统组成 (23)凝汽器结构与系统 (23)抽汽设备确定 (26)凝结水泵确定 (26) (28)回热加热器型式 (28)本设计回热加热系统确定 (33) (35)旁路系统的型式及作用 (35)本设计采用的旁路系统 (38) (39)工质损失简介 (39)补充水引入系统 (39)本设计补充水系统确定 (40) (41)轴封系统简介 (41)本设计轴封系统的确定 (41)致谢 (42)参考文献 (43)外文翻译原文 (44)外文翻译译文 (49)毕业设计任务书毕业设计进度表第1章绪论发电厂的原则性热力系统就是以规定的符号表明工质在完成某种热力循环时所必须流经的各种热力设备之间的系统图。
原则性热力系统具有以下特点:(1)只表示工质流过时状态参数发生变化的各种必须的热力设备,同类型同参数的设备再图上只表示1个;(2)仅表明设备之间的主要联系,备用设备、管路和附属机构都不画出;(3)除额定工况时所必须的附件(如定压运行除氧器进气管上的调节阀)外,一般附件均不表示。
原则性热力系统主要由下列各局部热力系统组成: 锅炉、汽轮机、主蒸汽及再热蒸汽管道和凝汽设备的链接系统,给水回热系统,除氧器系统,补充水系统,辅助设备系统及“废热”回收系统。
凝汽式发电厂内若有多种单元机组,其原则性热力系统即为多个单元的组合。
对于热电厂,无论是同种类型的供热机组还是不同类型的供热机组,全厂的对外供热的管道和设备是连在一起的,原则性热力系统较为复杂。
凝汽器热力计算

凝汽器热力计算(总30页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March1 凝汽设备的作用和特性1.1凝汽设备的作用凝汽设备主要由凝汽器(又称凝结器、冷凝器等)、冷却水泵(或称循环水泵)、凝结水泵及抽气器等组成,其中凝汽器是最主要的组成部分。
在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备起着冷源的作用,其主要任务是将汽轮机排汽凝结成水,并在汽轮机排汽口建立与维持一定的真空度。
凝气设备的任务是:(1)凝汽器通过冷却水与乏汽的热交换,把汽轮机的排汽凝结成水。
(2)凝结水由凝结水泵送至除氧器,经过回热加热作为锅炉给水继续重复使用。
(3)不断的将排汽凝结时放出的热量带走。
(4)不断地将聚集在凝汽器内的空气抽出,在汽轮机排汽口建立与维持高度的真空度。
(5)凝汽设备还有一定的真空除氧作用。
(6)汇集和贮存凝结水、热力系统中的各种疏水、排汽,能够缓冲运行中机组流量的急剧变化、增加系统调节稳定性。
图1.1为简单的凝汽设备原则性系统。
冷却水泵抽来的具有一定压力的冷却水(地下水、地表水或海水),流过凝汽器的冷却水管。
汽轮机的排汽进入凝汽器后,蒸汽凝结成水释放出的热量被由冷却水泵不断送来的冷却水带走,排汽凝结成水并流入凝汽器底部的热水井,然后由凝结水泵送往加热器和除氧器,送往锅炉循环使用。
抽气器不断地将凝汽器内的空气抽出以保持高度真空1图1.1 凝汽设备的原则性系统1—汽轮机;2—发电机;3—凝汽器;4—抽汽器;5—凝结水泵;6—冷却水泵优良的凝气设备应满足以下要求:(1)凝汽器具有良好的传热性能。
主要通过管束的合理排列、布置、选取合适的管材来达到良好的传热效果,使汽轮机在给定的工作条件下具有尽可能低的运行背压。
(2)凝汽器本体和真空系统要有高度的严密性。
凝汽器的汽侧压力既低于壳外的大气压力,也低于管内的水侧压力。
所以如果水侧严密性不好,冷却水就会渗漏到汽侧,恶化凝结水水质;如果汽侧严密性不好,空气将漏入汽侧,恶化传热效果。
毕业设计(论文)_某1000MW凝汽式汽轮机机组热力系统设计说明书

目录第1章绪论 (1)1.1 热力系统简介 (1)1.2 本设计热力系统简介 (3)第2章基本热力系统确定 (5)2.1 锅炉选型 (6)2.2 汽轮机型号确定 (7)2.3 原则性热力系统计算原始资料以及数据选取 (8)2.4 全面性热力系统计算 (8)第3章主蒸汽系统确定 (18)3.1 主蒸汽系统的选择 (18)3.2 主蒸汽系统设计时应注意的问题 (20)3.3 本设计主蒸汽系统选择 (20)第4章给水系统确定 (22)4.1 给水系统概述 (22)4.2 给水泵的选型 (22)4.3 本设计选型 (25)第5章凝结系统确定 (27)5.1 凝结系统概述 (27)5.2 凝结水系统组成 (27)5.3 凝汽器结构与系统 (30)5.4 抽汽设备确定 (30)5.5 凝结水泵确定 (30)第6章.回热加热系统确定 (32)6.1 回热加热器型式 (32)6.2 本设计回热加热系统确定 (37)第7章.旁路系统的确定 (39)7.1 旁路系统的型式及作用 (39)7.2 本设计采用的旁路系统 (42)第8章.辅助热力系统确定 (43)8.1 工质损失简介 (43)8.2 补充水引入系统 (43)8.3 本设计补充水系统确定 (44)8.4 轴封系统 (44)第9章.疏放水系统确定 (45)9.1 疏放水系统简介 (45)9.2 本设计疏放水系统的确定 (45)参考文献 (47)致谢 (48)第1章绪论1.1热力系统简介发电厂的原则性热力系统就是以规定的符号表明工质在完成某种热力循环时所必须流经的各种热力设备之间的系统图。
原则性热力系统具有以下特点:(1)只表示工质流过时状态参数发生变化的各种必须的热力设备,同类型同参数的设备再图上只表示1个;(2)仅表明设备之间的主要联系,备用设备、管路和附属机构都不画出;(3)除额定工况时所必须的附件(如定压运行除氧器进气管上的调节阀)外,一般附件均不表示。
凝汽器热力计算

t —冷却水出口温度,℃; 2
t —冷却水进口温度,℃; 1
c p —冷却水比定压热容, kW / m2 ℃,可根据冷却水平均
温度 2t1+10 查得,在低温范围内一般淡水计算取 2
cp 4.1868KJ / kg ℃;
Dzp (hs hc ) —蒸汽凝结成水时释放出的热量,kJ/s; K tm A —通过冷却管的传热量,kJ/s; Dw (t2 t1)cp —冷却水带走的热量,kJ/s。
在表面式凝汽器中,冷却工质与蒸汽冷却表面隔开互不接触。根 据所用的冷却工质不同,又分为空气式冷却式和水冷却式两种。水冷 却式凝汽器是最常用的一种,由于用水做冷却工质时,凝汽器的传热 系数高,又能在保持洁净的和含氧量极小的凝结水的条件下,获得和
保持高度真空,因为现代电站汽轮机中主要采用水冷却式凝汽器,只 有在严重缺水地区的电站,才使用空气冷却式凝汽器。
t
327
322
820
* 90()表示新蒸汽压力为 90at 或,1at=。
凝汽器压力
凝汽器压力是凝汽器壳侧蒸汽凝结温度对应的饱和压力,但是实
际上凝汽器壳侧各处压力并不相等。所谓凝汽器压力是指蒸汽进入凝
汽器靠近第一排冷却管管束约 300mm 处的绝对压力(静压),用 pa
表示,也叫凝汽器计算压力。凝汽器进口器压力的高低是受许多因素影响的,其中主要因素是汽轮机
排入凝汽器的蒸汽量、冷却水的进口温度、冷却水量。 排汽压力越低,机组效率越高,因此只有使进入汽轮机的蒸汽膨
胀到尽可能低的压力,才能增大机组的理想焓降,提高其热经济性。 图为一次中间再热亚临界机组热效率与排汽压力的关系。该汽轮机新 蒸汽压力 p0 16.67MPa ,新蒸汽和再热蒸汽温度 t0 t1 537℃,再 热压力 pr 3.665MPa ,机组容量 300MW,可以看出,若没有凝气设 备,汽轮机的最低排汽压力是大气压,循环热效率 ηt 只有%,而当 排汽压力为 5kPa 时, 45.55% ,两者之间的相对值 t /t 达 18.5% ,因此,降低排汽压力对提高经济性的影响是十分显著的。
25MW汽轮发电机组整套启动调试方案(草案)

目录前言 11 范围 12 编制依据 13 总则 14 分部试运 25 汽轮机整套启动 116 汽轮机停机 217 机组异常(故障)及处理 228 调试技术(记录)文件 25前言本方案按照电力部汽轮机启动验收规程之有关规定及制造厂提供的有关技术资料,结合实际编写。
启动试运是全面检验主机及其配套系统的设备制造、设计、施工、调试和生产准备的重要环节,为此编制此方案,有不妥之处及需要完善的请工程部及相关部门讨论,一经审定既贯彻于启动试运行全过程,作为试运行的指导文件严格遵守执行,以期圆满完成整机试运行任务,使机组能安全,经济,可靠、文明地投入运行形成生产力,发挥其应有的经济效益。
本方案提出了汽轮机及其辅助设备分部试运的要点、系统调试的工作内容和步骤、汽轮机整套启动调试的步骤要领及事故处理的原则,以指导本厂25MW汽轮机启动调试工作。
机组的启动试运及其各阶段的交接验收,应在试运指挥部的领导下进行。
整套启动试运阶段的工作,必须由启动验收委员会进行审议、决策。
汽轮机启动调试导则1 范围本方案仅适用本厂25MW汽轮机的主机、辅助设备、热力系统的调试及机组整套启动调试的技术要求。
2 编制依据下列文件中的条款通过标准的引用而成为本方案的条款。
电厂用运行中汽轮机油质量标准 GB/T75《火电施工质量检验及评定标准》(汽轮机篇)。
《电力建设施工及验收技术规范》(汽轮机组篇)DL5011-92《电力建设安全工作规程》(火力发电厂部分)DL5009.1-2002汽轮机调节控制系统试验导则 DL/T711《火力发电厂基本建设工程启动及竣工验收规程(1996年版)》轮机厂C25-5.0/0.49使用说明书、调节系统说明书、DEH操作控制说明书、辅机部套说明书。
3.总则3.1 目的汽轮机启动调试是保证汽轮机高质量投运的重要环节,为规范汽轮机的启动调试工作,按分部试运、整套启动试运两部分制定本方案。
1.检验汽轮机DEH系统的启动操作功能;2.检验汽轮机启动曲线的合理性, 检验汽轮机带负荷能力, 确认调节保安系统的调节和保护功能动作准确、可靠;3.检验汽轮发电机组轴系的振动水平;4.完成汽机、电气的有关试验,检验汽机/锅炉的协调性;5.检验所有辅机及系统的动态投用状况,6.通过整套启动试运,找出在给定工况下最合理操作工序,暴露在设计、安装、调试(静态)中无法出现的缺陷和故障,及时进行调整和处理,顺利完成机组72h试运行。
N25-3.5435汽轮机通流部分热力计算

第一节25MW汽轮机热力计算一、设计基本参数选择1. 汽轮机类型机组型号:N25-3.5/435。
机组形式:单压、单缸单轴凝器式汽轮机。
2. 基本参数额定功率:P el=25MW;新蒸汽压力P0=3.5MPa,新蒸汽温度t0=435℃;凝汽器压力P c=5.1kPa;汽轮机转速n=3000r/min。
3. 其他参数给水泵出口压力P fp=6.3MPa;凝结水泵出口压力P cp=1.2MPa;机械效率ηm=0.99发电机效率ηg=0.965加热器效率ηh=0.984. 相对内效率的估计根据已有同类机组相关运行数据选择汽轮机的相对内效率,ηri=83%5. 损失的估算主汽阀和调节汽阀节流压力损失:ΔP0=0.05P0=0.175Mpa。
排气阻力损失:ΔP c=0.04P c=0.000204MPa=0.204kPa。
二、汽轮机热力过程线的拟定(1)在h-s图上,根据新蒸汽压力P0=3.5MPa和新蒸汽温度t0=435℃,可确定汽轮机进气状态点0(主汽阀前),并查得该点的比焓值h0=3303.61kJ/kg,比熵s0=6.9593kJ/kg(kg·℃),比体积v0= 0.0897758m3/kg。
(2)在h-s图上,根据初压P0=3.5MPa及主汽阀和调节汽阀节流压力损失ΔP0=0.175Mpa 可以确定调节级前压力p0’= P0-ΔP0=3.325MPa,然后根据p0’与h0的交点可以确定调节级级前状态点1,并查得该点的温度t’0=433.88℃,比熵s’0= 6.9820kJ/kg(kg·℃),比体积v’0= 0.0945239m3/kg。
(3)在h-s图上,根据凝汽器压力P c=0.0051MPa和排气阻力损失ΔP c=0.000204MPa,可以确定排气压力p c’=P c+ΔP c=0.005304MPa。
(4)在h-s图上,根据凝汽器压力P c=0.0051MPa和s0=6.9593kJ/kg(kg·℃)可以确定气缸理想出口状态点2t,并查得该点比焓值h ct=2124.02kJ/kg,温度t ct=33.23℃,比体积v ct=22.6694183 m3/kg,干度x ct=0.8194。
25MW汽轮机课程设计计算书

汽轮机课程设计汽轮机参数:容量:25MW蒸汽初参数:压力:3.43Mpa 温度:435℃排汽参数:冷却水温20℃背压:0.005~0.006Mpa (取0.005 Mpa)前轴封漏汽与轴封加热器耗汽量为0.007D○,轴封加热器焓升 21KJ/Kg加热器效率ηjr=0.98设计功率:Pr=25MW最大功率P=25*(0.2~0.3)1.近拟热力过程图在焓熵图上选取进口参数P0=3.43MP a,t0=435℃,可得h0=3304kJ/Kg.设进汽机构的节流损失△P0=0.04P0,可得调节级压力=3.3MP a,并确定调节级前蒸汽状态点1(3.3 MP a, 435℃)过1点作等比熵线向下交P Z线于2点,查得h2t=2128KJ/Kg,整机理想比焓降(△h t mac)’=h0-h2t=3304-2128=1176KJ/Kg.选取汽轮机的内效率η=0.85,有效比焓降△h i mac=(△h t mac)’*ηri=999.6 KJ/Kg,排气比焓和h z=2304kj/kg.在焓熵图上得排汽点Z,用直线连接1,Z,去两点的中点沿等压线下移21-25Kj/Kg,用光滑曲线连接1,3两点,得热力过程曲线的近似曲线见图1,P cS图1选取给水温度T=160℃ 回热级数:5内效率η=0.85主汽门和调节阀中节流损失△P0=(0.03~0.05)PO 排汽管中压力损失 △P C =(0.02~0.06)P C 回热抽汽管中的压力损失 △P E =(0.04~0.08)P E2.汽轮机进汽量D ○ηm =0.99 ηg =0.97 m=1.15 △D=0.03D O D 0=/ h i mac ηm ηg *m+△D=3.6*20000*1.15/(93*0.99*0.97)+0.03△D =107.19 t/h 2. 抽汽压力确定采用大气式除氧器 压力为0.118 MP A 饱和温度为104.3℃2#3. 回热抽汽流量的计算(1) H1高加给水量 △D e =0.5 △D L1=0.77 △D C =1 Dfw=D 0-△D C +△D L1+△D ej=107.19-1+0.77+0.5=107.46 t/h抽汽量△D e1(h e1-h e1’) ηjr = D fw (h W2-h w1)21'11()107.46(697.4592.04)5.01()0.98(3024730.17)fw w w el jr e e D h h D h h η--∆===--(t/h )(2)H2高加 抽汽量 21'2'22()107.46*105.2855.07()0.98(2888619.27)fw w w e e e jrD h h D h h η-∆===-- (t/h )H1疏水流入H2放热 ''1211'22760.17619.275.01*0.2452888619.27e e e ee e e h h D D h h --∆=∆==-- (t/h) 考虑前轴封漏汽'211'223098619.270.77*0.842888619.2l e l e l e e h h D D h h --∆=∆==-- (t/h) '221 5.070.2450.84 3.985e e ele l e D D D D ∆=∆-∆-∆=--= (t/h) (3) H d 除氧器(4)H3低加213'33105.4695.65* 4.54(/)()(2644402.2)*0.98w w e cw e e jr h h D D t h h h η-∆===--(5)H4低加'214'44''3433'44'443105.4695.65* 4.64(/)()(2492300.9)0.98402.2300.94.59*0.22(/)2492300.94.640.22 4.42(/)w w e cw e e jr e e e ee e e e e e e h h D D t h h h h h D D t h h h D D D t h η-∆===----∆=∆==--∆=∆-∆=-=回热系统的校验4. 流经各级组蒸汽量及其内功率调节级 0109.19(/)D t h =第一级组 10107.191106.19(/)l D D D t h =-∆=-=第二级组 211106.19 5.01101.18(/)e D D D t h =-∆=-= 第三级组 32297.175(/)e D D D t h =-∆=第四级组 4397.195 2.3594.85(/)ed D D D t h =-∆=-= 第五级组 54394.875 4.4090.335(/)e D D D t h =-∆=-= 第六级组 65490.335 4.4285.95(/)e D D D t h =-∆=-= 整机内功率5. 计算汽机装置的热经济性机械损失: (1)22189.1(10.99)269m i m P P kw η=-=-= 汽机轴端功率: 22189.122226671n i m P P P kw =-=-= 发电机功率: 26671*0.9725870e n g P P kw η=== 内功率大于25000KW,合格 汽耗率: 0(.)10001071904.13()2130825870.78kg kw h e D d P === 不抽汽估计汽耗率: 汽轮机装置的热耗率 绝对电效率 3600360033.44%10765.67el q η===25MW 凝汽式汽轮机热平衡计算数据6. 双列速度级的热力计算(1) 速度级的选择选择双列速度级(195-250KJ/Kg )选择焓降为250kj/kg.故速度级的参数为:0107.19(/)D t h = 0 3.43()P MPa = 0435t =℃1. 喷嘴热力计算 (1) 喷嘴理想焓降 (2) 喷嘴进口状态参数 (3) 喷嘴出口状态参数 由△h n 可以从H-S 图上查得: (4) 喷嘴形状的确定 前后压比: 10 1.40.420.5463..3n cr p p εε===<= 选用渐缩型喷嘴.(5) 喷嘴出口速度理想速度: 1651.9(/)t c m s === 速度系数0.97ϕ=实际速度: 110.97*627.69632.36(/)t c c m s ϕ=== 喷嘴出口汽流偏转角1δ 喷嘴出口汽流方向角115o α= (6) 轮周速度u(7) 速度级的平均直径d m (8) 喷嘴出口面积A n (9) 喷嘴出口高度l n选取部分进汽度e=0.6则叶高l n =16mm>15mm(10)喷嘴损失n h ζ∆2. 第一列动叶热力计算 (1) 动叶进口汽流的相对速度(2) 根据C 1,U 1作速度三角形,由余弦定理可得: (3) 动叶出口汽流相对速度 因为0b Ω= 则21482.03(/)t w w m s == 查图, 0.878b ϕ=复速级动叶出口汽流角21(35)o oββ=--取0220.87317.87o o β=-= (4) 动叶绝对速度 (5) 动叶进口状态参数 喷嘴出口实际状态点参数动叶比焓 113091.512.563104/t n h h h kj kg ζ=+∆=+=由H-S 图查得动叶进口密度31 6.25/kg m ρ= (5)动叶进口高度 (△r △t 由表1-1查得) (6)动叶出口面积(b μ 由图1-11查得)(7)动叶出口高度 (8)动叶损失(9)动叶出口汽流状态参数动叶出口比焓 21310426.63130.6(/)b h h h kj kg ϕ=+∆=+=查H-S 图得:出口密度32 6.28/kg m ρ=因为0bΩ=则12p p =3. 导叶热力计算(1) 导叶中汽流的理想比焓降 (2)导叶出口汽流理想状态参数由导叶进口状态( 第一列动叶出口状态)参数和△h gb 从H-S 图查得导叶出口压力 '1 1.6p MPa =导叶出口比焓 '123118/t gb h h h kj kg =-∆=导叶出口密度 '316.18/kg m ρ=(3)导叶出口汽流理想速度 导叶出口实际速度 (gb ϕ由图1-18查取) 导叶出口汽流角 (4)导叶进口高度 (6) 导叶顶部漏汽量 (7) 导叶出口面积(8) 导叶出口高度 (9) 导叶损失(10) 导叶出口汽流实际状态参数导叶出口焓 ''1131187.933125.93/t gb h h h kj kg =+∆=+= 由H-S 图查得导叶出口密度 '31 6.26/kg m ρ= 4. 第二列动叶热力计算 (1) 动叶中汽流的理想比焓降 (2) 动叶出口汽流理想状态参数由H-S 图查得动叶出口压力 '2 1.5p MPa =动叶出口密度 '32 5.56/tkg m ρ=(3) 动叶进口相对速度 (4) 动叶出口汽流相对速度 相对理想速度: 相对实际速度: ('b ϕ由图1-18查得) 动叶出口汽流相对速度角 (5) 动叶出口汽流绝对速度 (6) 动叶损失 (7) 余速损失(8) 动叶出口汽流实际状态参数动叶出口实际比焓 '''223100.93 5.13/t b h h h kj kg ζ=+=+(9) 动叶进口高度 (10) 动叶顶部漏汽量由于'b m d d =,'22b b l l =根部反动度顶部反动度(11)动叶出口面积('bμ由图1-11查得) (12)动叶出口高度5.轮周功校核1KG蒸汽所做的轮周功计算符合要求6.轮周效率7.级内损失的计算(1)叶轮摩擦损失(2)叶高损失(3)部分进汽损失鼓风损失斥汽损失(4)导叶及动叶顶部漏汽损失8.级的内功率9.级的内效率7.压力级的确定及焓降的分配1.第一压力级的平均直径1d==m=1.11m2.凝汽式汽轮机末级直径的估算3.平均理想焓降的计算各级组的直径及反动度各级的理想焓降估算级的平均理想焓降级数目的确定比焓降分配辅助表格8. 回热系统抽汽压力的重新确定(1) H1高加 给水量Dfw=D 0-△D C +△D L1+△D ej=107.19-0.75+0.58+0.5 =107.52 t/h抽汽量△D e1(h e1-h e1’) ηjr = Dfw(h W2-h w1)21'11()107.52(723622.83)4.7()0.98(3074740)fw w w el jr e e D h h D h h η--∆===--(t/h )(2) H2高加''1211'22749649.64.73*0.212904649.6e e e ee e e h h D D h h --∆=∆==--(t/h)'211'223098.1649.40.580*0.632094649.6l e l e l e e h h D D h h --∆=∆==-- (t/h) (3) H d 除氧器(4) H3低加 (5) H4低加 回热系统的校验流经各级组流量及其内功率 调节级 0107.19(/)D t h =第一级组 10107.190.75106.44(/)l D D D t h =-∆=-= 第二级组 211106.44 4.73101.73(/)e D D D t h =-∆=-= 第三级组 32298.11(/)e D D D t h =-∆=第四级组 4398.11296.11(/)ed D D D t h =-∆=-= 第五级组 54396.11 5.1390.98(/)e D D D t h =-∆=-= 第六级组 65490.98 3.0287.96(/)e D D D t h =-∆=-= 整机内功率 装置热经济性机械损失 (1)28334(10.99)283m i m P P kw η∆=-=-= 汽机轴端损失 2833428328051n i m P P P kw =-∆=-= 发电机功率 28051*0.9727209.79e n g P P kw η=== 汽耗率不抽汽估计汽耗率 汽机装置热耗率 绝对电效率9.压力级第九级第十级的详细热力计算演示 1.级内的比焓降分配 (1)焓降t h ∆= 104kj/kg初焓 0h =2500 初压 0p =0.037MP初速 092.45/c m s = 反动度 0.2m Ω=等熵滞止焓降 2*108.432000tt c h h ∆=∆+=(2) 蒸汽在动叶的理想比焓降: 2.喷管的热力计算 ⑴ 喷管前后的蒸汽参数根据o p ,o x 2c h ∆以*n h ∆由h-s 图得喷管滞止压力*o p =0.037 滞止比焓*o h ∆=2540.3 滞止密度*0ρ=0.223/kg m 喷管前比焓0h =2500喷管后压力1p =0.017MP 理想密度 1t ρ=0.1253/kg m理想比焓 1t h =2418⑵ 喷管截面积形状的确定 等熵指数 k=1.035+0.1o x =1.129 临界压比 cr ε=k 121k k ⎛⎫ ⎪-⎝⎭⎛⎫⎪+⎝⎭=0.566喷管前后压力比 n ε=0.016/0.035=0.457因为n ε≤0.457,所以汽流在喷管出口为超声速流动但是n ε>0.3~0.4 故喷管应该是渐缩型超音速斜切部分达到超音速。
25MW汽轮机运行规程(电液调速)

前言本规程根据《电力工业技术管理法规》、《电业安全工作规程》、《汽轮机运行规程》,结合制造厂家技术说明书及本公司实际情况编订。
下列人员应熟悉掌握本规程有关内容:一、总工程师、生产技术部门有关技术人员;二、专业主管、值长;三、汽机运行、检修人员。
第一篇汽轮机组运行规程1 设备主要规范结构特性1.1 汽轮机概况1.1.1 制造厂及编号型号:C25-8.83/0.981-1型式:高压、单抽、冲动、凝汽式制造厂:南京汽轮机厂产品编号:1号机200401;2号机2004071.1.4 本体结构:1.1.4.1 推力瓦工作面与非工作面瓦块各10块。
11.1.4.2 汽轮机汽缸由前、中、后汽缸组成,汽缸死点设在后汽缸处,以横向滑键定位于侧机架向前膨胀。
1.1.4.3 汽轮机转子由一级速度级和十九级压力级组成,为整锻加套装结构,通过钢性联轴器与发电机转子联接。
汽轮机转子以推力盘为死点向后膨胀。
1.1.4.4 转子盘车装置装于后轴承箱盖上,由电动机驱动,通过蜗轮蜗杆及齿轮减速达到所需要的盘车速度。
当转子的转速高于盘车速度时,盘车装置能自动退出工作位置。
在无电源的情况下,在盘车电动机的后轴伸装有手轮,可进行手动盘车。
1.1.4.5 汽轮机采用喷嘴调节,主蒸汽通过自动主汽门后,由四根导汽管分别引入四个调节阀进入汽轮机。
四个调节阀布置方式为:1423,传动方式为凸轮传动。
1.1.4.6 在汽轮机前轴承座的前端装有测速装置,在座内有主油泵,监测系统部分装置,推力轴承,前轴承及调节、保安系统的一些有关部套。
前轴承座与前汽缸用“猫爪”相连,在横向和垂直方向均有定位的膨胀滑键,以保证汽缸在膨胀时中心不致变动。
在前座架上装有热胀指示器,以反映汽轮机静子部分的热膨胀情况。
1.1.4.7 回热抽汽系统共六级,分别位于5、9、11、13、15、17级后,其中位于第11级后的抽汽为调整抽汽,按压力高低依次供给#2高压加热器、#1高压加热器、高压除氧器、#3低压加热器、#2低压加热器、#1低压加热器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计说明书25MW 凝汽式汽轮机组热力设计学号:学 院: 专 业:指导教师:2016年6月1227024207 中北大学(朔州校区) 热能与动力工程 张志香30MW凝汽式汽轮机组热力设计摘要本课题针对30MW凝汽式汽轮机组进行热力设计,在额定功率下确定汽轮机型式及参数,使其运行时具有较高的经济性,并考虑汽轮机的结构、系统、布置等方面的因素,以达到“节能降耗,保护环境”的目的。
本文首先对汽轮机进行了选型,对汽轮机总进汽量进行了计算、通流部分的选型、压力级比焓降分配及级数的确定、汽轮机级的热力计算、漏气量的计算与整机校核等。
根据通流部分选型,确定排汽口数与末级叶片、配汽方式和调节级的选型,并进行各级比焓降分配与级数的确定;对各级进行热力计算,求出各级通流部分的几何尺寸,相对内效率,实际热力过程曲线。
根据热力计算结果,修正各回热抽汽点压力达到符合实际热力过程曲线的要求,并修正回热系统的热力平衡计算,分析并确定汽轮机热力设计的基本参数。
关键词:汽轮机,凝汽式,热力系统,热力计算Thermodynamic design of 30MW condensing steam turbineAbstractThis topic for 30MW steam turbine unit for thermal design, seek appropriate turbine at rated power, to make it run with higher economic and to considered to steam turbine structure, system and arrangement and parts. So it can achieve "energy saving, environmental protection" purpose.Determination of machine, firstly, the steam turbine for the selection of the turbine total inlet were calculated through flow part of the selection pressure enthalpy drop distribution and series, steam turbine thermodynamic calculation, the leakage amount of calculation and check. According to the through flow part of selection to determine the exhaust port number and the last stage blades of steam distribution mode and regulation level selection, and for different levels of specific enthalpy drop distribution and the series of levels with a thermodynamic calculation for at all levels through flow part of the geometry and relative internal efficiency, the actual thermodynamic process curve. According to the thermodynamic calculation results, correction of regenerative extraction steam pressure to conform to the actual thermodynamic process curve, and repair Thermodynamic equilibrium calculation, analysis and determination of the basic parameters of the thermal design of the turbine.keywords:steam turbine, condensing type, thermodynamic system, thermodynamic calculation目录1 绪论 (1)2 汽轮机基本参数确定 (2)2.1原始数据 (2)2.2 汽轮机的基本参数确定 (2)3 汽轮机总进汽量的初步估算 (5)3.1 回热抽汽压力确定 (5)3.2 热经济性初步计算 (6)4 通流部分的选型 (15)4.1 排汽口数与末级叶片 (15)4.2 配汽方式和调节级的选型 (15)4.3 压力级设计特点 (18)5 压力级比焓降分配及级数的确定 (20)5.1 蒸汽通道的合理形状 (20)5.2 各级平均直径的确定 (20)5.3 级数的确定与比焓降的分配 (22)6 汽轮机级的热力计算 (25)6.1 叶型及其选择 (25)6.2 级的热力计算 (27)6.3级的详细计算 (34)7 汽轮机漏汽量的计算与整机校核 (37)7.1 阀杆漏汽量的计算 (37)7.2 轴封漏汽量的计算 (37)7.3 汽封直径的确定 (38)7.4 整机校核 (39)8 结论 (40)致谢 (41)参考文献 (42)1 绪论蒸汽轮机从1883年第一台实用性机组问世至今,已有100多年的历史[1]。
汽轮机的发展经由单级冲动式汽轮机到多级冲动式汽轮机再到多级反动式汽轮机,汽轮机随着时代和科技的进步而进步。
19世纪以来,在不断提高安全可靠性、耐用性和保证运行方便的基础上,汽轮机是通过增大单机功率和提高装置的热经济性来发展的,汽轮机的出现推动了电力工业的发展;20世纪初,电站汽轮机单机功率已达10MW;随着电力应用的日益广泛,美国纽约等大城市的电站尖峰负荷在20年代已接近1000MW,如果单机功率只有10MW,则需要装机近百台,因此20年代时单机功率就已增大到60MW,30年代初又出现了165MW和208MW的汽轮机;但是之后的经济衰退、第二次世界大战的爆发,使得汽轮机单机功率的增大处于停顿状态;50年代,随着战后经济的快速发展,电力需求突飞猛进,单机功率又开始不断增大,陆续出现了325~600MW的大型汽轮机;60年代制成了1000MW汽轮机;70年代,制成了1300MW汽轮机。
但是机组过大又带来可靠性、可用率的降低,因而到90年代初,火力发电单机容量稳定在300~700MW。
21世纪,为提高发电效率,我国对电厂机组实行“上大压小”政策。
高参数大容量凝汽式机组成为火力发展不可抗拒的发展趋势。
现在许多国家常用的单机功率为300~600MW。
近几年来,国家大力提倡节能减排[2]。
这就需要在额定功率下寻求合适汽轮机,使运行时具有较高的经济性,在不同工况下工作时均有比较高的可靠性,满足经济性和可靠性要求的同时需要考虑到汽轮机的结构、系统、布置、成本、安装和维修以及零件等方面的因素,在确保汽轮机热力设计在适用性、可靠性和经济性的前提下,能达到“节能降耗,保护环境”的目的。
而且汽轮机在计算机方面应用的广度与深度一直在更进一步的发展。
已经大大减小了手工计算的负担,但我们目前仍与其他国家存在着一定的差距,遇与挑战,这就需要我们大胆创新,不断提高汽轮机在国际上的竞争力,加大研究高参数、高效率、高可靠性和自动化的汽轮机产品的力度,不断推动我国汽轮机的发展与进步。
2 汽轮机基本参数确定2.1原始数据机型:25 MW 凝汽式;蒸汽初参数:p 0=3.43MPa ,t 0=435℃;凝汽器出口压力:p c =1.9kPa ;给水温度:t fw =160℃;经济功率:P c =12000kW ;汽轮机转速:3000r/min ;汽轮机内效率:0.8。
2.2 汽轮机的基本参数确定(1)汽轮机功率汽轮机额定功率也称铭牌功率,由国产发电用汽轮机功率系列(见表2.1)可知,本课题25MW 汽轮机属于中压汽轮机。
表2.1 国产发电用汽轮机功率系列汽轮机设计时所依据的功率称为设计功率e P ,又称为经济功率,其大小由机组本身额定功率大小级运行时所承担负荷的变化而定。
表2.2给出了国产汽轮机选用的设计功率与额定功率之比。
表2.2国产汽轮机不同额定功率的设计功率为了确保汽轮机在初参数下降或背压升高时仍能发出额定功率,在设计调节阀与喷嘴进汽能力及结构强度时,需要考虑适当的余量。
因此,在正常的参数级提高初参数或降低背压时,汽轮机发出的功率可能大于额定值,此功率为最大功率。
(2)进汽参数①新蒸汽参数汽轮机的新蒸汽参数是指主气门的蒸汽压力与温度,通常又称为初压、初温。
我国对电站汽轮机采用按功率划分新蒸汽参数等级的产品系列,见表2.3。
表2.3国产汽轮机新蒸汽参数②排汽压力凝汽式汽轮机的排汽压力要综合考虑汽轮机运行地点的气候条件,供水方式,末级叶片等因素。
我国凝汽式汽轮机常用的排汽压力见表2.4。
表2.4 我国凝汽式汽轮机常用的排汽压力③汽轮机的转速汽轮机转速由电网频率决定,我国电网频率为50H Z,故我国生产的汽轮机转速采用3000r/min。
④调节抽汽式汽轮机的抽汽压力[2]调节抽汽式汽轮机除了能满足供电外,还能满足供热需要。
调节抽汽式汽轮机的抽汽往往由热用户的需要决定。
其抽汽压力一般综合用户要求和产品系列规范决定,表2.5 为国产调节抽汽式汽轮机常用抽汽压力。
表2.5 国产调节抽汽式汽轮机常用抽汽压力[3]⑤给水温度与回热级数通常给水温度选为初蒸汽压力下饱和温度的65%~75%较为经济,由文档[3]可知回热级数选4段,采用“两高、一低、一除氧”的形式。
表2.6为不同回热级数和给水温度。
表2.6 不同回热级数和给水温度[4]3 汽轮机总进汽量的初步估算一般凝汽式汽轮机的总蒸汽量可由下式估算:D m H P D ri g m t el ∆+∆=ηηη6.30 (t/h ) (式3.1)式中:m 为考虑回热抽汽引起进汽量增加的系数,它与回热级数、给水温度、汽轮机容量及参数有关,对中压机组m=1.08~1.15,高压机组m=1.18~1.15,背压式汽轮机m=1;∆D 为考虑阀杆漏汽和前轴封漏汽,并保证在初参数下降或背压升高时仍能发出设计功率的蒸汽裕量,通常取∆D/D 0 =3%~5%;P el 为汽轮机发电机组出线端的电功率,kW ;∆H t 为汽轮机的理想比焓降,kJ/kg ;ηri 为汽轮机的相对内效率; ηm 为汽轮机的机械效率;ηg 为发电机的效率;D 0为汽轮机的进汽量,kg/h 。