高考文科数学基本不等式

合集下载

(23)2022年高考真题——文科数学(全国乙卷) 答案(1)

(23)2022年高考真题——文科数学(全国乙卷) 答案(1)
当 时, , 单调递减;
所以 ;
【小问2详解】
,则 ,
当 时, ,所以当 时, , 单调递增;
当 时, , 单调递减;
所以 ,此时函数无零点,不合题意;
当 时, ,在 上, , 单调递增;
在 上, , 单调递减;
又 ,当x趋近正无穷大时, 趋近于正无穷大,
所以 仅在 有唯一零点,符合题意;
当 时, ,所以 单调递增,又 ,
【分析】根据古典概型计算即可
【详解】从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为 ,所以甲、乙都入选的概率
故答案为:
15.过四点 中的三点的一个圆的方程为____________.
【答案】 或 或 或 ;
【解析】
【分析】设圆的方程为 ,根据所选点的坐标,得到方程组,解得即可;
【详解】解:依题意设圆的方程为 ,
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为 .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数 .
【答案】(1) ;
(2)
在区间 上 ,即 单调递减,
又 , , ,
所以 在区间 上的最小值为 ,最大值为 .
故选:D
12.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()
A. B. C. D.
【答案】C
【解析】
【分析】先证明当四棱锥 顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为 ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.

文科数学学霸笔记26 基本不等式

文科数学学霸笔记26 基本不等式

3. 检 验 等 号 是 否 成 立 , 完 成 后 续 问 题 .
例 3 : 已 知 等 差 数 列 {an} 中 , a3 = 7 , a9 = 19 , Sn 为 数 列 {an}
考 点 26 基 本 不 等 式 一、基本不等式
1. 基 本 不 等 式 :
ab
a+b ≤
2
(1) 基 本 不 等 式 成 立 的 条 件 : a ≥ 0 , b ≥ 0. (2) 等 号 成 立 的 条 件 : 当 且 仅 当 a = b 时 取 等 号 .
a+b (3) 其 中
称为正数 a , b 的算术平均数,
ab
称为正数
2
a , b 的几何平均数 . 2. 两 个 重 要 的 不 等 式 (1)a2 + b2 ≥ 2ab(a , b ∈ R) , 当 且 仅 当 a = b 时 取 等 号 .
a+b 2
(2)ab ≤ 2
(a , b ∈ R) , 当 且 仅 当 a = b 时 取 等 号 .
3. 利 用 基 本 不 等 式 求 最 值 已知 x ≥ 0 , y ≥ 0 ,则 (1) 如 果 积 xy 是 定 值 p , 那 么 当 且 仅 当 x = y 时 , x + y 有 最 小 值 是 2 p ( 简 记 : 积 定 和 最 小 ). (2) 如 果 和 x + y 是 定 值 s , 那 么 当 且 仅 当 x = y 时 , xy 有
使积式中的各项之和为定值 . ( 3 )若一次应用基本不等式不能达到要求,需多次应用 基本不等式,但要注意等号成立的条件必须要一致 . 注: 若可用基本不等式,但等号不成立,则一般是利用函数单 调性求解 .
例 1 : 设 0<x< 3 , 则 函 数 y = 4x(3 - 2x) 的 最 大 值 为 ________. 2

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

《基本不等式》专题一、相关知识点1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R); (2)a +b ≥2ab (a >0,b >0).(3)b a +ab ≥2(a ,b 同号且不为零); (4)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(5)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R).2(a 2+b 2)≥(a +b )2(a ,b ∈R).(6)a 2+b 22≥(a +b )24≥ab (a ,b ∈R).(7)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)5.重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 题型一 基本不等式的判断1.若a ,b ∈R ,则下列恒成立的不等式是( )A.|a +b |2≥|ab | B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22 D .(a +b )⎝⎛⎭⎫1a +1b ≥4 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥23.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 34.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <Q题型二 利用基本不等式求最值类型一 直接法或配凑法利用基本不等式求最值1.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为3.已知0<x <1,则x (3-3x )取得最大值时x 的值为4.已知x <0,则函数y =4x +x 的最大值是5.函数f (x )=xx +1的最大值为6.若x >1,则x +4x -1的最小值为________.7.设0<x <2,则函数y =x (4-2x )的最大值为________.8.若x ,y 均为正数,则3x y +12yx +13的最小值是9.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.10.已知x <54,则f (x )=4x -2+14x -5的最大值为________.11.设x >0,则函数y =x +22x +1-32的最小值为12.已知x ,y 为正实数,则4x x +3y +3yx的最小值为13.函数y =x 2+2x -1(x >1)的最小值为________.14.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是15.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是16.已知a >b >0,则2a +4a +b +1a -b的最小值为17.已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.类型二 常数代换法利用基本不等式求最值1.已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.2.已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.3.已知正实数x ,y 满足2x +y =2,则2x +1y 的最小值为________.4.已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为5.已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是6.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.8.已知a >0,b >0,函数f (x )=a log 2x +b 的图像经过点⎝⎛⎭⎫4,12,则1a +2b 的最小值为________.9.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为10.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是11.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.12.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为13.若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是14.已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.15.设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.16.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.类型三 通过消元法利用基本(均值)不等式求最值1.若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________.2.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.3.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.4.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.类型四:利用基本不等式求参数值或取值范围1.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为2.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.3.若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.4.已知a >0,b >0,若不等式3a +1b ≥ma +3b恒成立,则m 的最大值为5.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.6.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为7.已知函数f (x )=3x 2+ax +26x +1,若存在x ∈N +使得f (x )≤2成立,则实数a 的取值范围为___题型三 基本不等式的综合问题类型一 基本不等式的实际应用问题1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2). (1)求S 关于x 的函数关系式;(2)求S 的最大值.类型二 基本不等式与函数的交汇问题1.已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)类型三 基本不等式与数列的交汇问题1.已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为2.已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为3.设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N +),若a 1=d =1,则S n +8a n 的最小值是______.类型四 基本不等式与解析几何的交汇问题1. 已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是2.当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为3.两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R ,n4m2+1n2的最小值为∈R,且mn≠0,则。

2016版《一点一练》高考数学(文科)专题演练:第六章 不等式(含两年高考一年模拟)

2016版《一点一练》高考数学(文科)专题演练:第六章   不等式(含两年高考一年模拟)
13.(2015·三明模拟)若x,y满足约束条件且z=kx+y取得最小值时的点有无数个,则k=________.
14.(2015·厦门市质检)点P(x,y)在直线y=kx+2上,记T=|x|+|y|,若使T取得最小值的点P有无数个,则实数k的取值是________.
15.(2015·赤峰市测试)已知O(x,y)为区域内的任意一点,当该区域面积为4时,z=2x-y的最大值为________.
16.(2015·吉林市高三摸底)已知正项等比数列{an}的公比q=2,若存在两项am,an,使得=4a1,则+的最小值为________.
考点20二元一次不等式(组)与简单的线性规划
两年高考真题演练
1.(2015·天津)设变量x,y满足约束条件则目标函数z=3x+y的最大值为()
A.7B.8C.9D.14
6.(2015·贵州七校一联)一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x,y)在这个平行四边形的内部或边上,则z=2x-5y的最大值是()
A.16B.18C.20D.36
7.(2015·云南师大附中适应性考试)设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为4,则a+b的值为()


原料限额
A(吨)
3
2
12
B(吨)
1
2
8
A.12万元B.16万元
C.17万元D.18万元
5.(2015·四川)设实数x,y满足则xy的最大值为()
A.B.C.12D.14
6.(2015·重庆)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()
A.-3B.1C.D.3
7.(2015·福建)变量x,y满足约束条件若z=2x-y的最大值为2,则实数m等于()

高考数学复习备战:最新真题解析—不等式选讲

高考数学复习备战:最新真题解析—不等式选讲
(2)基本不等式:如果a,b>0,那么 ,当且仅当a=b时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.
(3)算术平均—几何平均定理(基本不等式的推广):对于n个正数a1,a2,…,an,它们的算术平均数不小于它们的几何平均数,即 ,当且仅当a1=a2=…=an时,等号成立.
(2)法一:利用基本不等式得到 ,再利用不等式的基本性质证明;法二:利用Cauchy不等式证明.
(1)∵ , , 都为正整数,且 .
∴ ,
当且仅当 时“=”成立.
(2)法一:由题意得
①+②+③,得 ,
当且仅当 时“=”成立.
法二:由Cauchy不等式,得 .
令 ,
则 .
令 ,则 在 上单调递增.
∴ ,即 .
(1)当 时, 等价于 ,
该不等式恒成立,所以 ;
当 时, 等价于 ,
解得 ,此时不等式无解;
当 时, 等价于 ,解得 ,所以 .
综上所述,不等式的解为 .
(2)由 ,得 ,
当 时, 恒成立,所以 ;
当 时, 恒成立,
因为 ,
当且仅当 时取等号,所以 .综上所述, 的取值范围是 .
2.(2022·青海·模拟预测(理))已知函数 .
当 时, ,解得 ,
故不等式 的解集为 或 ;
(2)由(1)可知:
当 时, ,
当 时, ,
当 时, ,
故 的最小值为3,即 ,则 ,即
则 ,
当且仅当 时取等号,
故 的最小值为 .
3.(2022·河南·开封市东信学校模拟预测(理))已知函数 .
(1)求不等式 的解集;
(2)设 时, 的最小值为M.若正实数a,b,满足 ,求 的最小值.

2015届高考二轮数学文科金版学案专题复习课件4.2线性规划、基本不等式与不等式的证明

2015届高考二轮数学文科金版学案专题复习课件4.2线性规划、基本不等式与不等式的证明
4 3 4b 3a 所 以 a + b = (a + b) a+b = 7 + a + b ≥ 7 +
栏 目 链 接
2
4b 3a a · b =7+4 3,
4b 3a 当且仅当 a = b 时,等号成立.故选 D.
栏 目 链 接
高考 热点 突破
突破点1
不等式正、误的辨别与大小比较问题
栏 目 链 接
主干 考点 梳理
考点1
线性规划问题
1.设出变量 x,y,列出变量x , y函数值为0的直线l.
栏 目 链 接
3.利用直线l确定最优解对应的点,从而求
出最优解.
主干 考点 梳理
考点2
基本不等式的应用问题
ab.
a+b 1.基本不等式: ≥ 2
B )
栏 目 链 接
主干 考点 梳理
解析: 画出不等式表示的平面区域,如图, 由z=x+y,得y=-x+z,令z=0,画出y=
-x的图象,当它的平行线经过A(2,0)时,z 取得最小值,最小值为z=2,无最大值.故 选B.
栏 目 链 接
主干 考点 梳理
2 2 2 . 2.若 x>0,则 x+x的最小值为________
栏 目 链 接
主干 考点 梳理
x+2y≤8, 解析: 作出不等式组 0≤x≤4, 所表示的可行域 0≤y≤3, 如下图所示.
栏 目 链 接
主干 考点 梳理
直线x=4交直线x+2y=8于点A(4,2),作
直线l:z=2x+y,则z为直线l在y轴上的截 距,当直线经过可行域上的点A时,直线l 在y轴上的截距最大,此时z取最大值,即 zmax=2×4+2=10.故选C.
解析:
栏 目 链 接
2 2 ∵x>0⇒x+ ≥2 2,当且仅当 x= ⇒x= 2时取等号. x x

不等式性质与基本不等式(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

不等式性质与基本不等式(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

考向22 不等式性质与基本不等式1.(2022年甲卷理科第12题)12.已知3132a =,1cos 4b =,14sin 4c =,则 A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A【解析】构造函数21()1cos 2h x x x =--,0,2x π⎡⎤∈⎢⎥⎣⎦,则()()sin g x h x x x '==-+,()1cos 0g x x '=-+所以()(0)0g x g =,因此,()h x 在0,2π⎡⎤⎢⎥⎣⎦上递减,所以1()(0)04h a b h =-<=,即a b <. 另一方面,114sintan 4411cos 44c b ==,显然0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >, 所以114sintan 44111cos 44c b ==>,即b c <.因此c b a >>. 2.(2022年甲卷文科第12题)12.已知910m =,1011m a =-,89m b =-,则 ( )A .0a b >>B .0a b >>C .0b a >>D .0b a >> 【答案】A【解析】由910m =,可得9log 10(11.5)m =∈ ,.根据a ,b 的形式构造函数()1m f x x x =-- (1x >), 则1()1m f x mx -'=-,令()0f x '=,解得110mx m -=,由9log 10(11.5)m =∈ ,知0(0)x ∈ 1,. ()f x 在(1) +∞,上单调递增,所以(10)(8)f f >,即a b >,又因为9log 10(9)9100f =-=,所以0a b >>,答案选A .3.(2022年新高考1卷第7题)设0.10.1e =a ,19b =,ln0.9c =-,则A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C【解析】令e =x a x ,1xb x=-,ln(1)c x =--, ① ln ln ln [ln ln(1)]-=+---a b x x x x , ln(1),(0.0.1]y x x x =+-∈;1'1011x y x x-=-=<--, 所以0y ,所以ln ln 0-a b ,所以b a > ②e ln(1),(0,0.1]-=+-∈x a c x x x ,1(1)(1)e 1'e e 11+--=+-=--x xxx x y x x x, 令()(1)(1)1x k x x x e =+--,所以2'()(12)e 0=-->x k x x x , 所以()(0)0k x k >>,所以'0y >,所以0a c ->,所以a c >.4.(2022年新高考2卷第12题)对任意22,,1x y x y xy +-=,则A .1x y +≤B .2x y +≥-C .222x y +≤ D .221x y +≥【答案】BC【解析】由221x y xy +-=得2212y x y ⎫⎛⎫-+=⎪ ⎪⎪⎝⎭⎝⎭令cos sin cos 23sin ??23y x x y y θθθθθ⎧⎧-==+⎪⎪⎪⎪⇒⎨⎪==⎪⎪⎩⎩故[]cos 2sin 2,26x y πθθθ⎛⎫+=+=+∈- ⎪⎝⎭,故A 错,B 对;2222cos sin 33x y θθθ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()14242 2cos 2sin 2,2,333333θθθϕ⎡⎤=-+=-+∈⎢⎥⎣⎦(其中tan 3ϕ=), 故C 对,D 错.5. (2022年北京卷第11题)函数1()f x x =+_________.【答案】()(],00,1-∞⋃ 【解析】因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃6.(2022年乙卷理科第14题)已知1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,若21x x <,则a 的取值范围是___________ 【答案】⎪⎭⎫ ⎝⎛e 1,0【解析】()()ex a a x f x-=ln 2'至少要有两个零点1x x =和2x x =,我们对其求导,()()e a a x f x 2ln 22''-=,(1)若1>a ,则()x f''在R 上单调递增,此时若()00''=x f ,则()x f '在()0,x ∞-上单调递减,在()+∞,0x 上单调递增,此时若有1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,则21x x >,不符合题意。

高考数学最新真题专题解析—等式与不等式

高考数学最新真题专题解析—等式与不等式

高考数学最新真题专题解析—等式与不等式考向一 基本不等式的应用【母题来源】2022年新高考全国II 卷【母题题文】若x ,y 满足221+-=x y xy ,则( )A. 1x y +≤B. 2x y +≥-C. 222x y +≤D. 221x y +≥ 【答案】BC【试题解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b R ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x y θθ-==,所以cos ,33x y θθθ=+=,因此2222511cos sin cos 12cos 233333x y θθθθ=θ-θ+=+++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当3333x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .【命题意图】本题考查基本不等式及其应用,属于中高档题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度有易有难,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)利用不等式比较大小;(2)利用不等式求最值;(3)基本不等式成立的条件 【得分要点】(1)对原不等式进行化简、变形;(2)符合基本不等式的条件“一正、二定、三相等”,用基本不等式求解; (3)判断等号成立的条件; (4)利用“1”的合理变换是解题.考向二 线性规划【母题来源】2022年高考全国乙卷(文科)【母题题文】若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是( )A. 2-B. 4C. 8D. 12【答案】C【试题解析】由题意作出可行域,如图阴影部分所示, 转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.【命题意图】本题考查线性规划及其应用,属于比较容易题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度较小,是历年高考的热点,考查学生的基本作图能力和运算能力. 常见的命题角度有:(1)线性规划求最值;(2)利用线性规划求参数的值;【得分要点】1.正确画出可行域;2.确定目标函数平移的方向决定取得最大值或最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

且仅当m=2+1 2,n= 21+1时等号成立,所以m1 +n1 的最小
值为3+2 2,故选C.
答案:C
返回
2. [考法二·考向二] 已知a>0,b>0,a,b的等比中项是1,且m
=b+1a,n=a+1b,则m+n的最小值是
()
A.3
B.4
C.5
D.6
解析:由题意知ab=1,∴m=b+1a=2b,n=a+1b=2a,
1 4
,解得x1+x2<-2(因为x1≠x2,等号取不
到),故选B.
[答案] B
返回
考向二 基本不等式与数列的交汇问题
[例3]
(2019·济宁期末)已知a>0,b>0,并且
1 a

1 2

1 b

等差数列,则a+9b的最小值为
()
A.16
B.9
C.5
D.4
[解析] ∵1a,12,1b成等差数列,∴1a+1b=1,∴a+9b=
返回
() () () ()
返回
二、填空题
1.当x>0时,函数f(x)=x22+x 1的最大值为________. 答案:1
2.已知a,b∈(0,+∞),若ab=1,则a+b的最小值为 ________;若a+b=1,则ab的最大值为________.
解析:由基本不等式得a+b≥2 ab =2,当且仅当a=b=
(2)∵x>2,m>0,∴y=x-2+
m x-2
+2≥2
x-2·x-m 2
+2=2 m +2,当且仅当x=2+ m 时取等号,又函数y=x+
x-m 2(x>2)的最小值为6,∴2 m+2=6,解得m=4.
[答案] (1)B (2)4
返回
[方法技巧]
通过拼凑法利用基本不等式求最值的策略 拼凑法的实质在于代数式的灵活变形,拼系数、凑常数 是关键,利用拼凑法求解最值应注意以下几个方面的问题: (1)拼凑的技巧,以整式为基础,注意利用系数的变化以 及等式中常数的调整,做到等价变形; (2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提.
解析:因为a>0,b>0,
1 a

9 b
=1.所以a+b=(a+b)·1a+9b

10+
b a

9a b
≥10+2
9 =16.由题意.得16≥-x2+4x+18-
m,即x2-4x-2≥-m对任意实数x恒成立,又x2-4x-2=
(x-2)2-6的最小值为-6,所以-6≥-m,即m≥6.
答案:[6,+∞)
∴2x+1y的最小值为8,又2x+1y≥m恒成立,∴m≤8,即m的最
大值为8.
[答案] (1)C (2)8
返回
[方法技巧]
通过常数代换法利用基本不等式求最值的步骤 常数代换法适用于求解条件最值问题.通过此种方法利 用基本不等式求最值的基本步骤为: (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进 而构造和或积的形式; (4)利用基本不等式求解最值.
∴m+n=2(a+b)≥4 ab=4,当且仅当a=b=1时取等号.
答案:B
返回
3. [考法二·考向三] 两圆x2+y2-2my+m2-1=0和x2+y2-
4nx+4n2-9=0恰有一条公切线,若m∈R,n∈R,且
mn≠0,则m42+n12的最小值为
()
A.1
B.2
C.3
D.4
解析:由题意可知两圆内切,x2+y2-2my+m2-1=0化为
(a+9b)1a+1b=10+ab+9ab≥10+2 ab·9ab=16,当且仅当ab=
9ab且1a+1b=1,即a=4,b=43时等号成立,故选A. [答案] A
返回
考向三 基本不等式与解析几何的交汇问题
[例4]
(2019·邢台月考)当双曲线M:
x2 m

y2 m2+4
=1的离
心率最小时,M的渐近线方程为
返回
突破点二 基本不等式的综合问题
返回
关于基本不等式的考题,涉及的知识点较多,常融合于 函数、数列、立体几何、解析几何及实际问题中,此类问题 一般难度较大,需要较强的分析问题、解决问题的能力.
返回
[全析考法]
考法一 基本不等式的实际应用问题 [例1] 如图,一个铝合金窗分为上、
下两栏,四周框架和中间隔挡的材料为铝 合金,宽均为6 cm,上栏与下栏的框内高 度(不含铝合金部分)的比为1∶2,此铝合 金窗占用的墙面面积为28 800 cm2,设该 铝合金窗的宽和高分别为a cm,b cm,铝合金窗的透光部分 的面积为S cm2.
返回
2.几个重要的不等式
1a2+b2≥_2_a_b__,a,b∈R;
2ba+ab≥2,ab>0; 3ab≤a+2 b2,a,b∈R; 4a2+2 b2≥a+2 b2,a,b∈R
当且仅当a=b时 等号成立.
返回
3.算术平均数与几何平均数
a+b
设a>0,b>0,则a,b的算术平均数为___2___,几何平均
返回
[集训冲关]
1.[考法一]已知x<0,则函数y=4x+x的最大值是
()
A.-18
B.18
C.16
D.-4
解析:∵x<0,∴y=- -4x+-x ≤-4,当且仅当x=
-2时取等号.
答案:D
返回
2.
[考法二]
正数a,b满足
1 a

9 b
=1,若不等式a+b≥-x2+4x+
18-m对任意实数x恒成立,则实数m的取值范围是_______.
返回
[解析] 设A(x1,y1),B(x2,y2),不妨设x1<x2.函数y= 2x为单调增函数,若点A,B到直线y=12的距离相等,则
1 2
-y1=y2-
1 2
,即y1+y2=1,即2x1+2x2=1.由基本不等式
得1=2x1+2x2≥2 2x1·2x2 ,当且仅当x1=x2=-1时取等
号,则2x1+x2≤
基本不等式
[考纲要求] 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题.
Contents
1
突破点一 利用基本不等式求最值
2 突破点二 基本不等式的综合问题
3
课时跟踪检测
返回
突破点一 利用基本不等式求最值
返回
抓牢双基·自学回扣
[基本知识]
1.基本不等式: ab≤a+2 b (1)基本不等式成立的条件: a>0,b>0 . (2)等号成立的条件:当且仅当 a=b 时取等号.
x2+(y-m)2=1,x2+y2-4nx+4n2-9=0化为(x-2n)2+y2
=9,故 4n2+m2=3-1=2,即4n2+m2=4,m42+n12=
()
A.y=±2x
B.y=±2 2x
C.y=± 2x
D.y=±12x
返回
[解析] 由题意得m>0,e= 1+m2m+4 = 1+m+m4

1+2
4 m·m

5
,当且仅当m=
4 m
,即m=2时等号
成立,所以双曲线的方程为
x2 2

y2 8
=1,所以渐近线方程为y
=±2x,故选A.
[答案] A
返回
[方法技巧]
b-18 3
=(a-16)(b-18)=ab-2(9a+8b)+288=28
800-
2(9a+8b)+288=29 088-2(9a+8b).
返回
(2)∵9a+8b≥2 9a·8b=2 9×8×28 800=2 880,当且 仅当9a=8b时等号成立,此时b=98a,代入①式得a=160,从 而b=180,即当a=160,b=180时,S取得最大值.
数为__a_b_,基本不等式可叙述为:两个正数的算术平均数不
小于它们的几何平均数.
4.利用基本不等式求最值问题
已知x>0,y>0,则: (1)如果积xy是定值p,那么当且仅当 x=y 时,x+y有最
小值是_2__p_.(简记:积定和最小) (2)如果和x+y是定值p,那么当且仅当 x=y 时,xy有最 p2
返回
考法二 通过常数代换法利用基本不等式求最值
[例2] (1)(2019·青岛模拟)已知x>0,y>0,lg 2x+lg 8y=
lg 2,则1x+31y的最小值是
()
A.2
B.2 2
C.4
D.2 3
(2)(2019·齐齐哈尔八校联考)若对x>0,y>0,x+2y=1,
有2x+1y≥m恒成立,则m的最大值是________.
∴铝合金窗的宽为160 cm,高为180 cm时,可使透光部 分的面积最大.
返回
[方法技巧]
利用基本不等式求解实际应用题的方法 (1)此类型的题目往往较长,解题时需认真阅读,从中提 炼出有用信息,建立数学模型,转化为数学问题求解. (2)当运用基本不等式求最值时,若等号成立的自变量不 在定义域内时,就不能使用基本不等式求解,此时可根据变 量的范围用对应函数的单调性求解.
大值是__4__.(简记:和定积最大)
[基本能力]
一、判断题(对的打“√”,错的打“×”) (1)函数y=x+1x的最小值是2. (2)函数f(x)=cos x+co4s x,x∈0,π2的最小值为4. (3)x>0,y>0是xy+xy≥2的充要条件. (4)若a>0,则a3+a12的最小值为2 a. 答案:(1)× (2)× (3)× (4)×
相关文档
最新文档