电力系统潮流计算代码
电力系统潮流计算matlab程序

电力系统潮流计算matlab程序电力系统潮流计算是电力系统运行和规划中的重要环节,它用于计算电力系统中各节点的电压、功率和电流等参数。
随着电力系统规模的不断扩大和复杂性的增加,传统的手工计算方法已经无法满足需求,因此,利用计算机编程进行潮流计算成为了一种必要的选择。
Matlab是一种功能强大的科学计算软件,它提供了丰富的数学函数和工具箱,可以方便地进行电力系统潮流计算。
下面我将介绍一下如何使用Matlab编写电力系统潮流计算程序。
首先,我们需要建立电力系统的节点模型。
节点模型是电力系统中各节点的电压、功率和电流等参数的数学表示。
在Matlab中,我们可以使用矩阵来表示节点模型。
假设电力系统有n个节点,我们可以定义一个n×n的复数矩阵Y来表示节点之间的导纳关系,其中Y(i,j)表示节点i和节点j之间的导纳。
同时,我们还需要定义一个n×1的复数向量V来表示各节点的电压,其中V(i)表示节点i的电压。
接下来,我们需要编写潮流计算的主程序。
主程序的主要功能是根据节点模型和潮流计算算法,计算出各节点的电压、功率和电流等参数。
在Matlab中,我们可以使用循环语句和矩阵运算来实现潮流计算。
具体的计算过程可以参考电力系统潮流计算的算法。
在编写主程序之前,我们还需要定义一些输入参数,如电力系统的节点数、发电机节点和负荷节点等。
这些参数可以通过用户输入或者读取文件的方式获取。
同时,我们还需要定义一些输出参数,如各节点的电压、功率和电流等。
这些参数可以通过矩阵运算和循环语句计算得到,并输出到文件或者显示在屏幕上。
最后,我们需要进行程序的测试和调试。
可以通过输入一些测试数据,运行程序并检查输出结果是否正确。
如果发现程序有错误或者结果不准确,可以通过调试工具和打印调试信息的方式进行调试。
总之,利用Matlab编写电力系统潮流计算程序可以提高计算效率和准确性,为电力系统的运行和规划提供有力的支持。
当然,编写一个完整的潮流计算程序需要考虑很多细节和特殊情况,这需要有一定的电力系统和编程知识。
电力系统潮流计算C语言程序及说明

程序的稳定性分析
程序在不同计算机上的运行 结果是否一致。
程序运行过程中,输入数据 的变化对输出结果的影响程 度。
程序在长时间运行过程中, 输出结果是否保持稳定。
程序在处理异常情况时的表 现和稳定性。
程序的扩展性分析
代码可读性:C语言程序应具备良好的可读性,方便后续维护和修改 算法效率:C语言程序应采用高效的算法,提高计算速度 内存占用:C语言程序应合理利用内存,避免内存泄漏和不必要的内存占用 扩展性:C语言程序应具备良好的扩展性,方便添加新功能和优化性能
THANK YOU
汇报人:XX
程序的异常处理说明
异常类型:输入 错误、计算错误、 内存不足等
异常处理方式: 使用try-catch 语句进行异常捕 获和处理
异常处理流程: 当异常发生时, 程序会输出错误 信息并终止运行
异常处理结果: 确保程序在遇到 异常时能够正确 处理并给出相应 的提示信息
C语言程序应用示例
示例程序的输入数据格式
添加标题
添加标题
添加标题Βιβλιοθήκη 输入输出函数:用于数据的输入和 输出
函数:可重复使用的代码块,具有 特定的功能
C语言程序中电力系统模型的建立
定义节点和支路:根 据电力系统网络结构, 定义节点和支路,为 潮流计算做准备。
建立数学模型:根据 电力系统的物理特性 和元件参数,建立数 学模型,包括节点电 压、支路电流等。
实际运行时 间测试
程序的内存占用性能分析
内存占用情况:分 析程序运行过程中 内存的占用情况, 包括堆内存和栈内 存。
内存泄漏检测:检 查程序是否存在内 存泄漏,即程序运 行结束后未正确释 放的内存。
内存使用优化:根 据内存占用情况, 优化程序中的数据 结构或算法,降低 内存占用。
电力系统潮流计算完整c语言程序(含网损计算的最终版)

{
ia[i]=ia[i]+gY_G[n][j]*ge[j]-gY_B[n][j]*gf[j];
ib[i]=ib[i]+gY_G[n][j]*gf[j]+gY_B[n][j]*ge[j];
}
}
for(i=0,n=1;i<Bus_Num-1;i++,n++)
{
gDelta_PQ[2*i]=gDelta_P[i];
gDelta_PQ[2*i+1]=gDelta_Q[i];
}
if((fp=fopen("C:\\Documents and Settings\\Zorro\\桌面\\1\\data\\unbalance.txt","w"))==NULL)
if(gBus[n].Type==1)
gDelta_Q[i]=gDelta_Q[i]-gf[n]*(gY_G[n][j]*ge[j]-gY_B[n][j]*gf[j])+ge[n]*(gY_G[n][j]*gf[j]+gY_B[n][j]*ge[j]);
}
}
for(i=0;i<Bus_Num-1;i++)
{
gY_G[i][j]=0.0;
gY_B[i][j]=0.0;
}
for(l=0;l<Line_Num;l++)
{
i=gLine[l].No_I-1;
j=gLine[l].No_J-1;
r=gLine[l].R;
x=gLine[l].X;
电力系统潮流计算完整程序及详细理论说明

电力系统潮流计算完整程序及详细理论说明——秦羽风在我刚开始学习潮流程序时,总是找不到一个正确的程序开始模仿学习。
后来经过多方努力,终于自己写出了一个结构清晰、完整的潮流程序。
此程序是一个通用的程序,只需要修改输入数据的子函数(PowerFlowsData_K)里面的母线、支路、发电机、负荷,就能算任意一个网络结构的交流系统潮流。
很适合初学者学习.为了帮助电力系统的同学一起学习,我将我编写的潮流计算程序分享下来给大家;此程序是在基于牛顿拉夫逊算法的基础上,编写的快速解耦算法。
每一个子程序我都有备注说明。
如果有不对的地方,希望大家指正!下文中呈现的顺序为:网络结构、子程序、主程序、运算结果、程序设计理论说明。
一、网络结构:5节点网络如下图。
二、子程序(共有9个子程序)子程序1:(其他系统,只需要修改Bus、Branch、Generator、Load,这四个矩阵就行了)function [Bus,Branch,Generator,Load]=PowerFlowsData_K%%节点数据% 类型:1-平衡节点;2-发电机PV节点;3—负荷PQ节点;4-发电机PQ节点;Bus=[% 类型电压相角1 1。
06 0;2 1 0;3 1 0;3 1 0;3 1 0];%% 线路数据Branch=[% 发送接收电阻电感(电导电容)并联1 2 0.02 0.06 0 0.06;1 3 0。
08 0。
24 0 0。
05;2 3 0.06 0.18 0 0。
04;2 4 0。
06 0。
18 0 0.04;2 5 0.04 0.12 0 0。
03;3 4 0.01 0.03 0 0。
02;4 5 0.08 0.24 0 0.05];%% 发电机数据Generator=[%节点定有功定无功(上限下限)无功1 0 0 5 —5;2 0。
4 03 —3];%%负载数据Load=[% 节点定有功定无功2 0.2 0.1;3 0。
电力系统分析潮流计算代码

n0 (n) =-u (m)*u (n)*(G(m,n)*cos(delt (m)-delt (n))+B(m,n)*sin(delt (m)-delt (n)));
end
for m=1:N1
JJ (2*m-1,2*m-1) =H (m,m); JJ (2*m-1,2*m) = N (m,m);
JJ (2*m,2*m-1) =J (m,m); JJ (2*m,2*m) =L (m,m);
end
for m=1:N1
precision=max3;
end
end
end
k-1,delt',u'
%the following program is used to calculate the S5 and Smn
for n=1:N1+1
U (n) =u (n)* (cos (delt(n))+j*sin (delt (n)));
for n=1:N1+1
if m==n
H(m,m)=u(m)^2*B(m,m)+qt(m);
N(m,m)=-u(m)^2*G(m,m)-pt(m);
J(m,m)=u(m)^2*G(m,m)-pt(m);
L(m,m)=u(m)^2*B(m,m)-qt(m);
G(2,4)=0; B(2,4)=0;
G(2,5)=-1.250;B(2,5)=3.750;
G(3,1)=-1.667;B(3,1)=5.000;
电力系统分析潮流计算matlab

目录:一、软件需求说明书......................................................... .. (3)二、概要设计说明书......................................................... .. (4)1、编写潮流计算程序......................................................... . (4)2、数据的输入测试......................................................... .. (4)3、运行得出结果......................................................... (4)4、进行实验结果验证......................................................... . (4)三、详细设计说明书......................................................... .. (5)1、数据导入模块......................................................... (5)2、节点导纳矩阵模块......................................................... . (5)3、编号判断模块......................................................... (5)4、收敛条件判定模块......................................................... .. (5)5、雅可比矩阵模块......................................................... (5)6、迭代计算模块......................................................... . (5)7、计算输出参数模块......................................................... .. (5)四、程序代码......................................................... .. (6)五、最测试例......................................................... (15)1、输入结果......................................................... (15)2、输出结果......................................................... (15)3、结果验证......................................................... (15)一、软件需求说明书本次设计利用MATLAB/C++/C(使用MATLAB)编程工具编写潮流计算,实现对节点电压和功率分布的求取。
Matlab实现潮流计算程序

程序代码如下:111111.%读入数据clcclearfilename='123.txt';a=textread(filename)n=a(1,1);pinghengjd=a(1,2);phjddianya=a(1,3);jingdu=a(1,4);b=zeros(1,9);j1=0;[m1,n1]=size(a);for i1=1:m1if a(i1,1)==0j1=j1+1;b(j1)=i1;endendb;%矩阵分块a1=a(b(1)+1:b(2)-b(1)+1,1:n1);a2=a(b(2)+1:b(3)-1,1:n1);a3=a(b(3)+1:b(4)-1,1:n1);a4=a(b(4)+1:b(5)-1,1:n1);a5=a(b(5)+1:b(6)-1,1:n1);%设置初值vcz=1;dcz=0;kmax=20;k1=0;%求节点导纳矩阵a11=zeros(4,6);for i0=1:3for j0=1:6a11(i0,j0)=a1(i0,j0);a11(4,j0)=a2(1,j0);endenda11;linei=a11(1:4,2);linej=a11(1:4,3);liner=a11(1:4,4);linex=a11(1:4,5);lineb=a11(1:4,6);branchi=0;branchj=0;branchb=0;G=zeros(4,4);B=zeros(4,4);for k=1:4i2=linei(k,1);j2=linej(k,1);r=liner(k,1);x=linex(k,1);b=0;GIJ=r/(r*r+x*x);BIJ=-x/(r*r+x*x);if k>=4 & lineb(k)~=0k0=lineb(k);G(i2,j2)=-GIJ/k0;G(j2,i2)=G(i2,j2);B(i2,j2)=-BIJ/k0;B(j2,i2)=B(i2,j2);G(i2,i2)=G(i2,i2)+GIJ/k0/k0; B(i2,i2)=B(i2,i2)+BIJ/k0/k0;elseG(j2,i2)=-GIJ;G(i2,j2)=G(j2,i2);B(j2,i2)=-BIJ;B(i2,j2)=B(j2,i2);G(i2,i2)=G(i2,i2)+GIJ;b=lineb(k);B(i2,i2)=B(i2,i2)+BIJ+b;endG(j2,j2)=G(j2,j2)+GIJ;B(j2,j2)=B(j2,j2)+BIJ+b;endG;B;B=B.*i;Yf=G+BY=abs(Yf);alf=angle(Yf);%赋Jacobian矩阵参数P=zeros(n,1);Q=zeros(n,1);Pd=zeros(1,n);Qd=zeros(1,n);dP=zeros(1,n);dQ=zeros(1,n);PG=a4(:,3);PD=a4(:,5);QG=a4(:,4);QD=a4(:,6);i8=a4(:,2);for j8=1:length(i8)P(i8(j8))=PG(i8(j8))-PD(i8(j8));Q(i8(j8))=QG(i8(j8))-QD(i8(j8));enddelt=zeros(n,1);V=ones(n,1);V(3)=1.10;V(4)=1.05;ddelt=zeros(n,1);dV=zeros(n,1);A=zeros(2*n,2*n);B=zeros(2*n,1);Jacobian=Jaco(V,delt,n,Y,alf)%求取矩阵功率for j5=1:kmaxdisp(['第' int2str(j5) '次计算结果'])if k>=kmaxbreakendfor i10=1:4Pd(i10)=0;Qd(i10)=0;for j10=1:nPd(i10)=Pd(i10)+V(i10)*Y(i10,j10)*V(j10)*cos(d elt(i10)-delt(j10)-alf(i10,j10));Qd(i10)=Qd(i10)+V(i10)*Y(i10,j10)*V(j10)*sin(d elt(i10)-delt(j10)-alf(i10,j10));endendfor i4=1:3dP(i4)=P(i4)-Pd(i4);endfor j4=1:2dQ(j4)=Q(j4)-Qd(j4);endA=Jaco(V,delt,n,Y,alf)for i14=1:nB(i14*2-1)=-dP(i14);B(i14*2)=-dQ(i14);endif max(abs(B))>jingduX=A\B;for i16=1:nddelt(i16)=X(2*i16-1);dV(i16)=X(2*i16)*V(i16);endV=V+dVdelt=delt+ddeltelsebreakenddisp('----------------')end%流氓算法% for ii=1:2% V(ii)=V(ii)+dV(ii);% end% V222222.function A=Jaco(V,delt,n,Y,alf)%计算Jacobian矩阵for i7=1:nHd1(i7)=0;Jd1(i7)=0;for j7=1:nHd1(i7)=Hd1(i7)+V(i7)*Y(i7,j7)*V(j7)*sin(delt(i7)-delt(j7)-alf(i7,j7));Jd1(i7)=Jd1(i7)+V(i7)*Y(i7,j7)*V(j7)*cos(delt(i7)-delt(j7)-alf(i7,j7));endendfor i6=1:nfor j6=1:nif i6~=j6H(i6,j6)=-V(i6)*Y(i6,j6)*V(j6)*sin(delt(i6)-delt(j6)-alf(i6,j6));N(i6,j6)=-V(i6)*Y(i6,j6)*V(j6)*cos(delt(i6)-delt(j6)-alf(i6,j6));J(i6,j6)=-N(i6,j6);L(i6,j6)=H(i6,j6);elseH(i6,i6)=Hd1(i6)-V(i6)*Y(i6,i6)*V(i6)*sin(delt(i6)-delt(j6)-alf(i6,j6));J(i6,j6)=-Jd1(i6)+V(i6)*Y(i6,j6)*V(j6)*cos(delt(i6)-delt(j6)-alf(i6,j6));N(i6,j6)=-Jd1(i6)-V(i6)*Y(i6,i6)*V(i6)*cos(alf(i6,i6));L(i6,i6)=-Hd1(i6)+V(i6)*Y(i6,i6)*V(i6)*sin(alf(i6,i6));endendend%修正Jacobian矩阵for j9=3for i9=1:nN(i9,j9)=0;L(i9,j9)=0;J(j9,i9)=0;L(j9,i9)=0;endendL(j9,j9)=1;for j9=4for i9=1:nH(i9,j9)=0;N(i9,j9)=0;J(i9,j9)=0;L(i9,j9)=0;H(j9,i9)=0;N(j9,i9)=0;J(j9,i9)=0;L(j9,i9)=0;endendH(j9,j9)=1;L(j9,j9)=1;%Jaco=[H N;J L];%Jaco=zeros(2*n,2*n);for i11=1:nfor j11=1:nJaco(2*i11-1,2*j11-1)=H(i11,j11); Jaco(2*i11-1,2*j11)=N(i11,j11); Jaco(2*i11,2*j11-1)=J(i11,j11);Jaco(2*i11,2*j11)=L(i11,j11);endendA=Jaco;33333.数据:4 4 1.05 0.000011 12 0.1 0.40 0.015282 1 4 0.12 0.50 0.019203 24 0.08 0.40 0.014131 1 3 0 0.3 0.909090911 1 0 0 0.30 0.182 2 0 0 0.55 0.133 3 0.5 0 0 01 3 1.10 0 0。
电力系统分析潮流计算C语言编程-pq分解法2

void solve(float **B,float *X,int N);/*解方程组*/
void PrtNode();/*打印输出节点参数*/
void ErrorMsg(int Flag);/*错误信息*/
int Node;/*节点数*/
int num;/*原始节点序号*/
kp=0;
for(i=0;i<NP;i++)
{
dPi=dP+i;
Yi=*(Y+i)-i;
Dltai=*(Dlta+i);
*dPi=0;
for(j=0;j<Node;j++)
{
temp=Dltai-*(Dlta+j);
if(i>j)*dPi+=*(V+j)*(Pji);
tP=*(V+j)*(Pij);
tP=*(V+i)*Yij.G-tP;
tP*=*(V+i);
tQ=*(V+j)*(Qij);
tQ-=*(V+i)*(Yij.B-Yij.B0);
tQ*=*(V+i);
}
fprintf(out,"S[%d,%d]=(%10.6f,%10.6f)\n",k+1,m+1,-tP,-tQ)
*(num+i)=k;
fscanf(in,"%d",&k);
}
if(NQ+j!=Node)ErrorMsg(4);
fprintf(out,"【节点参数表】\n");
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录程序的主要代码:n=input('请输入节点数n=');na=input('请输入支路数na=');isb=input('请输入平衡节点母线号isb=');jd=input('请输入误差精度jd=');B1=input('请输入由支路参数形成的矩阵B1=');B2=input('请输入由节点参数形成的矩阵B2=');L=input('请输入由节点号及其对地阻抗形成的矩阵L='); nb=input('请输入P-Q节点数nb=');Y=zeros(n);Z=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n); O=zeros(1,n);for i=1:naif B1(i,6)==0a=B1(i,1);b=B1(i,2);else a=B1(i,2);b=B1(i,1);endY(a,b)=Y(a,b)-1./(B1(i,3)*B1(i,5));Z(a,b)=Z(a,b)-1./(B1(i,3));Y(b,a)=Y(a,b);Z(b,a)=Z(a,b);Y(b,b)=Y(b,b)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2;Z(b,b)=Z(b,b)+1./(B1(i,3));Y(a,a)=Y(a,a)+1./(B1(i,3))+B1(i,4)./2;Z(a,a)=Z(a,a)+1./(B1(i,3));endG=real(Y);B=imag(Z);CI=imag(Y);for i=1:nS(i)=B2(i,1)-B2(i,2);CI(i,i)=CI(i,i)+B2(i,5);endP=real(S);Q=imag(S);for i=1:ne(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4);endfor i=1:nif B2(i,6)==2V(i)=sqrt(e(i)^2+f(i)^2);O(i)=atan(f(i)./e(i));endfor i=2:nif i==nB(i,i)=1./B(i,i);elseIT1=i+1;for j1=IT1:nB(i,j1)=B(i,j1)./B(i,i);endB(i,i)=1./B(i,i);for k=i+1:nfor j1=i+1:nB(k,j1)=B(k,j1)-B(k,i)*B(i,j1);endendendenda=0;b=0;for i=1:nif B2(i,6)==2a=a+1;k=0;for j1=1:nif B2(j1,6)==2k=k+1;A(a,k)=CI(i,j1);endendendendfor i=1:nbif i==naA(i,i)=1./A(i,i);elsek=i+1;for j1=k:nbA(i,j1)=A(i,j1)./A(i,i);endA(i,i)=1./A(i,i);for k=i+1:nbfor j1=i+1:nbA(k,j1)=A(k,j1)-A(k,i)*A(i,j1);endendendNT2=1;NT1=0;kp=1;kq=1;K=1;NCT=0;NT3=1;while NT2~=0|NT3~=0NT2=0;NT3=0;for i=1:nif i~=isbC(i)=0;for k=1:nC(i)=C(i)+V(k)*(G(i,k)*cos(O(i)-O(k))+CI(i,k)*sin(O(i)-O(k)));endCP1(i)=P(i)-V(i)*C(i);CP(i)=CP1(i)./V(i);NCT=abs(CP1(i));if NCT>=jdNT2=NT2+1;endendendNp(k)=NT2;if NT2~=0for i=2:nCP(i)=B(i,i)*CP(i);if i~=nIT1=i+1;for k=IT1:nCP(k)=CP(k)-B(k,i)*CP(i);endelsefor LZ=3:iL=i+3-LZ;NC4=L-1;for MZ=2:NC4I=NC4+2-MZ;CP(I)=CP(I)-B(I,L)*CP(L);endendendendfor i=2:nO(i)=O(i)-CP(i);endkq=1;L=0;for i=1:nif B2(i,6)==2C(i)=0;L=L+1;for k=1:nC(i)=C(i)+V(k)*(G(i,k)*sin(O(i)-O(k))-CI(i,k)*cos(O(i)-O(k)));endDQ1(i)=Q(i)-V(i)*C(i);DQ(L)=DQ1(i)./V(i);NCT=abs(DQ1(i));if NCT>=jdNT3=NT3+1;endendendelsekp=0;if kq~=0;L=0;for i=1:nif B2(i,6)==2C(i)=0;L=L+1;for k=1:nC(i)=C(i)+V(k)*(G(i,k)*sin(O(i)-O(k))-CI(i,k)*cos(O(i)-O(k)));endDQ1(i)=Q(i)-V(i)*C(i);DQ(L)=DQ1(i)./V(i);NCT=abs(DQ1(i));endendendendNq(K)=NT3;if NT3~=0L=0;for i=1:nbDQ(i)=A(i,i)*DQ(i);if i==nbfor LZ=2:iL=i+2-LZ;NC4=L-1;for MZ=1:NC4I=NC4+1-MZ;DQ(I)=DQ(I)-A(I,L)*DQ(L);endendelseIT1=i+1;for k=IT1:nbDQ(k)=DQ(k)-A(k,i)*DQ(i);endendendL=0;for i=1:nif B2(i,6)==2L=L+1;V(i)=V(i)-DQ(L);endendkp=1;K=K+1;elsekq=0;if kp~=0K=K+1;endendfor i=1:nDp(K-1,i)=V(i);endenddisp('迭代次数');disp(K);disp('每次没有达到精度要求的有功功率个数为');disp(Np);disp('每次没有达到精度要求的无功功率个数为');disp(Nq);for k=1:nE(k)=V(k)*cos(O(k))+V(k)*sin(O(k))*j;O(k)=O(k)*180./pi;enddisp('各节点的实际电压标幺值E(节点号从小到大排列):'); disp(E);disp('各节点的电压大小V为(节点号从小到大排列):'); disp(V);disp('各节点的电压相角O为(节点号从小到大排列):'); disp(O);for a=1:nC(a)=0;for b=1:nC(a)=C(a)+conj(Y(a,b))*conj(E(b));endS(a)=E(a)*C(a);enddisp('各节点的功率S为(节点号从小到大排列):');disp(S);disp('各条支路的首端功率Si为(顺序同您输入B1时一样):');for i=1:naif B1(i,6)==0a=B1(i,1);b=B1(i,2);elsea=B1(i,2);b=B1(i,1);endSi(a,b)=E(a)*(conj(E(a))*conj(B1(i,4)./2)+(conj(E(a)*B1(i,5))-conj(E(b)))*conj(1./(B1(i,3)*B1(i,5))));disp(Si(a,b));enddisp('各条支路的末端功率Sj为(顺序同您输入B1时一样):');for i=1:naif B1(i,6)==0a=B1(i,1);b=B1(i,2);elsea=B1(i,2);b=B1(i,1);endSj(b,a)=E(b)*(conj(E(b))*conj(B1(i,4)./2)+(conj(E(b)./B1(i,5))-conj(E(a)))*conj(1./(B1(i,3)*B1(i,5))));disp(Sj(b,a));enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一样)::');for i=1:naif B1(i,6)==0a=B1(i,1);b=B1(i,2);elsea=B1(i,2);b=B1(i,1);endDS(i)=Si(a,b)+Sj(b,a);disp(DS(i));endfor i=1:KCs(i)=i;for j=1:nDp(K,j)=Dp(K-1,j);endenddisp('以下是每次迭代后各节点的电压值(如图所示)');plot(Cs,Dp),xlabel('迭代次数'),ylabel('电压'),title('电压迭代次数曲线');。