非线性有限元及弹塑性力学讲解
弹塑性本构关系简介

松比)。
塑性材料受外部作用的反应和变形的历史有关(可称为历 史相关性或路径相关性),本构关系应写成增量关系。
应力空间表述的弹塑性本构关系
韧性(塑性)金属材料单向拉伸试验曲线如下 图示意
强度极限
b
屈服上限
L y
U y
e
屈服下限
弹性极限
强化段
软化段 卸载
残余变形
弹性变形
y
y
卸载、反向加载 包辛格效应
屈服面随内变量改变的规律称强化规律。由 材料试验的资料可建立各种强化模型,目前广 泛采用的有:等向强化;随动强化两种模型。
等 向 强
初始屈服面
2
B
f 0(ij ) 0 B
2
C A o1
化
o A 1
o
1
C
D
随
弹性
动
f 0 (ij ) 0
强 化
后继屈服面
f
( ij
,
p ij
,
k)
0
等向强化认为屈服面形状不变,只是作均匀
称后继屈服面,f
(
ij
,
p ij
,
k
)
0
。
如果一点应力的 f (ij ,ipj,,则k)此 点0 处于弹性状态,如
果
f (,ij则,处ipj ,于k)塑 0性状态。
式变张中形量的为i量j间应。存ip力j在张如和ip量j 下k,关统系称为ipj为塑内性变应量ip力j 。张其D量i中j,klkkp与l为塑标ipj 性志应永变久
d ij
Dt ijkl
d
kl
式中 Ditjk为l 切线弹性张量,形式上仍可表为
Dt ijkl
弹塑性力学的非线性有限元

P u
改进的Newton-Raphson法
使用第n个(n<m+1)加载步时计算所得的切向刚度矩阵n[K]替代切向刚度 矩阵m+1[K](i-1)。
准Newton法
(1)是N-R法和改进的N-R法之间的一个折衷方法。 (2)使用低秩矩阵去更新刚度矩阵m+1[K](i-1)的逆矩阵。Broyden–Fletcher-
Goldfarb-Shanno(BFGS)方法就是其中的一种。 (3)准Newton法的收敛速率介于线性收敛和二次收敛之间。 (4)可适用于应变强化、应变软化或理想塑性等分析。可以考虑卸载。
p u
改进N-R法的特点 (1)比 N-R法减少了刚度矩阵的计算和分解。 (2)是线性收敛,通常比N-R法收敛得慢,如在分析应变软化材料时, 收敛将会特别地慢。 (3)刚度矩阵可能变成奇异矩阵或病态矩阵的问题仍然存在。 (4)如果出现卸载,应力状态从塑性状态卸载到弹性状态,这个算法 可能得不到一个收敛结果,除非一旦卸载出现,刚度矩阵重新计算。
本构方程
(1)增量本构关系,是无穷小应力增量与应变增量的关系。
(2)加载步中的荷载增量是有限值,应力和应变增量也为有限值。
(3)必须对增量本构关系在加载步内积分,确定有限应变增量ij 与有限应力增量ij的关系
m1
m1
ij
dij
C ep ijkl
d
kl
m
m
其中
C ep ijkl
切线模量为
C ep ijkl
力边界S上的面力是 m1 X i mX i X i
弹塑性力学土木工程应用有限元ABAQUS分析课件

A
A0
l0 l
l 0 未变形的长度 A 0 未变形的平面面积
FF l
A A0 l0
nom(ll0)
nominal
n o m 名义应力
真实应力
弹塑性力学土木工程应用 有限元ABAQUS分析
名义、真实应力(变) 名义应变,每单位未变形长度的伸长。
noml0l
ll0 l0
l l0
1
l l0
1 nom
塑性性能的材料实验数据,提供的应变包括塑性应变和弹性应 变,是材料的总体应变。所以总体应变分解为弹性和塑性应变两 项。
弹性应变等于真实应力与弹性模量的比值。
t pl el
el / E
p lte lt/E
p l 真实塑性应变
t 总体真实应变
弹塑性力学土木工程应用 有限元ABAQUS分析
l0d lllnll0
lnl lnl0l
l0
l0
nom
l l0
lnl0 l0lln1nom
弹塑性力学土木工程应用 有限元ABAQUS分析
名义、真实应力(变) 真实应力与名义应力的关系
nom(1nom)
真实应变与名义应变的关系
ln1nom
弹塑性力学土木工程应用 有限元ABAQUS分析
名义、真实应力(变)
弹塑性力学的发展
早期 精确算法 线性问题
如今 数字分析法 非线性问题
实际的需要,软件应用计算 ANSYS、ABAQUS
弹塑性力学土木工程应用 有限元ABAQUS分析
PART.02
名义应力(变)与真实应力(变)
弹塑性力学土木工程应用 有限元ABAQUS分析
名义、真实应力(变)
在ABAQUS中必须 用真实应力和真实应 变定义塑性。
弹塑性问题的有限单元法

1
(3-9) Q
r
线
1 2 3 3
式中 ρ
σ
—偏平面与原点的距离
而π 平面的方程为
偏平面( )
1 2 3 0
为了确定偏剪应力的方向 引入罗德角θ σ 的概念。
Q’
O
2
平面
M
' 2
3
1'
3'
偏剪应力与O′M线的夹角就定 义为罗德角,规定顺时针(-), 逆时针(+)。这样θ σ 就代表 偏剪应力在偏平面上的作用方 向。
或写成:
xx yx zx
xy yy zy
xz yz zz
资源与地球科学学院
x xy xz yx y yz ij zx zy z
(3-1)
O’
资源与地球科学学院
与等压线相正交的平面称为偏平面,通过坐标原点与等压
线相正交的平面称为π平面。可见π平面是一个特殊的偏平面。
由偏平面的定义可知,在一个偏平面内平均应力为常量,故偏 平面的方程为:
1 2 3 3
式中
(3-9)
偏平面与原点的距离
资源与地球科ห้องสมุดไป่ตู้学院
1
Q
r
线
原点O与Q的连线OQ称为 该点的应力矢量,它代 表着岩土体中相应点的 应力大小与方向。
Q’
偏平面( )
O
3
2
平面
•在主应力空间中,与三个坐标轴成相等倾角的线称为λ 线(等 压线)。λ 线的方程可以表示为 • σ 1=σ 2=σ 3 (3-8)
材料非线性有限元2

1. 增量切线刚度法 将荷载分成若干增量段
dσ DT dε
材料非线性有限元解法ቤተ መጻሕፍቲ ባይዱ
由于材料和结构的弹塑性行为与应力、 应变的历史有关,因此弹塑性问题的本构方程必 须用增量形式表示。同时这类问题与非线性弹性 问题数值求解的差别还在于塑性问题应力-应变 关系不再具有单调连续的显式。尽管在任意应变 下,应力都必须在当时的屈服面上或屈服面内, 但要具体地确定每一个应力分量的精确值是不可 能的,需用以下两点来确定: 1. 对于规定的应力值及加载方向,弹塑性切 线矩阵 DT Dep 已知; 2. 应力通过 dσ DT dε 积分求得。至于每一增量步的计算, 可以采用N-R法或初应力法等。
非线性有限元——lesson6 2018-10-24

《弹塑性力学与有限元》
屈服总则和弹塑性应力-应变关系
q 屈服总则定义
物体内某一点开始产生塑性应变时,应力或应变所必需满足的条件, 叫做屈服条件。屈服条件是判断材料处于弹性还是塑性的准则。
Ø
单向拉压应力状态的屈服条件 s :屈服应力
s
Ø
f () - s 0
(6.1)
复杂应力状态的屈服函数
a E b
n
其中,a,b,n为材料常数,有三个参数,能较好地代表真实材料, 数学表达式简单。
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
q 单轴状态下的全量和增量应力-应变模型 n Ø Ramberg-Osgood模型 (三参数模型) a
q 单轴应力-应变
(MPa)
C(s上) (e) B 200 D(s下) A(p) E=tg O Ey= tg O1 O2 0.1
低碳钢压缩 应力应变曲线
特性
Ø 单调加载
400
E ( b ) f1(f)
低碳钢拉伸 应力应变曲线
g
0.2
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
q 单轴状态下的增量应力-应变模型
3)物理条件 Ø 对于Ramberg-Osgood模型 ,荷载位移关系为: 物理条件为:
n a E b
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
q
作业:
1)请完成教材第163页的习题:4.2;4.3. 2)对自己可能的研究方向中存在哪些弹塑性力学的问题和应用进 行调研,并对该问题和应用从问题的提出、解决问题的理论、求 解方法和结果进行简要论述,写成Word文件提交(4周内完成)。 3)仔细复算第177-179页的算例.
清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学第七章塑性力学的基本方程与解法一、非弹性本构关系的实验基础拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。
图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。
C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。
由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。
由D到H是一接近水平的线段,称为塑性流动段。
对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。
如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。
即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。
在图中b点之后,试件产生颈缩现象,最后试件被拉断。
如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。
图7.1 低碳钢单向拉伸应力应变曲线有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。
这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。
记为0.2图7.2 高强度合金钢单向拉伸应力应变曲线第七章 塑性力学的基本方程与解法如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。
在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。
这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。
图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。
弧长法——弹塑性力学及有限元

Pm1
m 1
c ( )[( ) 2um ]
2 T 2 1
tg 1(K1 ) Tm
m
1 a um m
1
2 1
2 2
1 (K1 ) R Tm
1 1 (K1 ) Pm Tm
m m a m
am
a
5 增量弧长法
4)由 R 和 Pm 求
i 2 m
i 1
i m
i i m m
5 增量弧长法
1 1 ( ) 21
i i i 2 m i i i 21i u m m 2
i i i 2 m
i
2
i m
i
2
i
2
i
2
i i i i 2 u m 2m m (m ) 0
i i
2
(1 1 1 )( ) 2 (1
非线性代数方程组的数值解法
5 增量弧长法
用迭代法或增量法进行极限分析时,在极值点附近往往可能 不收敛。这时可用增量弧长法来解决。
5 增量弧长法
• 弧长法是一种用于得到不稳定(KT 0)或负刚度矩阵 (KT < 0)问题的数值稳定解的方法。
ri 弧长半径
F
ri
收敛子步
ri ri
ri 平衡路径 u
5 增量弧长法
i 2 i a(m ) 2b m c 0
式中系数为
T a 1 (1i )( 1i )
i T i i b m (1i )[( 2 ) um ]
c (2 )[(2 ) 2u ]
i T i i m
上述式子是从简单情况推出的,如果除 外 均理解为矩阵,即为一般情况的弧长法方程。