电化学概念
电化学基础知识讲解及总结

电化学基础知识讲解及总结电化学是研究电与化学之间相互作用的学科,主要研究电能转化为化学能或者化学能转化为电能的过程。
以下是电化学的基础知识讲解及总结:1. 电化学基本概念:电化学研究的主要对象是电解质溶液中的化学反应,其中电解质溶液中的离子起到重要的作用。
电池是电化学的主要应用之一,它是将化学能转化为电能的装置。
2. 电化学反应:电化学反应可以分为两类,即氧化还原反应和非氧化还原反应。
氧化还原反应是指物质失去电子的过程称为氧化,物质获得电子的过程称为还原。
非氧化还原反应是指不涉及电子转移的反应,如酸碱中的中和反应。
3. 电解和电解质:电解是指在电场作用下,电解质溶液中的离子被电解的过程。
电解质是指能在溶液中形成离子的化合物,如盐、酸、碱等。
4. 电解质溶液的导电性:电解质溶液的导电性与其中的离子浓度有关,离子浓度越高,导电性越强。
电解质溶液的导电性也受温度和溶质的物质性质影响。
5. 电极和电位:在电化学反应中,电极是电子转移的场所。
电极可以分为阳极和阴极,阳极是氧化反应发生的地方,阴极是还原反应发生的地方。
电位是指电极上的电势差,它与电化学反应的进行有关。
6. 电池和电动势:电池是将化学能转化为电能的装置,它由两个或多个电解质溶液和电极组成。
电动势是指电池中电势差的大小,它与电化学反应的进行有关。
7. 法拉第定律:法拉第定律是描述电化学反应速率的定律,它表明电流的大小与反应物的浓度和电化学当量之间存在关系。
8. 电解质溶液的pH值:pH值是衡量溶液酸碱性的指标,它与溶液中的氢离子浓度有关。
pH值越低,溶液越酸性;pH值越高,溶液越碱性。
总结:电化学是研究电与化学之间相互作用的学科,主要研究电能转化为化学能或者化学能转化为电能的过程。
其中包括电化学反应、电解和电解质、电极和电位、电池和电动势等基本概念。
掌握电化学的基础知识对于理解电化学反应和电池的工作原理具有重要意义。
电化学基本原理

能斯特方程说明
①溶液的浓度变化,影响电极电势的数值,从 而影响物质的氧化、还原能力。
由能斯特方程
b 还原态 0 0.0592 lg EE a z 氧化态
可知当氧化态物质的浓度增大(或还原态物质的 浓度减小)时,其电极电势的代数值变大,亦即氧 化态物质的氧化性增加; 反之还原态物质的浓度增大时,其电极电势的代数 值变小,亦即还原态物质的还原性增加。
标表示电流密度。
极化曲线的测定装置原理图
此处参比电极
用的是饱和甘 汞电极,不是 标准氢电极。 参比电极常用 的除了标准氢 电极外,还有 饱和甘汞电极、 饱和氯化银电 极。
极化度
从曲线可以看出:随着电流密度不断增大,阴极电位也不断变 负。若阴极电流密度Dk改变某一值,曲线I的△E值也有所不同。 通常把ΔEk与△Dk 的比值称为阴极极化度。
析氢过电位
在平衡电位下,因氢电极的氧化反应速度 与还原反应速度相等,因此不会有氢气析出。 只有当电极上有阴极电流通过从而使还原反应 速度远大于氧化反应速度时,才会有氢气析出。 当电极上有阴极电流通过时,会使电位从平衡 电位向负方向偏移,即产生阴极极化。也就是 说,只有当电位向负的方向偏离氢的平衡电位 并达到一定的过电位值时,氢气才能析出。
氢氧燃料电池
阳极反应(负极)
H2 2e 2H
阴极反应(正极)
O2 2H 2O 4e 4OH
双电层模型示意图
双电层模型解释
当把金属插入其盐溶液时,金属表面正离子受到极性水分 子的作用,有变成溶剂化离子进入溶液而将电子留在金属表 面的倾向。金属越活泼、溶液中正离子浓度越小,上述倾向 就越大。与此同时溶液中金属离子也有从溶液中沉积到金属 表面的倾向,溶液中金属离子的浓度越大、金属越不活泼, 这种倾向就越大。当溶解与沉积速率达到相等时,即达到动 态平衡。当溶解倾向大于沉积倾向,则金属表面带负电层, 靠近金属表面附近的溶液带正电层,这样便构成双电层。相 反,若沉积倾向大于溶解倾向,则金属表面形成带正电荷层, 金属表面附近的溶液带一层负电荷。由于溶解和沉积达到平 衡时,形成双电层,从而产生电势差,这种电势差叫做电极 的平衡电极电势,也叫可逆电极电势。金属的活泼性不同, 其电极电势也不同,因此,可以用电极电势来衡量金属的得 失电子能力,即金属的还原性强弱。
整理-电化学基本概念

电化学基本概念1. 导体(Conductor):能导电的物质称为导体。
有些导体依靠其中的电子传递电流,称为电子导体或第一类导体(如金属,石墨,PbO2、Fe3O4等金属氧化物);有些导体靠离子的移动来实现其导电任务,称为离子导体或第二类导体(如电解质溶液,熔融电解质,固体电解质)。
一般来说,离子导体的导电能力比电子导体小得多。
2. 电极反应(Electrode Reaction):电子导体能够独立地完成导电任务;而要想让离子导体导电,必须有电子导体与之相连接。
但流经两类导体的电荷载体不一样,为了使电流持续不断地通过离子导体,在两类导体界面上必然会有得电子或失电子的反应发生。
这种在两类导体界面界进行的有电子得失的化学反应称为电极反应或电化学反应。
★自发电池 / 电解池3. 阴极(Cathode):电流通过两类导体界面时,使正电荷从电极进入溶液(发生还原反应)的电极。
4. 阳极(Anode):电流通过两类导体界面时,使正电荷从溶液进入电极(发生氧化反应)的电极。
5. 法拉第(Faraday):一摩尔电子的电量。
摩尔常数N A =6.02×1023;每个电子的电量 e 0 = 1.602×10-19库仑(Coulomb);一库仑为一安培·秒(Ampere-second);所以:1法拉第 = 6.02×1023×1.602×10-19≈96500库仑1法拉第 = 6.02×1023×1.602×10-19÷3600≈26.8安时(Ampere-hour)6. 法拉第定律(Faraday Law):在整个电路中各处的电流是相等的,因此电极上通过的电量与电极反应的反应物和反应产物之间有如下的精确关系:若反应为M z + + z e- = M,则生成1摩尔 M 所需的电量为 z 法拉第。
★法拉第定律成立的前提是:电子导体中不包含离子导电的成分,而离子导体中也不包含电子导电的成分。
电化学工作站原理与应用

作电解池 阴极: Zn22e Zn(s)
阳极 2 A g ( s ) 2 C l 2 A g C l( s ) 2 e
净反应: 2 A g ( s ) Z n C l 2 Z n ( s ) 2 A g C l ( s )
电池反应不可逆,电池不是可逆电池
使用盐桥的双液电池可近似地认为是 可逆电池,但并非是严格的热力学可逆电 池,因为盐桥与电解质溶液界面存在因离 子扩散而引起的相间电势差,扩散过程不 是热力学可逆过程。
电化学工作站原理与应用
(二)电化学体系的基本单元
1、电极
指与电解质溶液接触的电子导体或半导体。 电化学体系分为二电极、三电极体系、四 电极体系。
浓差电池
池
电极浓差电池 一次电池
化学电源 二次电池
电解池
燃料电池
电化学工作站原理与应用
1.原电池: Daniel 电池——铜锌电池结构
(-) Zn ︱Zn2+(1mol/L)‖ Cu2+(1mol/L)︱Cu (+)
Zn2
0.76V3
Zn
电极反应
Cu 2+ /Cu = 0.337 V
(-)Zn极 Zn – 2e (+)Cu极 Cu2+ + 2e
金属活动性顺序铜之后电的化银学、工作金站,原理给与应出用 电子的能力比铜弱.
Zn(s)|ZnSO4||HCl|AgCl(s) | Ag(s)
作原电池 ( )Z n (s) Z n 2 2 e
净反应
( ) 2 A g C l ( s ) 2 e 2 A g ( s ) 2 C l
电化学原理基本概念总结

第一章电化学体系:由两类不同导体组成,在电荷转移时,不可避免地伴随有物质变化的体系。
电极反应:两类导体上发生的氧化反应或还原反应。
电化学反应:电化学体系中发生的、伴随有电荷转移的化学反应。
电化学科学:研究电子导电相(金属、半导体)和离子导电相(溶液、固体电解质)之间的界面上所发生的各种界面效应的科学。
即伴有电现象发生的化学反应的科学。
电极:电子导电相和离子导电相相接触,且在相界面上有电荷的转移,整个体系称为电极。
电极电位:电极体系中,两类导体界面所形成的相间电位,即电极材料和离子导体(溶液)的内电位差。
第二章绝对电位:金属与溶液之间的内电位差的数值。
参比电极:能作为基准的、电极电位保持恒定的电极。
相对电位:将参比电极与被测电极组成一个原电池回路,所测出的电池端电压,叫做该被测电极的相对电位。
习惯上直接称为电极电位,用表示)标准氢电极:气体分压为101325Pa 的氢气和离子活度为1的氢离子溶液所组成的电极体系。
用氢标电位:相对于标准氢电极的电极电位。
金属接触电位:相互接触的两个金属相之间的外电位差。
形成原因:当两种金属接触时,由于电子逸出功不等,相互逸入的电子数目将不相等,因此在界面形成了双电层结构。
这一双电层结构的电位差就是金属的接触电位。
电子逸出功:电子离开金属逸入真空所需要的最低能量 液体接界电位相互接触的两个组成不同或浓度不同的电解质溶液相之间存在的相间电位。
形成原因:两溶液相组成或浓度不同;溶质离子发生迁移;正、负离子运动速度不同;两相界面形成双电层产生电位差在恒压下原电池电动势对温度的偏导数称为原电池电动势的温度系数吉布斯—亥姆荷茨方程应用于电池热力学的另一种表达式,可通过测求反应的焓变电解池腐蚀电池:只能导致金属材料破坏而不能对外作功的短路的原电池。
电池反应所释放的化学能以热能的形式耗散,电池反应不能生成有价值的物质 浓差电池:原电池的电池总反应不是化学变化,而是一种物质从高浓度向低浓度状态的转移。
第四章电化学基础知识点归纳

第四章电化学基础知识点归纳第四章电化学基础知识点归纳电化学是研究电和化学之间关系的分支学科,主要研究电能和化学变化之间的相互转化规律。
本章主要介绍了电化学基础知识点,包括电化学的基本概念、电池反应、电解反应以及其相关的电解池和电极。
一、电化学的基本概念1. 电化学:研究电和化学之间相互关系的学科。
2. 电解:用电能使电解质溶液或熔融物发生化学变化的过程。
3. 电解质:能在溶液中产生离子的化合物。
4. 电解池:由电解质、电极和电解物质组成的装置。
5. 电极:用来与溶液接触,传递电荷的导体。
二、电池反应1. 电池:将化学能转化为电能的装置。
由正极、负极、电解质和导电体组成。
2. 电池反应:电池工作时在正负极上发生的化学反应。
3. 氧化还原反应:电池反应中常见的反应类型,在正极发生氧化反应,负极发生还原反应。
4. 电池电势:电池正极和负极之间的电位差。
5. 电动势:电池正极和负极之间的最大电势差。
三、电解反应1. 电解:用电流使电解质发生化学变化的过程。
2. 导电质:在电解质中起导电作用的物质。
3. 离子:在溶液中能自由移动的带电粒子。
4. 阳离子:带正电荷的离子。
5. 阴离子:带负电荷的离子。
6. 电解池:由电解质溶液、电解质和电极组成的装置。
7. 电解程度:电解质中离子的溶解程度。
8. 法拉第定律:描述了电解过程中,电流量与电化学当量的关系。
四、电解池和电极1. 电解槽:承载电解液和电极的容器。
2. 阳极:电解池中的电流从电解液流入的电极,发生氧化反应。
3. 阴极:电解池中的电流从电解液流出的电极,发生还原反应。
4. 阳极反应:电解池中阳极上发生的氧化反应。
5. 阴极反应:电解池中阴极上发生的还原反应。
6. 电极反应速度:电极上反应的速度。
7. 电极反应中间体:反应过程中形成的中间物质。
电化学是现代科学和工程领域中的重要分支,广泛应用于电池、电解、蓄电池、电解涂层、电化学合成等领域。
了解电化学的基础知识,有助于我们更好地理解和应用电化学原理。
电化学基本概念ppt课件

i i
两相间建立平衡电势
电极(Electrode)
电极材料/电解质
Zn|Zn2+, SO42Pt|H2,H+ Fe|Fe3O4|Fe2O3|水溶液
电极(Electrode)
电极材料/电解质 •传递电荷
Zn|Zn2+,SO42-,
•氧化或还原反应
Pt|H2,H+
的地点
•“半电池”
Fe|Fe3O4|Fe2O3|水溶液
法拉弟定律的几个要点
1. 电和化学反应相互作用的定量关系 2. 不受电极、外界条件的影响 3. 适用于多个电化学装置的多个反应(串联)
e-
i
H2
Cl2
Na+
Cl-
Ag
Ag+
ei
Ag+
Ag+
H+
OH-
阴极
阳极
H+
NO3-
银阴极 银阳极
法拉弟定律的几个要点
1. 电和化学反应相互作用的定量关系 2. 不受电极、外界条件的影响 3. 适用于多个电化学装置的多个反应(串联) 4. 适用于单个电化学装置的多个反应(并联)
I
负极 e
e 正极
-2e Pb
Pb2+ PbSO4
H2O H+
SO4= SO4= H+
硫酸
+2e PbO2
Pb2+ PbSO4
铅酸蓄电池 (1860年--)
充电
(吸收电能)
负极 e
e 正极
Pb2+ PbSO4
+2e
Pb
Pb2+
H2O
PbSO4
电化学基本概念复习总结大全

第一章绪论1, 电化学:研究两类导体的界面现象以及上面发生的化学变化的一门科学2, 电化学反应:在两类导体界面间进行的有电子参加的化学反应.(电极反应)3 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
4 电解质的分类:(1)弱电解质与强电解质—根据电离程度(2)缔合式与非缔合式—根据离子在溶液中存在的形态(3)可能电解质与真实电解质—根据键合类型5 法拉第定律: 电极上通过的电量与电极反应中反应物的消耗量或产物的产量成正比.法拉第定律成立的前提是:电子导体中不包含离子导电的成分,而离子导体中也不包含电子导电的成分。
电化当量:电极上通过单位电量所形成产物的质量.电流效率=当一定电量通过时,在电极上实际获得的产物质量/同一电量通过时根据法拉第定律应获得的产物质量第二章电解质溶液6离子水化:由于离子在水中出现而引起结构上的总变化。
离子水化影响双电层呵极化,离子水化影响电解质的扩散系数和活度系数,7水化热(焓):一定温度下,1mol自由气态离子由真空进入大量水中形成无限稀溶液时的热效应称为离子的水化热8水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
水化膜可分为原水化膜与二级水化膜。
9 水化数:水化膜中包含的水分子数。
主要指原水化膜(原水化数),但由于原水化膜与二级膜之间无严格界限,所以是近似值;是定性概念,不能计算与测量只有离子停留的时间大于水分子取向的时间才能形成原水化膜,离子电荷越多,半径越小,离子水化数越大。
物质粒子在溶液中的传质方式有三种:即电迁移,扩散和对流.10 离子在化学势梯度作用下的运动——扩散(稳态和非稳态)离子在电场作用下的运动——电迁移11离子间相互作用的离子氛理论离子氛的概念:由于中心离子的电场是球形的,故这一层电荷的分布也是球形对称的,我们将中心离子周围的这层电荷所构成的球体称为离子氛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电化学原理思念我的老教授毕业一年整2010-07-05 20:57:13| 分类:默认分类 | 标签:曾经整理的笔记|举报|字号订阅di 2 zhang1:相间电位,两相界面中的电位差:1)离子双电层2)吸附双电层3)偶极子层4)表面电位2:金属接触电位:金属相之间的电位差。
3:电极电位:金属/溶液之间的相电位。
4:绝对电位:电极电位内的电位差相对电位:将参比电极与被测电极组成一个原电池回路所测出的电池端电压叫做该被测电极的相对电位。
5:液体接界电位:相互接触的两个组成不同或浓度不同的电解质容液相之间的相间电位6:盐桥的作用:为了减少液界电位要求:高浓度正负离子的迁移速度应尽量接近(越接近液界电位越小)7: 电化学体系:1原电池,两个电极和外电路负载接通后能自发地将电流送到外电路中做功8: 电解池,与外电源组成回路,强迫电流在电化学体系中通过并使电化学反应发生9: 腐蚀电池,电化学反应能自发进行但不能对外做功,只能破坏金属的作用10: 丹尼尔电池25°,{-}Zn|ZnS04{aZn2+=1}||CuSO4(aCu2+=1)Cu{+}11:电池可逆:1物质变化可逆2能量转换可逆W=EQ,W=NFE12:电极可逆:在平衡条件下工作的电荷交换与物质交换都处于平横的电极。
可逆电极就是平衡电极。
13:可逆电极必须具备的条件1电极反应是可逆的2电极在平衡条件下工作14:可逆电极类型1第一类可逆{阳离子可逆电极},金属侵在含有该离子的可溶性盐溶液中所组成的电极(特征:进行电极反应时靠金属阳离子从极板上溶解到溶液中从溶液中沉积到极板上)2第二类可逆电极{阴离子电极}金属插进其难溶盐和与该盐具有相同阴离子的可溶性盐中所组成的电极(特征如果难溶盐是氯化物溶液中就应有可溶性氯化物。
)3第三类可逆电极{Pt或其他堕性金属插入同一元素的两种不同价态离子的溶液所组成的电极(可逆电极电位大小主要取决于两种价态离子活度之比)4,气体电极因为气体电极在常温常压下不导电故需借助其他惰性金属起导电作用使气体吸附在其表面上与溶液中相应的离子氧化还原反应并达到平衡状态15:电毛细现象:界面张力随电极电位变化的现象关系曲线最高点是零电荷电位16:理想极化电极:不发生任何电极反应的电极体系17:电极/溶液界面作用1)静电作用--紧密层两相间剩余电荷所引起的2)短程作用--电极和溶液中各种离子所形成18:电极反映和化学反应主要区别在于:除了物质变化外还有电荷转移所以在电极反应平衡的能量条件中还应考虑电能的变化电极反应平衡条件是反映物质电化学位的代数和为零19:平衡电位的数值反映了物质的氧化还原能力可以判断电化学反应进行的可能性20:影响电极电位的因数1)金属性质(有物理化学状态,种类,结构,表面状态,机械变形与内应力;金属表面成膜或吸附物的存在与否2)外围介质性质(离子性质和浓度溶剂的性质溶解在溶剂中的气体,分子和聚合物等性质与浓度;以及温度压力光照高能辐射等)di 3 zhang1: 界面电场是由电极/溶液相间存在的双电层引起的2: 理想极化电极:不发生任何电极反应的电极体系可等效为电容,研究电化学体系时可作为超电容使用。
理想不极化电极可以等效为电阻,可做参比电极。
3: 电极/溶液界面实际上是指两相之间的一个界面层,即任何一相机体性质不同的相间过度区域。
4: 通常情况下直流电通过一个电极时可能起到以下两种作用1)参与电极反应而被消耗掉2)参与改变双电层5: 绝对理想化电极是不存在的电极在+0.1v~ -1.6v电位范围内没有任何点击反应发生,可作为理想极化电极使用6:电毛细现象:界面张力随电极电位的变化的现象叫做电毛细现象7:带电界面张力比不带电的界面张力要小电极表面电荷密度打,界面张力就越小不论电极表面的存在剩余电荷还是负剩余电荷界面张力都将随剩余电荷的数量增加而增大8: 紧密层:静电作用是一种长程的相互作用它使符号相反的剩余电荷力图相互靠近趋向于紧贴着电极表面排列形成紧密的双电层结构9:外紧密层:由于大多数阳离子与电极表面只有静电作用而无特性吸附作用,而且阳离子的水化程度高,所以阳离子不容易突出水化膜而突入水偶极层。
这种情况下的紧密层将有水偶极层与水化阳离子层串联组成,成为外紧密层10:内紧密层:电极表面荷正电时,构成双电层溶液一侧剩余电荷的阴离子水化程度较低,又能进行特性吸附,因而阴离子的水化膜遭到破坏,即阴离子能够溢出水化膜,取代水偶极层中的水分子而直接吸附在电极表面11:紧密层比外紧密层小得多12:紧密层电容只取决于水偶极层的性质与阳离子种类无关因而接近于零13.大多数的阴离子是表面活性剂并具有典型的吸附规律,少数的阳离子有表面吸附能力。
阴离子的表面吸附能力与电极电位密切相关,吸附地主要发生在比零电荷点位更正的点位范围中,既发生在带异性电荷的点电极上。
带相同电荷的电极上,静电斥力大于吸附力,当电流密度稍大是就会脱落14.超载吸附当电极表面带有正剩余电荷时,由于阴离子的特性吸附是紧密层中负离子电荷超过了电极表面的正电荷。
由于负电荷过量紧密层将吸附溶液中的阳离子形成三电层结构。
15.零电荷点位电极表面剩余电荷为零是的电极电位。
用φ0表示。
影响因素不同材料的电极或同种材料不同晶面在同样的溶液中会有不同的零电荷点位值电极表面不同时测出不同的φ0值尔溶液的组成包括溶剂的性质溶液中表面活性物质的存在,酸碱度以及温度氢和氧的吸附也对其数值有影响。
16.比较用微分电容法和电毛细曲线法求解电极表面的剩余电荷密度的优缺点?微:优点:不受电极限制(比较准确和灵敏) 电毛细。
:只用液态电极。
(不够准确)17 特性吸附溶液中合离子因为非静电作用而发生吸附。
无机阴离子和有机分子,具有特性吸附能力。
18 无机阴离子特性吸附:使界面下降,微分电容升高,零电荷电位向负向移动阴离子特性吸附发生在比零电荷更正的电荷范围和零电荷电位附近,电极越正,阴离子吸附也越大,界面张力下降快,表面该种离子的表面活性越强。
19 为什么出行抛物线形状?界面存在双电层,即界面的一侧带有同种剩余电荷,无论电性如何,同种电荷之间都有排斥力,力图把界面扩大,于界面张力力图使界面张力减小相反,因此带电界面张力比不带电的界面张力要小电极表面电荷密度打,界面张力就越小di 4 zhang1.电极过程人们习惯把发生在电极/溶液界面上的电极反应,化学转化和和电极附近液层中的传质作用等一系列变化的综合统称为电极过程。
2.电极极化的原因电极反应速度跟不上电子运动速度而造成的电荷在界面的积累3. 极化曲线通过实验测定过电位或电极电位随电流密度变化的关系曲线,这种曲线就叫做激化曲线.4. 原电池V=E-(ηe+ηa)-IR 电解池V=E+(ηe+ηa)+IR5. 电极过程的基本历程(1) 反应粒子(离子分子等)向电极表面附近液层迁移称为液相传质步骤.(2) 反应粒子在电极表面或电极表面附近液层中进行电化学反应前的某中转化过程,或简称前置转化.特点没有电子参加反应反应速度与电极电位无关(3) 反应粒子在电极/溶液截面上得到或失去电子,生成还原反应或氧化反应的产物,这一过程称电子转移过程或电化学反应步骤.(4) 反应产物在电极表面或表面附近液层中进行电学反应后的转化过程.这一过程简称随后转化.(5) 反应产物生成新相称为反应后的液相传质步骤.整个步骤必有1.3.56. 电极过程的速度控制步骤实际反应速度取决于各单元步骤中进行得最慢的那个步骤,即各单元步骤的速度都等于最慢的步骤的速度. v正比于e的-G0/RT次方.7.电极的极化电极的电位随电流密度所发生的偏离平衡电位的变化8.电极电位偏离平衡电位向负转移称为阴极极化9.控制整个电极过程速度的单元步骤称之为电极过程的速度控制步骤10.根据电极过程的基本历程,常见的极化类型是浓差极化(液相传质部骤为控制步骤所引起的电极极化) 电化学极化(反应物质在点击表面点化学反应步骤最慢所引起的电极极化现象)为什么可以分为不同类型根据电极极化产生的内在原因可知整个电极反应速度与电子运动速度的矛盾实质上是取决于控制步骤速度与电子运动速度的矛盾电极极化的特征因而也取决于控制步骤的动力学特征11.因表面转化步骤成为控制步骤的电极极化12.准平衡态,我们把非控制步骤这种类似与于衡态称为准平衡态准平衡态下的过程可以用热力学方法无需用动力学方法是问题得到简化13.理想极化电极和理想不极化电极理想极化电极就是在一定条件下电极上不发生电极反应的电极。
在这种情况下,通电时不存在去极化作用流入电极的电荷全部在点击表面不断的积累之起到改变电极电位,改变双电层的作用。
所以可以根据需要通以不同的电流密度使电极极化到人们需要的电位滴汞电极电极反应速度很大以致于去极化不出现极化现象这类电极叫理想极化电极做参比电极14.比较电解池与原电池的极化图并解释两者不同的原因:原电池的极化图:电流密度越大极化越大对外提供电压越小电解池极化图:电解中端电压尽可能小电压越大功率越大消耗的能量越大两者不同的原因在于原电池中和电解池中所引起的两极之间电位差的变化不同原因在于原电池与电解池作为两类不同的电化学体系他们的阴阳极的极性恰恰相反15.控制步骤的意义控制步骤速度的变化规律是整个电极过程的速度变化规律因为电极过程的速度取决于最慢的步骤只有提高了控制步骤的速度才有可能提高整个电极过程的速度因此。
di 5 zhang0.对流扩散的动力学规律,A与理想稳态扩散相比,对流扩散电流J不是与扩散系数Di成正比而是与Di3分2成正比,这说明,由于扩散成中有一定强度的对流存在,所以使对流扩散电流J受扩散系数DI的影响相对减小了,而增加了受对流影响的因素,故可以说,对流扩散电流j是自由j 自由和j自由两部分组成的B对流扩散电流J受对流传质的影响,体现在J受与对流有关的各因素的影响上1,j和JD与U0,{2分之1}成正比,说明j和Jd的大小与搅拌强度有关2,J与V的负6分之1成正比,这说明对流扩散电流受到溶液粘度的影响3,J与Y的2分之1成正比,说明在电极表面不同位置上,由于受到对流作用的影响不同,因而扩散成厚度不均匀,扩散对流的电流也不均匀。
1.液相传质地三种方式:电迁移,对流(自然对流,强制对流),扩散(稳态和非稳态扩散).电迁移:电解质溶液中的带点粒子在电场作用下沿着一定方向移动,叫...{电迁移方向与扩散方向相同或相反}{双电成内分布的物质不变,不发生电迁移,对流}对流:一部分液体和另一部分液体的相对流动。
扩散:当溶液中存在某一组分的浓度差,即在不同区域内某组分的浓度不同时,改组分将自发的从浓度高的区域向浓度低的区域移动,这种液相传质叫...2.液相传质三种方式的相对比较1)动力不同:从传质的动力上看电迁移传质的动力是电场力;对流传质的动力自然对流:密度差和温度差实质溶液不同部分存在重力差。