2020河北中考数学考前精准提分小卷练辑:河北小卷12套河北小卷04

合集下载

2020年河北省中考数学试卷(含部分答案)

2020年河北省中考数学试卷(含部分答案)

2020年河北省中考数学试卷一、选择题(共16小题).1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.66.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长7.若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR9.若=8×10×12,则k=()A.12B.10C.8D.610.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC11.若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k12.如图,从笔直的公路l旁一点P出发,向西走6km到达1;从P出发向北走6km也到达1.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路1的走向是南偏西45°C.公路1的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达113.已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P 的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:﹣=a﹣=b,则ab=.18.正六边形的一个内角是正n边形一个外角的4倍,则n=.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点T m,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.21.有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S(答案保留π).扇形EOD23.用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.如图1和图2,在△ABC中,AB=AC,BC=8,tan C=.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.参考答案一、选择题1.A;2.D;3.C;4.D;5.B;6.B;7.D;8.A;9.B;10.A;11.A;12.A;13.C;14.A;15.C;16.C;二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.6;18.12;19.;;;三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.;21.;22.;23.;24.;25.;26.;。

2020年河北省中考数学模拟试题及参考答案(word版)

2020年河北省中考数学模拟试题及参考答案(word版)

2020年河北省中考数学模拟试题及参考答案(满分120分,考试时间120分钟)卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在数轴上,若点B 表示一个负数,则原点可以是( )A .点EB .点DC .点CD .点A2.要将等式112x -=进行一次变形,得到x=-2,下列做法正确的是( ) A .等式两边同时加32x B .等式两边同时乘以2C .等式两边同时除以-2D .等式两边同时乘以-23.如图,在△ABC 中,∠ACB=90°,D 是AB 的中点,则下列结论不一定正确的是( )A .CD=BDB .∠A=∠DCAC .BD=ACD .∠B+∠ACD=90° 4.下列计算,正确的是( ) A .()32628aa -= B .7a -4a=3 C .633x x x ÷= D .211224-⨯=5.下列由一个正方形和两个相同的等腰直角三角形组成的图形中,为中心对称图形的是( )A .B .C .D .6.世界上最薄的纳米材料其理论厚度是{0.00...034a m 个,该数据用科学记数法表示为63.1410m -⨯,则a 的值为( )A .4B .5C .6D .77.对于n (n >3)个数据,平均数为50,则去掉最小数据10和最大数据90后得到一组新数据的平均数( )A .大于50B .小于50C .等于50D .无法确定 8.已知实数m ,n 互为倒数,且|m|=1,则m 2-2mn+n 2的值为( ) A .1 B .2 C .0 D .-29.如图是某河坝横断面示意图,AC为迎水坡,AB为背水坡,过点A作水平面的垂线AD,BD=2CD,设斜坡AX的坡度为i AC,坡角为∠ACD,斜坡AB的坡度为i AB,坡角为∠ABD,则下列结论正确的是()A.i AC=2i AB B.∠ACD=2∠ABD C.2i AC=i AB D.2∠ACD=∠ABD10.如图,已知点D、E分别在∠CAB的边AB、AC上,若PD=6,由作图痕迹可得,PE的最小值是()A.2 B.3 C.6 D.1211.已知b=a+c(a,b,c均为常数,且c≠0),则一元二次方程cx2-bx+a=0根的情况是()A.有两个不相等的实数根B.有两个实数根C.有两个相等的实数根D.无实数根12.若2111xx x+--的值小于-6,则x的取值范围为()A.x>-7 B.x<-7 C.x>5 D.x>-513.如图,在2×2的正方形网格中,每个小正方形的边长均为1,四边形ABCD的周长记为c,若a-1<c<a(a为正整数),则a的值为()A.4 B.5 C.6 D.714.如图为由若干个大小相同的正方体组成的几何体的左视图和俯视图,则它的主视图不可能是()15.如图,已知点O是△ABC的外心,连接AO并延长交BC于点D,若∠B=40°,∠C=68°,则∠ADC的度数为()A .52°B .58°C .60°D .62°16.对于题目:在平面直角坐标系中,直线445y x =-+分别与x 轴、y 轴交于A 、B 两点,过点A 且平行y 轴的直线与过点B 且平行x 轴的直线相交于点C ,若抛物线y=ax 2-2ax -3a (a ≠0)与线段BC 有唯一公共点,求a 的取值范围.甲的计算结果是13a ≥;乙的计算结果是43a -<,则( ) A .甲的结果正确 B .乙的结果正确C .甲与乙的结果合在一起正确D .甲与乙的结果合在一起也不正确卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分)17= .18.观察下列一组数据,其中绝对值依次增大2,且每两个正数之间有两个负数:1,-3,-5,7,-9,-11,13,-15,…;则第10个数是 ;第3n 个数是 (n 为正整数). 19.如图,过正六边形ABCDEF 的顶点D 作一条直线l ⊥AD 于点D ,分别延长AB 、AF 交直线l 于点M 、N ,则∠AMN= ;若正六边形ABCDEF 的面积为6,则△AMN 的面积为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)在实数范围内,对于任意实数m 、n (m ≠0)规定一种新运算:3n m n m mn ⊗=+-,例如:232332312⊗=+⨯-=.(1)计算:()()21-⊗-; (2)若127x ⊗=-,求x 的值;(3)若()2y -⊗的最小值为a ,求a 的值. 21.(本小题满分9分)在证明定理“三角形的中位线平行于第三边,且等于第三边的一半”时,小明给出如下部分证明过程.已知:在△ABC中,D、E分别是边AB、AC的中点.求证:.证明:如图,延长DE到点F,使EF=DE,连接CF,……(1)补全求证;(2)请根据添加的辅助线,写出完整的证明过程;(3)若CE=3,DF=8,求边AB的取值范围.22.(本小题满分9分)在抗击新型冠状病毒肺炎战役中,某市党员积极响应国家号召参加志愿者活动,为人民服务,现随机抽查部分党员一个月来参加志愿者活动的次数,并绘制成如下尚不完整的条形统计图(图1)和扇形统计图(图2).(1)“4次”所在扇形的圆心角度数是,请补全条形统计图;(2)若从抽查的党员中随机选择一位接受媒体的采访,求该党员一个月来参加志愿者活动次数不少于3次的概率;(3)设随机抽查的党员一个月来参加志愿者活动次数的中位数为a,若去掉一部分党员参加志愿者活动的次数后,得到一组新数据的众数为b,当b>a时,求最少去掉了几名党员参加志愿者活动的次数.23.(本小题满分9分)如图,在矩形ABCD中,点E是边BC上一点(不与点B、C重合),点F是BC延长线上一点,且CF=BE,连接AE、DF.(1)求证:△ABE≌△DCF;(2)连接AC,其中AC=43,BC=6.①当四边形AEFD是菱形时,求线段AE与线段DF之间的距离;②若点I是△DCF的内心,连接CI、FI,直接写出∠CIF的取值范围.24.(本小题满分10分)在平面直角坐标系中,我们定义:横坐标与纵坐标均为整数的点为整点.如图,已知双曲线k yx =(x>0)经过点A(2,2),记双曲线与两坐标轴之间的部分为G(不含双曲线与坐标轴).(1)求k的值;(2)求G内整点的个数;(3)设点B(m,n)(m>3)在直线y=2x-4上,过点B分别作平行于x轴、y轴的直线,交双曲线kyx=(x>0)于点C、D,记线段BC、BD、双曲线所围成的区域为W,若W内部(不包括边界)不超过8个整点,求m的取值范围.25.(本小题满分10分)如图1,在正方形ABCD中,AB=10,点O、E在边CD上,且CE=2,DO=3,以点O为圆心,OE为半径在其左侧作半圆O,分别交AD于点G,交CD的延长线于点F.(1)AG=;(2)如图2,将半圆O绕点E逆时针旋转α(0°<α<180°),点O的对应点为O′,点F的对应点为F′;设M为半圆O′上一点.①当点F′落在AD边上时,求点M与线段BC之间的最短距离;②当半圆O′,交BC于P、R两点时,若»PR的长为53π,求此时半圆O′与正方形ABCD重叠部分的面积;③当半圆O′与正方形ABCD的边相切时,设切点为N,直接写出tan∠END的值.26.(本小题满分12分)某公司为了宣传一种新产品,在某地先后举行40场产品促销会,已知该产品每台成本为10万元,设第x场产品的销售量为y(台),在销售过程中获得以下信息:信息1:已知第一场销售产品49台,然后每增加一场,产品就少卖出1台;信息2:产品的每场销售单价p(万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场——第20场浮动价与销售场次x成正比,第21场——第41场浮动价与销售场次x成反比,经过统计,得到如下数据:(1)求y与x之间满足的函数关系式;(2)当产品销售单价为13万元时,求销售场次是第几场?(3)在这40场产品促销会中,哪一场获得的利润最大,最大利润是多少?参考答案与解析卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. D 【分析与解答】在数轴上,正数在原点的右侧,负数在原点的左侧,点B 表示一个负数,∴原点在点B 的右侧,只有点A 符合.2. D 【分析与解答】将等式-12x =1两边同除以系数-12,即同乘以系数的倒数-2,可得到x =-2.3. C 【分析与解答】∵△ABC 是直角三角形,D 是AB 的中点,∴AD =CD =BD ,A 选项正确;∵AD =CD ,∴∠A =∠DCA ,B 选项正确;∵∠ACB =90°,∴∠A +∠B =90°.又∵∠A =∠ACD ,∴∠ACD +∠B =90°,D 选项正确;BD 与AC 的关系无法确定,C 选项错误.4. C 【分析与解答】逐项分析如下:5. C 【分析与解答】把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,只有C 选项符合.A 、D 为轴对称图形,B 既不是轴对称图形,也不是中心对称图形.6. B 【分析与解答】科学记数法表示为a ×10n ,其中1≤|a |<10,n 为整数,对于绝对值大于0且小于1的数,n 是负整数,n 的绝对值等于原数左起第一个非零数前所有零的个数(包含小数点前的零),∴|-6|=a +1,∴a =5.7. C 【分析与解答】由题意得,n 个数据的总和为50n ,去掉最小数据10和最大数据90后的新数据总和为50n -100,且这组新数据的个数为n -2,则新数据的平均数为50n -100n -2=50.8. C 【分析与解答】∵|m |=1,且m ,n 互为倒数,∴m -n =0,∴m 2-2mn +n 2=(m -n )2=0.【一题多解】∵m 、n 互为倒数,且|m |=1,∴m 2=n 2=1,mn =1.∴m 2-2mn +n 2=1-2+1=0.9. A 【分析与解答】∵AD ⊥BC ,∴i AC =AD CD ,i AB =AD BD ,∵BD =2CD ,∴i AB =AD 2CD =12·ADCD=12i AC,∴i AC =2i AB . 10. C 【分析与解答】当PE 与AC 垂直时,PE 有最小值,由作图痕迹可知P A 平分∠CAB ,PD ⊥AB 于点D ,由角平分线的性质定理可得PE 的最小值等于PD ,∵PD =6,∴PE 的最小值为6.11. B 【分析与解答】∵Δ=b 2-4ac =(a +c )2-4ac =(a -c )2≥0,∴方程有两个实数根. 12. C 【分析与解答】原式=x 21-x -11-x =x 2-11-x =(x +1)(x -1)1-x =-x -1,由题意得,-x -1<-6,解得x >5.13. C 【分析与解答】由勾股定理得,AB =BC =CD =DA =2,∴c =42=32,∵25<32<36,∴5<c <6,∵a -1<c <a ,∴a =6.14. B 【分析与解答】由左视图和俯视图可得几何体如解图所示,对应的主视图可以是A 、C 、D ,∴主视图不可能是选项B .第14题解图15. D 【分析与解答】如解图①,连接OB 、OC ,∵点O 是△ABC 的外心,∴OA =OB =OC ,∴∠OAB =∠OBA ,∠OBC =∠OCB ,∠OAC =∠OCA ,∵∠BAC +∠ABC +∠ACB =180°,∴∠OAB +∠OCA +∠OCB =90°,∵∠ACB =68°, ∴∠OAB =22°.∵∠ABC =40°, ∴∠ADC =∠ABC +∠OAB =62°.【一题多解】如解图②,作△ABC 的外接圆⊙O ,延长AD 交⊙O 于点E ,连接BE ,∵AE 为⊙O 的直径,∴∠ABE =90°,∵∠ABC =40°,∴∠CBE =50°,∵∠BCA =68°,∴∠BEA =∠BCA =68°,∴∠ADC =∠BDE =180°-∠CBE -∠BEA =180°-50°-68°=62°.第15题解图① 第15题解图②16. D 【分析与解答】∵抛物线y =ax 2-2ax -3a =a (x 2-2x -3)=a (x -3)(x +1),∴抛物线与x 轴恒交于(-1,0),(3,0)两点,对称轴恒为直线x =1,∵直线y =-45x +4与x 轴、y 轴交于点A 、B .∴点A (5,0),点B (0,4).点C (5,4),①a >0时,如解图①,当抛物线经过点C 时,将x =5代入抛物线得y =12a ,∴12a ≥4,∴a ≥13;②a <0时,分两种情况.情况一:如解图②,当抛物线经过点B 时,将x =0代入抛物线得y =-3a ,∵抛物线与线段BC 有唯一公共点,∴-3a >4,∴a <-43;情况二:当抛物线的顶点在线段BC 上时,则顶点为(1,4),如解图③,将点(1,4)代入抛物线得4=a -2a -3a ,解得a =-1.综上可得,a 的取值范围为a <-43或a =-1或a ≥13.图① 图② 图③第16题解图卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分)17. 6 【分析与解答】原式=23×3=6.18. 19,-6n +1 【分析与解答】观察数据1,-3,-5,7,-9,-11,13,-15,…;发现第n (n 为正整数)个数的绝对值是2n -1,若n 被3除余1则为正号,否则为负号,∵10÷3=3……1,2×10-1=19,∴第10个数为19,∵3n ÷3=n ,2×3n -1=6n -1,∴第3n 个数为-6n +1.19. 30°;16 【分析与解答】∵正六边形的每一个内角为120°,∴∠BAD =∠F AD =60°,∵l ⊥AD ,∴∠AMN =30°.如解图,取正六边形的中心为O ,连接CO ,易得△COD 是等边三角形,S 正六边形ABCDEF =6S △COD =6×34CD 2=332CD 2=6,∴CD 2=433,∵AD =2CD ,∴MN =2DM =2tan 60°×AD =43CD ,∴S △AMN =12AD ×MN =12×2CD ×43CD =43CD 2=16.第19题解图三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20. 解:(1)(-2)⊗(-1)=(-2)-1+(-2)×(-1)-3(1分) =-32;(3分)(2) 由题意得,x ⊗1=x +x -3=-27,(4分) 解得x =-12;(6分)(3)(-y )⊗2=y 2-2y -3=(y -1)2-4.∵(y -1)2-4的最小值为-4,(7分) ∴a 的值为-4.(8分)21. 解:(1)DE ∥BC ,且DE =12BC ;(2分)(2)∵点E 是AC 的中点,∴AE =CE ,又∵EF =ED ,∠AED =∠CEF ,∴△ADE ≌△CFE .(3分)∴AD =CF ,∠A =∠ECF ,∴AD ∥CF ,∴AB ∥CF ,∵点D 是AB 的中点,∴AD =BD ,∴BD =CF ,∴四边形BDFC 是平行四边形,∴DE ∥BC ,DF =BC .(5分) ∵DE =FE ,∴DE =12BC .(6分)(3)∵DF =8,∴BC =8,∵CE =3,∴AC =6.(7分) ∴BC -AC <AB <BC +AC ,即2<AB <14.(9分) 22. 解:(1)72°,(1分)补全条形统计图如解图所示;(2分)第22题解图【解法提示】由题意可得,“4次”所在扇形的圆心角度数为360°×20%=72°,此次随机抽查党员的人数为10÷20%=50(人),∴“3次”的人数为50-4-14-10-8=14(人).(2)∵随机抽查的党员人数为10÷20%=50(人),其中参加志愿者活动次数不少于3次的有14+10+8=32(人),(4分)∴P (该党员一个月来参加志愿者活动次数不少于3次)=3250=1625;(5分)(3)将参加次数按由小到大进行排列,可得中位数为第25、26个数的平均数,由题意得a =3+32=3,(6分)∵去掉一部分党员参加志愿者活动的次数后,得到一组新数据的众数为b ,且b >a , ∴b =4或5.当b =4时,最少需去掉10名党员参加志愿者活动的次数,即去掉5个参加志愿者活动次数为2次的和5个参加志愿者活动次数为3次的;当b =5时,最少需去掉17名党员参加志愿者活动的次数,即去掉7个参加活动为2次的,7个参加活动为3次的,3个参加活动为4次的,∵10<17,∴b =4.(7分)这时最少去掉了10名党员这一个月来参加志愿者活动的次数,即去掉5个参加志愿者活动次数为2次的和5个参加志愿者活动次数为3次的.(9分)23. (1)证明:∵四边形ABCD 是矩形, ∴AB =DC ,∠B =∠BCD =90°, ∴∠B =∠DCF =90°,(2分)∵BE =CF ,∴△ABE ≌△DCF ;(3分)(2)解:①∵四边形AEFD 是菱形, ∴AE =EF =DF =AD ,设平行线AE 与DF 之间的距离为x ,有AE ·x =EF ·CD , ∴x =CD .(4分) ∵AC =43,BC =6,∴AB =AC 2-BC 2=23,(5分) ∴x =CD =AB =23.∴线段AE 与线段DF 之间的距离为23;(6分) ②90°<∠CIF <120°.(9分) 【解法提示】∵tan ∠BAC =BC AB =623=3,∴∠BAC =60°. ∵点E 是边BC 上一点(不与点B 、C 重合),∴0°<∠BAE <60°. ∵点I 是△CDF 的内心,第23题解图∴∠ICF =12∠DCF ,∠IFC =12∠DFC ,∴∠CIF =180°-∠ICF -∠IFC =180°-12∠DCF -12∠DFC=180°-12(180°-∠CDF )=90°+12∠CDF .∵△ABE ≌△DCF ,∴∠CDF =∠BAE , ∴∠CIF =90°+12∠BAE ,∴90°<∠CIF <120°.24. 解:(1)∵y =k x 经过点A (2,2),∴2=k2,∴k =4;(2分)(2)对于双曲线y =4x ,当x =1时,y =4,∴在直线x =1上,当0<y <4时,有整点(1,1),(1,2),(1,3),(3分) 当x =2时,y =2,∴在直线x =2上,当0<y <2时,有整点(2,1);(4分) 当x =3时,y =43,∴在直线x =3上,当0<y <43时,有整点(3,1);(5分)当x =4时,y =1,∴在直线x =4上,当0<y <1时,没有整点.∴G 内整点的个数为5个;(6分)(3)如解图,当m =4时,点B (4,4),点C (1,4),此时在区域W 内(不包含边界)有(2,3)、(3,2)、(3,3)共3个整点.线段BD 上有4个整点,线段BC 上有4个整点.∵点(4,4)重合,点(4,1)、(1,4)在边界上,∴当m >4时,区域W 内至少有3+4+4-3=8个整点.当m =4.5时,B ′(4.5,5),C ′(45,5),线段B ′C ′上有4个整点,此时区域W 内整点个数为8个.当m >4.5时,区域W 内部整点个数增加.∴若W 内部(不包括边界)不超过8个整点,3<m ≤4.5.(10分)第24题解图25. 解:(1)6;(2分)【解法提示】如解图①,连接GO ,由题意可得,DC =AD =AB =10,∵CE =2,OD =3,∴OE =OG =5,∴GD =OG 2-DO 2=4,∴AG =AD -GD =6.第25题解图①(2)①如解图②,过点O ′作O ′H ⊥BC 于点H ,交半圆O ′于点M ,反向延长HO ′交AD 于点Q ,则∠QHC =90°,根据三点共线及垂线段最短可得此时点M 到BC 的距离最短,(3分) ∵∠C =∠D =∠QHC =90°, ∴四边形QHCD 是矩形, ∴HQ =CD =10,HQ ∥CD .∵点O ′是EF ′的中点,∴点Q 是DF ′的中点, ∵DE =8,∴O ′Q =12DE =4,∴O ′H =6,∵CE =2,DO =3,∴OE =10-2-3=5,即半圆O 的半径为5,∴MH =1,即点M 到BC 的最短距离为1;(5分)第25题解图②由①可知半圆O 的半径为5,如解图③,设∠PO ′R 的度数为β,由题意得,PR ︵的长为=β180π×5=53π,(6分) ∴∠PO ′R =60°,∴∠F ′O ′P +∠EO ′R =120°, ∴S 扇形F ′O ′P +S 扇形EO ′R =120360π×52=253π.(7分) ∵O ′R = PO ′,∴△O ′RP 是等边三角形,∴S △O ′RP =2534, ∴此时半圆O ′与正方形ABCD 重叠部分的面积为2534+253π;(8分)【一题多解】如解图③,设∠PO ′R 的度数为β,由题意得,PR ︵的长为β180π×5=53π,(6分)∴∠PO ′R =60°,∴S 扇形PO ′R =60360π×52=256π.(7分) ∵O ′R = PO ′,∴△O ′RP 是等边三角形,∴S △O ′RP =2534, ∵半圆O ′的面积为180360π×52=252π,∴此时半圆O ′与正方形ABCD 重叠部分的面积为S 半圆O ′-S 扇形PO ′R +S △O ′RP =252π-256π+2534=2534+253π;(8分) ③89或45.(10分) 【解法提示】①如解图④,当半圆O ′与BC 相切于点N 时,连接O ′N ,过点E 作ET ⊥O ′N 于点T ,连接EN ,则TN =EC =2,∵O ′N =O ′E =5,∴O ′T =3,∴ET =4,∴CN =4,∴EN =25,DN =229, 过点E 作EK ⊥DN 于点K , ∵EK ·DN =CN ·DE ,∴EK =162929. ∵tan ∠NDC =CN DC =25=EK DK ,∴DK =402929,∴NK =182929,∴tan ∠END =EK NK =89;图④ 图⑤第25题解图②如解图⑤,(ⅰ)若半圆O ′与AB 相切于点N , ∵EN ⊥AB ,∴四边形ANED 是矩形, 连接DN ,tan ∠END =45;(ⅱ)若半圆O ′与CD 相切于点N ,此时点N 与点E 重合.∠END 不存在. 综上所述,tan ∠END 的值为89或45.26. 解:(1)y 与x 的函数关系式为y =50-x ;(2分)(2)设基本价为b ,第1场—第20场,设p 与x 的函数关系式为p =ax +b ;依题意得⎩⎪⎨⎪⎧10.6=3a +b ,12=10a +b ,解得⎩⎪⎨⎪⎧a =15,b =10,∴p =15x +10(1≤x ≤20).(3分)第21场—第40场,设p 与x 的函数关系式为p =mx+b ,当x =25时,有14.2=m 25+10,解得m =105,∴p =105x +10(21≤x ≤40).(4分)当1≤x ≤20时,令p =15x +10=13,解得x =15.(5分)当21≤x ≤40时,p =105x+10=13,解得x =35.(6分)∴当产品销售单价为13万元时,销售场次是第15场和第35场;(7分) (3)设每场获得的利润为w (万元),当1≤x ≤20时,w =(50-x )(15x +10-10)=-15x 2+10x =-15(x -25)2+125;∵w 随x 的增大而增大,∴当x =20时,w 最大,最大利润为120万元;(10分) 当21≤x ≤40时,w =(50-x )(105x +10-10)=5250x -105,∵w 随x 的增大而减小,∴当x =21时,w 最大,最大利润为145万元,(11分) ∵120<145,∴在这40场产品促销会中,第21场获得的利润最大,最大利润为145万元.(12分)。

2020年河北省中考数学模拟试卷四解析版

2020年河北省中考数学模拟试卷四解析版

2020年河北省中考数学模拟试卷四一、选择题(本大题共16小题,共42分)1.﹣2的绝对值是()A.2 B.﹣2 C.D.2.4的平方根是()A.2 B.﹣2 C.±2 D.163.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a24.下列图形中,能确定∠1>∠2的是()A.B.C.D.5.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.计算(﹣1000)×(5﹣10)之值为何?()A.1000 B.1001 C.4999 D.50018.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A.3 B.4 C.5 D.79.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠310.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A.l1B.l2C.l3D.l411.学校为了丰富学生课余活动开展了一次“校园歌手大奖赛”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.6012.如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:甲:(1)取AB中点D(2)过D作直线AC的平行线,交于P,则P即为所求乙:(1)取AC中点E(2)过E作直线AB的平行线,交于P,则P即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误C D.甲错误,乙正确13.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A.10 B.11 C.12 D.1314.小明原有300元,如图记录了他今天所有支出,其中饼干支出的金额被涂黑.若每包饼干的售价为13元,则小明可能剩下多少元?()A.4 B.14 C.24 D.3415.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+216.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为何?()A. B.C.5 D.6二、填空题(本大题共3小题,共10分)17.计算:( +1)(3﹣)= .18.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为m.19.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,①AE和BF的位置关系为;②线段MN的最小值为.三、解答题(本大题共7小题,共68分)20.(1)计算:(π﹣)0++(﹣1)2013﹣tan60°;(2)先化简,再求值:(a+3)2+a(4﹣a),其中a为(1)中计算的结果.21.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.22.某校举办一项小制作评比,作品上交时限为5月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请你回答:(1)本次活动共有件作品参赛;(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是度.(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,用列表法或树状图求抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?23.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.24.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD 交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.25.如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC 沿直线AB折叠得到△ABD.(1)填空:A点坐标为(,),D点坐标为(,);(2)若抛物线y=x2+bx+c经过C,D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x 轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)26.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.参考答案与试题解析一、选择题(本大题共16小题,共42分)1.﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.4的平方根是()A.2 B.﹣2 C.±2 D.16【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.3.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a2【考点】47:幂的乘方与积的乘方;35:合并同类项;49:单项式乘单项式;4F:平方差公式.【分析】A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.【解答】解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.4.下列图形中,能确定∠1>∠2的是()A.B.C.D.【考点】K8:三角形的外角性质;J2:对顶角、邻补角;JA:平行线的性质;M5:圆周角定理.【分析】根据对顶角相等对选项A进行判断;根据三角形外角性质对选项B进行判断;根据平行线的性质和对顶角相等对选项C进行判断;根据圆周角定理对选项D进行判断.【解答】解:A、∠1=∠2,故本选项错误;B、∠1>∠2,故本选项正确;C、∠1=∠2,故本选项错误;D、∠1=∠2,故本选项错误.故选B.5.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,2,1个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,2,1个正方形.故选:A.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.7.计算(﹣1000)×(5﹣10)之值为何?()A.1000 B.1001 C.4999 D.5001【考点】1C:有理数的乘法.【分析】将﹣1000化为﹣,然后计算出5﹣10,再根据分配律进行计算.【解答】解:原式=﹣×(﹣5)=×5=1000×5+×5=5000+1=5001.故选D.8.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A.3 B.4 C.5 D.7【考点】MP:圆锥的计算.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故选B.9.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【考点】B2:分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C10.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A.l1B.l2C.l3D.l4【考点】MB:直线与圆的位置关系.【分析】根据直线和圆的位置关系与数量之间的联系:当d=r,则直线和圆相切;当d<r,则直线和圆相交;当d>r,则直线和圆相离,进行分析判断.【解答】解:因为所求直线到圆心O点的距离为14公分<半径20公分,所以此直线为圆O的割线,即为直线l2.故选B.11.学校为了丰富学生课余活动开展了一次“校园歌手大奖赛”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的概念求解.【解答】解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:(9.60+9.60)=9.60,众数为:9.60.故选:B.12.如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:甲:(1)取AB中点D(2)过D作直线AC的平行线,交于P,则P即为所求乙:(1)取AC中点E(2)过E作直线AB的平行线,交于P,则P即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误C D.甲错误,乙正确【考点】M2:垂径定理;KX:三角形中位线定理;M5:圆周角定理.【分析】(1)由甲的作法可知,DP是△ABC的中位线,由于DP不垂直于BC,故≠;(2)由乙的作法,连BE,可知△BEC为等腰三角形,由等腰三角形的性质可知∠1=∠2,根据圆周角定理即可得出结论.【解答】解:(1)由甲的作法可知,DP是△ABC的中位线,∵DP不垂直于BC,∴≠;(2)由乙的作法,连BE,可知△BEC为等腰三角形∵直线PE⊥BC,∴∠1=∠2故=;∴甲错误,乙正确.故选D.13.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A.10 B.11 C.12 D.13【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.【解答】解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.14.小明原有300元,如图记录了他今天所有支出,其中饼干支出的金额被涂黑.若每包饼干的售价为13元,则小明可能剩下多少元?()A.4 B.14 C.24 D.34【考点】C9:一元一次不等式的应用.【分析】根据设小明买了x包饼干,则剩下的钱为300﹣(50+90+120+13x)元,再分别分析得出可能剩下的钱数.【解答】解:设小明买了x包饼干,则剩下的钱为300﹣(50+90+120+13x)元,整理后为(40﹣13x)元,当x=1,40﹣13x=27,当x=2,40﹣13x=14,当x=3,40﹣13x=1;故选;B.15.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2【考点】H8:待定系数法求二次函数解析式;G6:反比例函数图象上点的坐标特征.【分析】将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.【解答】解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选:A.16.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为何?()A. B.C.5 D.6【考点】S9:相似三角形的判定与性质;KQ:勾股定理;LE:正方形的性质.【分析】先根据相似三角形的判定定理得出△BEF∽△CFD,再根据勾股定理求出DF的长,再由相似三角形的对应边成比例即可得出结论.【解答】解:在△BEF与△CFD中∵∠1+∠2=∠2+∠3=90°,∴∠1=∠3∵∠B=∠C=90°,∴△BEF∽△CFD,∵BF=3,BC=12,∴CF=BC﹣BF=12﹣3=9,又∵DF===15,∴=,即=,∴EF=故选B.二、填空题(本大题共3小题,共10分)17.计算:( +1)(3﹣)= 2.【考点】79:二次根式的混合运算.【分析】先把后面括号内提,然后利用平方差公式计算.【解答】解:原式=(+1)(﹣1)=×(3﹣1)=2.故答案为2.18.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为(50﹣)m.【考点】T8:解直角三角形的应用.【分析】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.【解答】解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故答案是:(50﹣).19.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,①AE和BF的位置关系为AE⊥BF.;②线段MN的最小值为.【考点】LE:正方形的性质.【分析】①由△ABE≌△BCF(SAS),推出∠BAE=∠CBF,AE=BF,由∠BAE+∠BEA=90°,推出∠CBF+∠BEA=90°,推出∠APB=90°;②由点P在运动中保持∠APB=90°,推出点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小;【解答】解:①如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,AE=BF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∴AE⊥BF,②∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故答案为AE⊥BF,.三、解答题(本大题共7小题,共68分)20.(1)计算:(π﹣)0++(﹣1)2013﹣tan60°;(2)先化简,再求值:(a+3)2+a(4﹣a),其中a为(1)中计算的结果.【考点】4J:整式的混合运算—化简求值;2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用零指数幂法则,立方根定义,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=1+2﹣1﹣3=﹣1;(2)原式=a2+6a+9+4a﹣a2=10a+9,当a=﹣1时,原式=﹣10+9=﹣1.21.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.22.某校举办一项小制作评比,作品上交时限为5月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请你回答:(1)本次活动共有60 件作品参赛;(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是108 度.(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,用列表法或树状图求抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据第三组的频数除以频率得出总件数即可;(2)求出第四组的百分比,乘以360即可得到结果;(3)列表得出所有等可能的情况数,找出随机抽出两张卡片,抽到的作品恰好一个是一等奖,一个是二等奖的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:12÷=60(件);(2)根据题意得:×360°=108°;(3)将一等奖用A,B表示,二等奖用a,b,c表示,两次抽取卡片的可能结果如下表:总共有20种可能结果,其中有12种是一个一等奖和一个二等奖的可能情况,∴随机抽出两张卡片,抽到的作品恰好一个是一等奖,一个是二等奖的概率P=60%.故答案为:(1)60;(2)108.23.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为270 吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.【考点】FH:一次函数的应用.【分析】(1)由函数图象可以看出乙队调离时,甲、乙两队已完成的清雪总量为 270吨;(2)先求出甲队每小时的清雪量,再求出m.(3)设乙队调离后y与x之间的函数关系式为:y=kx+b,把A,B两点代入求出函数关系式.【解答】解:(1)由函数图象可以看出乙队调离时,甲、乙两队已完成的清雪总量为270吨;故答案为:270.(2)乙队调离前,甲、乙两队每小时的清雪总量为=90吨;∵乙队每小时清雪50吨,∴甲队每小时的清雪量为:90﹣50=40吨,∴m=270+40×3=390吨,∴此次任务的清雪总量为390吨.(3)由(2)可知点B的坐标为(6,390),设乙队调离后y与x之间的函数关系式为:y=kx+b (k≠0),∵图象经过点A(3,270),B(6,390),∴解得∴乙队调离后y与x之间的函数关系式:y=40x+150.24.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD 交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【考点】MC:切线的性质;L6:平行四边形的判定;MO:扇形面积的计算.【分析】(1)由∠BOD=60°E为的中点,得到,于是得到DE∥BC,根据CD 是⊙O的切线,得到OD⊥CD,于是得到BE∥CD,即可证得四边形BCDE是平行四边形;(2)连接OE,由(1)知,,得到∠BOE=120°,根据扇形的面积公式列方程即可得到结论.【解答】解:(1)∵CD是⊙O的切线,∴∠CDO=90°,∵∠BOD=60°,∴∠C=30°,∠AOD=120°,∵E为的中点,∴∠AOE=∠DOE=60°,∴∠BOE=120°,∵OE=OB,∴∠OEB=∠OBE=30°,∴∠C=∠OBE=∠E,∴DE∥BC,BE∥CD,∴四边形BCDE是平行四边形;(2)连接OE,由(1)知,,∴∠BOE=120°,∵阴影部分面积为6π,∴=6π,∴r=6.25.如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC 沿直线AB折叠得到△ABD.(1)填空:A点坐标为(﹣2 ,0 ),D点坐标为(﹣2 , 3 );(2)若抛物线y=x2+bx+c经过C,D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x 轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)【考点】HF:二次函数综合题.【分析】(1)A、D两坐标可由图象看出.(2)抛物线y=x2+bx+c经过C(1,0),D(﹣2,3),两点代入解析式,解得b、c.(3)当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等,故知道EM不会与x轴平行,设抛物线向上平移H 个单位能使EM∥x轴,写出平移后的解析式,根据抛物线的对称性,可知点M的坐标为(2, +h)时,直线EM∥x轴,将点M代入直线y=x+2,解得h.【解答】解:(1)A(﹣2,0),D(﹣2,3)(2)∵抛物线y=x2+bx+c经过C(1,0),D(﹣2,3)代入,解得:b=﹣,c=∴所求抛物线解析式为:y=x2﹣x+;(3)答:存在.∵当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等.∴EM不会与x轴平行,当点M在抛物线的右侧时,设抛物线向上平移H个单位能使EM∥x轴,则平移后的抛物线的解析式为∵y=(x﹣1)2+h,∴抛物线与y轴交点E(0, +h),∵抛物线的对称轴为:x=1,根据抛物线的对称性,可知点M的坐标为(2, +h)时,直线EM∥x轴,将(2, +h)代入y=x+2得+h=2+2解得:h=.∴抛物线向上平移个单位能使EM∥x轴.26.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为 4 ;当OO′⊥AD时,t的值为 3 .【考点】LO:四边形综合题.【分析】(1)由题意知:AE=2t,由锐角三角函数即可得出EF=t;(2)当H与D重合时,FH=GH=8﹣t,由菱形的性质和EG∥AD可知,AE=EG,解得t=;(3)矩形EFHG与菱形ABCD重叠部分图形需要分以下两种情况讨论:①当H在线段AD上,此时重合的部分为矩形EFHG;②当H在线段AD的延长线上时,重合的部分为五边形;(4)当OO′∥AD时,此时点E与B重合;当OO′⊥AD时,过点O作OM⊥AD于点M,EF 与OA相交于点N,然后分别求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.【解答】解:(1)由题意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴EF=t;(2)∵AE=2t,∠AEF=30°,∴AF=t,当H与D重合时,此时FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四边形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=;(3)当0<t≤时,此时矩形EFHG与菱形ABCD重叠部分图形为矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EF•EG=t•2t=2t2,当<t≤4时,如图1,设CD与HG交于点I,此时矩形EFHG与菱形ABCD重叠部分图形为五边形FEGID,∵AE=2t,∴AF=t,EF=t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=,∴HI=DH,∴S=EF•EG﹣DH•HI=2t2﹣(3t﹣8)2=﹣t2+24t﹣32;(4)当OO′∥AD时,如图2此时点E与B重合,∴t=4;当OO′⊥AD时,如图3,过点O作OM⊥AD于点M,EF与OA相交于点N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,∵O′是矩形EFHG的对角线的交点,∴FM=EG=t,∵O′O⊥AD,O′是FG的中点,∴O′O是△FNG的中位线,∴O′O=FN=t,∵AB=8,∴由勾股定理可求得:OA=4∴OM=2,∴O′M=2﹣t,∵FE=t,EG=2t,∴由勾股定理可求得:FG2=7t2,∴由矩形的性质可知:O′F2=FG2,∵由勾股定理可知:O′F2=O′M2+FM2,∴t2=(2﹣t)2+t2,∴t=3或t=﹣6(舍去).故答案为:t=4;t=3.。

2020年河北省中考数学模拟试卷及答案

2020年河北省中考数学模拟试卷及答案

2020年河北省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共14小题,共42分)1.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A. 三角形B. 四边形C. 五边形D. 六边形2.如果零上2℃记作+2℃,那么零下3℃记作()A. 3B. -3C. -3℃D. +3℃3.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3004.7x+1是不小于-3的负数,表示为()A. -3≤7x+1≤0B. -3<7x+1<0C. -3≤7x+1<0D. -3<7x+1≤05.如图,在菱形ABCD中,AB=2,∠ABC=120°,则对角线BD等于()A. 2B. 4C. 6D. 86.要使(y2-ky-2y)(-y)的展开式中不含y2项,则k的值为()A. -2B. 0C. 2D. 37.如图所示,点E在BC的延长线上,下列条件中,①∠2=∠5;②∠3=∠4;③∠ACE+∠E=180°;④∠B=∠3,能判断AC∥DE的有()A. ①②B. ②④C. ①③D. ③④8.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A. 3.2×107B. 3.2×108C. 3.2×10-7D. 3.2×10-89.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 410.钝角三角形的外心在__________.A. 三角形的内部B. 三角形的外部C. 三角形的钝角所对的边上D. 以上都有可能11.在扇形统计图中,各扇形面积之比为5:4:3:2:1,其中最大扇形的圆心角为()A. 150°B. 120°C. 100°D. 90°12.点A(-1,1)是反比例函数y=的图象上一点,则m的值为()A. 0B. -2C. -1D. 113.计算-的结果是()A. B. C. D.14.如图,已知矩形ABCD的对角线AC,BD交于点O,则下列结论不一定成立的是()A. ∠ABC=90°B. AC=BDC. AB=BCD. ∠DBC=∠CAD二、填空题(本大题共3小题,共10分)15.计算(-2)0+= ______ ;计算:20112-2010×2012= ______ .16.已知a=1,,,则代数式的值为______ .17.若直角三角形的斜边长为25 cm,一条直角边的长为20 cm,则它的面积为____ cm2,斜边上的高为____ cm.三、计算题(本大题共1小题,共8分)18.计算:(1)-13-(1+0.5)×(-4)(2)-36×()四、解答题(本大题共6小题,共60分)19.已知n为正整数,且(x n)2 =9,求-3(x2)2n的值.20.某校九年级两个班,各选派10名学生参加学校举行的“诗词大赛”预赛.参赛选手的成绩如下(单位:分)九(1)班:88,91,92,93,93,93,94,98,99,100九(2)班:89,93,93,93,95,96,96,96,98,99.(1)九(2)班的平均分是______分;九(1)班的众数是______分;(2)若从两个班成绩最高的5位同学中选2人参加市级比赛,则这两个人来自不同班级的概率是多少?21.在⊙O中,点C是上的一个动点(不与点A,B重合),∠ACB=120°,点I是△ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD;(2)猜想线段AB与DI的数量关系,并说明理由.(3)在⊙O的半径为2,点E,F是的三等分点,当点C从点E运动到点F时,求点I随之运动形成的路径长.22.一名司机驾驶汽车从甲地去乙地,以80 km/h的平均速度用了6 h到达乙地.(1)当他按原路返回时,求汽车平均速度υ(km/h)与时间t(h)之间的函数表达式;(2)如果该司机返回时用了4.8 h,求汽车返回时的平均速度.23.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sin A=,求BH的长.24.已知:抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴,M为它的顶点(1)求抛物线的函数关系式;(2)求△MCB的面积;(3)设点P是直线l上的一个动点,当PA+PC最小时,求点P的坐标.2020年河北省中考数学模拟试卷参考答案1. D2. C3. D4. C5. A6. A7. C8. C9. C10. B11. B12. C13. C14. C15. 10;116.17. 150;1218. 解:(1)-13-(1+0.5)×(-4)=-1-=-1+=-;(2)-36×()=(-18)+20+(-30)+21=-7.19. 解:∵(x n)2 =9,∴x2n=9,∴原式=(x2n)3-3(x2n)2=×93-3×92=-162.20. 94.8;9321. (1)证明:∵点I是△ABC的内心,∴CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=×120°=60°,∴∠ABD=∠ACD=60°,∠BAD=∠BCD=60°,∴△ADB为等边三角形,∴AD=BD;(2)解:AB=DI.理由如下:连接AI,∵点I是△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,∵∠DAI=∠DAB+∠BAI=60°+∠BAI,∠DIA=∠ICA+∠CAI=60°+∠CAI,∴∠DAI=∠DIA,∴DA=DI,∵△ADB为等边三角形,∴AB=AD,∴AB=DI;(3)由(2)得AD=DI=DB,∴点I在以D点为圆心,DA为半径,圆心角为60°的弧上,连接DE、DF交此弧于点I′、I″,如图,∴当点C从点E运动到点F时,点I随之运动形成的路径长为弧I′I″的长,∵点E,F是的三等分点∴∠ADE=∠EDF+∠FDB=20°,连接OA,作OH⊥AD于H,则AH=DH,∵△ADB为等边三角形,∴∠OAH=30°,∴OH=OA=1,AH=OH=,∴AD=2,∴弧I′I″的长度==π,即点I随之运动形成的路径长为π.22. 解:(1)由已知得:vt=80×6,;(2)当t=4.8时,(千米/小时).答:返回时的速度100千米/小时.23. (1)证明:如图1中,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图2所示:∵OF⊥BC,∴=,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴=,∴CE2=EH•EA;(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=AB•sin∠BAE=5×=3,∴EA==4,∵=,∴BE=CE=3,∵CE2=EH•EA,∴EH=,∴在Rt△BEH中,BH===.24. 解:(1)∵抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,∴,∴,∴抛物线的函数关系式为y=-x2+2x+3;(2)如图1,由(1)知,抛物线的函数关系式为y=-x2+2x+3;∴抛物线的对称轴为x=1,M(1,4),∵B(3,0)、C(0,3),∴直线BC解析式为y=-x+3,当x=1时,y=2,∴N(1,2).∴MN=2,OB=3,∴S△MCB=S△MNC+S△MNB=MN×OB=×2×3=3;(3)如图2,∵直线l是抛物线的对称轴,且A,B是抛物线与x轴的交点,∴点A,B关于直线l对称,∴PA+PC最小时,点P就是直线BC与直线l的交点,由(2)知,抛物线与直线BC的交点坐标为(1,2),∴点P(1,2).。

2020年中考数学全真模拟试卷(河北专用)(四)(解析版)

2020年中考数学全真模拟试卷(河北专用)(四)(解析版)

2020年中考数学全真模拟试卷(河北)(四)数学(考试时间:90分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:高中全部内容。

一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果收入100元记作+100元,那么支出50元记作( ).A .-50元B .+50元C .+100元D .-100元【答案】A【解析】“正”和“负”相对,所以,如果收入100元记作+100元,那么支出50元记作-50元.故答案选A.2.在下列某品牌T 恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( ) A .B .C .D . 【答案】C【解析】A. 运用了轴对称也利用了旋转对称,故本选项错误;B. 运用了轴对称也利用了旋转对称,故本选项错误;C. 没有运用旋转,也没有运用轴对称,故本选项正确;D. 运用了轴对称,故本选项错误,3.a 与-x 2的和的一半是非负数,用不等式表示为( )A .212a x -<0B .2102a x -?C .21()2a x ->0D .21()02a x -?【答案】D【解析】 解:由题意知,该不等式为21()02a x -?, 故选:D .4.如图,由10个大小相同的正方体搭成的几何体,则下列说法中正确的是( )A .从正面看到的平面图形面积最大B .从左面看到的平面图形面积最大C .从上面看到的平面图形面积最大D .从三个方向看到的平面图形面积一样大【答案】D【解析】观察图形可知,几何体的主视图由6个正方形组成,俯视图由6个正方形组成,左视图由6个正方形组成, ∴从三个方向看到的平面图形面积一样大,故选D .5.如果分式a b =2,则22a ab b ab-+=( ) A .13 B .32 C .﹣13 D .23【答案】D【解析】 ∵a b=2,∴222222221231a a a ab b b a b ab b---===+++, 故选:D .6.化简()()236x x x ---的结果为( )A .69x -B .129x -+C .9D .39x + 【答案】C【解析】原式22696x x x x =++-- 9=.故选C .7.水滴石穿:水珠不断滴在一块石头上,经过40年,石头上形成一个深为4.8cm 的小洞,则平均每个月小洞增加的深度(单位:m ,用科学记数法表示)为( )A .4.8´10−2mB .1.2´10−4mC .1´10−2mD .1´10−4m【答案】D【解析】水珠不断滴在一块石头上,经过40年,石头上形成了一个深为4.8cm 的小洞,所以每月可以形成-24.8104012⨯⨯=1´10−4m 故选D8.如图,菱形ABCD 的顶点C 在直线MN 上,若150∠=︒,220∠=︒,则ABD ∠的度数为( )A .20︒B .35︒C .40︒D .50︒【答案】B 【详解】∵四边形ABCD 是菱形,∴∠A =∠BCD ,AB =AD .∵∠1=50°,∠2=20°,∴∠BCD =180°-50°-20°=110°∴∠A=110°.∵AB=AD,∴∠ABD=∠ADB=(180°-110°)÷2=35°.故选B.∆嘉淇用尺规进行了如下操作:9.对于ABC根据嘉淇的操作方法,可知线段AE是()∆的高线A.ABC∆的中线B.ABCC.边BC的垂直平分线∆的角平分线D.ABC【答案】A【解析】由作法得BC垂直平分AD,所以AE⊥BC,AE=DE,即AE为BC边上的高.故选:A.10.体育老师统计了全班50名学生60秒跳绳的成绩,并列出了如下表所示的频数分布表,由表中的信息,则下列四个选项中不正确的是一项是( )A.组距为20,组数为6B.成绩在160~180范围内的频数最小C .组距为6,组数为20D .成绩在100~120范围内的频数最大【答案】C【解析】根据题意,得组距为20,组数为6.C 选项不正确.故答案选C. 11.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为( ) A .3B .4C .6D .8【答案】C【解析】⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则这个正n 边形的中心角是60°, 360606÷︒=on 的值为6,故选:C12.命题“关于x 的一元二次方程210x bx ++=必有实数解”是假命题.则在下列选项中,可以作为反例的是( )A .4b =B .3b =C .0b =D .2b =-【答案】C【解析】Q 方程210x bx ++=,必有实数解, 240b ∴=-≥V ,解得:2b ≤-或2b ≥,则命题“关于x 的一元二次方程210x bx ++=,必有实数解.”是假命题.则在下列选项中,可以作为反例的是0b =,故选C .13.如图,已知AE 与BF 相交于点D ,AB ⊥AE ,垂足为点A ,EF ⊥AE ,垂足为点E ,点C 在AD 上,连接BC ,要计算A 、B 两地的距离,甲、乙、丙、丁四组同学分别测量了部分线段的长度和角的度数,各组分别得到以下数据:甲:AC 、∠ACB ;乙:EF 、DE 、AD ;丙:AD 、DE 和∠DCB ;丁:CD、∠ABC、∠ADB.其中能求得A、B两地距离的数据有()A.甲、乙两组B.丙、丁两组C.甲、乙、丙三组D.甲、乙、丁三组【答案】D【解析】∵已知AC、∠ACB,∴AB=AC•tan∠ACB,∴甲组符合题意;∵AB⊥AE,EF⊥AE,∴AE∥EF,∴∠A=∠E=90°,∵∠ADB=∠EDF,∴△DEF∽△DAB,∴DE EF AD AB=,∴AB=AD EF DE⋅,∴乙组符合题意;知道AD、DE的长,知道∠DCB的度数,不能求出AB的值,∴丙不符合题意;设AC=x,∵AB=(x+CD)•tan∠ADB=tanxABC ∠,∴能求出AC的长,∴AB=tan AC ABC ∠,∴丁组符合题意;∴符合题意的是甲、乙、丁组;故选:D .14.如图所示,已知直线AB ,CD 被直线AC 所截,AB CD ∥,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+;②αβ-;③βα-;④180αβ--o ;⑤360αβ--o,AEC ∠的度数可能是( )A .①②③④B .①②④⑤C .①②③⑤D .①②③④⑤【答案】C【解析】 (1)如图,由AB ∥CD ,可得∠AOC=∠DCE 1=β,∵∠AOC=∠BAE 1+∠AE 1C ,∴∠AE 1C=β-α.(2)如图,过E 2作AB 平行线,则由AB ∥CD ,可得∠1=∠BAE 2=α,∠2=∠DCE 2=β,∴∠AE 2C=α+β.(3)如图,由AB ∥CD ,可得∠BOE 3=∠DCE 3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β.∴∠AEC的度数可能为β-α,α+β,α-β,360°-α-β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α-β或β-α.故选:C.15.已知函数y=,则下列函数图象正确的是()A.B.C.D.【答案】C【解析】y=x 2+1,开口向上,对称轴是y 轴,顶点坐标是(0,1),当x≥﹣1时,B 、C 、D 正确;y=,图象在第一、三象限,当x <﹣1时,C 正确.故选C .16.如图,六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和,若丙的直角边长为2,且丁的面积比丙的面积小,则丁的直角边长是( )A .12B .4±C .4+D .4-【答案】D【解析】设丁的直角边为x ,依题意得:2x+2x=12×22+12x 2, 整理可得x 2−8x+4=0,解得∵>2,不合题意舍,,合题意,∴故答案选:D.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.若43x y +=,则216x y ⋅的值为_______________________ .【答案】8【解析】43216228x y x y +⋅=== .18.如图,长方形ABCD被分成六个小的正方,已知中间一个小正方形的边长为1,其它正方形的边长分别为a、b、c、d.观察图形并探索:(1)b=_____,d=_____;(用含a的代数式表示)(2)长方形ABCD的面积为_____.【答案】a+1 2a﹣1 143【解析】(1)∵中间一个小正方形的边长为1,∴b=a+1,d=2a﹣1;故答案为:a+1,2a﹣1;(2)∵c=b+1,b=a+1,∴c=a+2,又∵c=d﹣1,d=2a﹣1,∴c=2a﹣2,∴2a﹣2=a+2,解得a=4.则长方形ABCD的长为c+d=a+2+2a﹣1=3a+1=13,宽为a+d=a+2a﹣1=3a﹣1=11,所以长方形ABCD的面积为:11×13=143.故答案为:143.19.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF 所在直线折叠得到△EB′F,连接ED,则DE的长度是_____,B′D的最小值是_____.【答案】 2 【解析】解:∵四边形ABCD 是矩形, ∴∠A =∠B =90°,AD =6,AB =4, ∵E 是AB 边的中点, ∴AE =BE =12AB =2,在直角△ADE 中,根据勾股定理,得:DE ==连接DB ′,如图1,则DB DE EB ''≥-,显然,当D 、B ′、E 三点共线时,DB ′最小,如图2, ∵2EB EB '==,∴2DB DE EB ''=-=.故答案为:2.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.已知a ,b 均为有理数,现我们定义一种新的运算,规定:a #b =a 2+a ×b ﹣5,例如:1#2=12+1×2﹣5=﹣2.(1)求(﹣2)#(﹣3)的值;(2)若(﹣3)#m =10,请直接写出m 的值. 【答案】(1)5;(2)-2 【解析】【分析】(1)根据#的含义,以及有理数的混合运算的运算方法,求出(2)#(3)--的值是多少即可. (2)根据#的含义,得到方程93510m --=,解方程即可求出m 的值. 【详解】解:(1)(﹣2)#(﹣3) =(﹣2)2+(﹣2)×(﹣3)﹣5 =4+6﹣5 =5;(2)∵(﹣3)#m =10, ∴9﹣3m ﹣5=10, 解得m =﹣2. 故m 的值是﹣2.21.若正整数a ,b ,c (a <b <c )满足a 2+b 2=c 2,则称(a ,b ,c )为一组“勾股数”. 观察下列两类“勾股数”:第一类(a 是奇数):(3,4,5);(5,12,13);(7,24,25);… 第二类(a 是偶数):(6,8,10);(8,15,17);(10,24,26);… (1)请再写出两组勾股数,每类各写一组;(2)分别就a 为奇数、偶数两种情形,用a 表示b 和c ,并选择其中一种情形证明(a ,b ,c )是“勾股数”. 【答案】(1)第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一);(2)当a 为奇数时,212a b -=,212a c +=;当a 为偶数时,214a b =-,214a c =+;证明见解析.【解析】(1)第一组(a 是奇数):9,40,41(答案不唯一); 第二组(a 是偶数):12,35,37(答案不唯一);(2)当a 为奇数时,212a b -=,212a c +=;当a 为偶数时,214a b =-,214a c =+;证明:当a为奇数时,a2+b2=2222221122a ca a⎛⎫⎛⎫+==⎪ ⎪⎝⎭⎝⎭-+,∴(a,b,c)是“勾股数”.当a为偶数时,a2+b2=222 2221144a ca a⎛⎫⎛⎫+==⎪ ⎪⎝⎭⎝⎭-+∴(a,b,c)是“勾股数”22.某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.【答案】(1)50人;(2)补图见解析;108°;(3)1 10.【解析】(1)由题意可得总人数为10÷20%=50名;(2)50-10-5-15-8=12,15360=10850⨯︒︒,补全统计图得:(3)画树状图得:∵共有20种等可能的结果,选出都是女生的有2种情况, ∴选取的两名同学都是女生的概率P=220=110. 23.如图(1)在三角形ABC 中,ABC ∠的平分线BO 与ACB ∠的平分线CO 交点O ,求A ∠与BOC ∠的关系.如图(2)在三角形ABC 中,ABC ∠的外角平分线BO 与ACB ∠的外角平分线CO 交于点O ,试求A ∠与BOC ∠的关系;【答案】(1)1=90BOC +B C 2A o∠∠;(2)1BOC=90BAC 2-o∠∠. 【解析】(1)∵∠ABC+∠ACB+∠BAC=180°, ∴∠ABC+∠ACB=180°-∠BAC ,∵BO 平分∠ABC ,CO 平分∠ACB , ∴∠OBC+∠OCB=()()180BAC BAC 111==90222ABC ACB ∠+∠--⨯o o ∠∠, ∴BOC BAC =+BAC=+BA 111=180901809090222C ⎛⎫--- ⎪⎝⎭ooo oo∠∠∠∠; (2)∵∠ABC+∠ACB+∠BAC=180°, ∴∠ABC+∠ACB=180°-∠BAC ,,∴∠CBP+∠BCE=360°-(180°-∠BAC )=180°+∠BAC , ∵BO 平分∠CBP ,CO 平分∠BCE , ∴∠OBC+∠OCB=()()111CBP BCE =180+BAC =90+BAC 222∠+∠⨯o o ∠∠, ∴11BOC=18090+BAC =90BAC 22⎛⎫-- ⎪⎝⎭ooo∠∠∠.24.某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t 小时,行驶速度为v 千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v ,t 的一组对应值如下表:(1)根据表中的数据描点,求出平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式; (2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;(3)若汽车到达动车站的行驶时间t 满足0.3<t <0.5,求平均速度v 的取值范围.【答案】(1)v=12t;(2)若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)平均速度v的取值范围是24<v<40【解析】(1)根据表格中数据,可知v=kt,∵v=20时,t=0.6,∴k=20×0.6=12,∴v=12t(t≥0.2).(2)∵1﹣16-12=13,∴t=13时,v=1213=36>32,∴若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)∵0.3<t<0.5,∴24<v<40,答:平均速度v的取值范围是24<v<40.25.如图,已知等边△ABC,AB=12.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求△FDG的面积.【答案】(1)详见解析;(2;(3【解析】解:(1)如图所示,连接OD.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°∵OD=OB∴△OBD为等边三角形,∴∠C=∠ODB=60°,∴AC∥OD,∴∠CFD=∠FDO,∵DF⊥AC,∴∠CFD=∠FDO=90°,∴DF是⊙O的切线(2)因为点O是AB的中点,则OD是△ABC的中位线.∵△ABC是等边三角形,AB=12,∴AB= AC= BC= 12,CD=BD=12BC=6∵∠C=60°,∠CFD=90°,∴∠CDF=30°,同理可得∠AFG=30°,∴CF=12CD=3∴AF=12-3=9.∴9FG AF ===.(3)作DH ⊥FG ,CD=6,CF=3,∴FH=2,DH=92∴△FDG 的面积为12DH g26.如图,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A ,C 间的一个动点(含端点),过点P 作PF ⊥BC 于点F ,点D 、E 的坐标分别为(0,6),(﹣4,0),连接PD 、PE 、DE . (1)求出抛物线的解析式;(2)小明探究点P 的位置发现:当点P 与点A 或点C 重合时,PD 与PF 的差为定值,进而猜想:对于任意一点P ,PD 与PF 的差为定值,请你判断该猜想是否正确,请说明理由;(3)小明进一步探究得出结论:若将“使△PDE 的面积为整数”的点P 记作“好点”,则存在多个“好点”,且使△PDE 的周长最小的点P 也是一个“好点”.请求出△PDE 周长最小时“好点”的坐标,并直接写出所有“好点”的个数.【答案】(1)抛物线的解析式为:y=﹣18x 2+8;(2)正确,理由见解析;(3)共有11个好点,P 坐标为(﹣4,6).【解析】解:(1)设y=a x2+8,将A(-8,0)代入,a=-,∴y=-x2+8;(2)设P(x,-x2+8),则PF=8-(-x2+8)=x2,过P作PM⊥y轴于M,x2+8)]2=,则PD2=PM2+DM2=(−x)2+[6−(−18∴PD=x2+2,∴PD-PF=x2+2-x2=2,∴猜想正确.(3)①在P点运动时,DE大小不变,∴PE与PD的和最小时,△PDE的周长最小,∵PD-PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2,当P,E,F三点共线时,PE+PF最小,此时,点P,E横坐标都为-4,将x=-4代入y=-x2+8,得y=6,∴P(-4,6),此时△PDE的周长最小,且△PDE的面积为12,点P恰为“好点”,∴△PDE的周长最小时“好点”的坐标(-4,6).②作PH⊥AO于H,△PDE的面积S=梯形PHOD面积减去两个直角三角形△PHE,△DEO的面积=-x2-3x+4=-(x+6)2+13,由-8≤x≤0知4≤S≤13,∴S的整数点有10个,当S=12时,对应的“好点”有1个,所以“好点”共有11个.。

2020年河北省中考数学黄金冲刺试卷(含答案) (4)

2020年河北省中考数学黄金冲刺试卷(含答案) (4)

河北省中考数学黄金冲刺试卷(考试时间:120分钟 满分:150分)第一部分 选择题(共18分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共18分) 1.21-的相反数是 A .21 B .2 C .2- D .21-2.下列计算错误..的为 A .224)2(a a =- B .523)(a a = C .120= D .8123=- 3.方程0862=+-x x 的两根是三角形的边,则三角形的第三条边长可以是 A .2 B .6 C .4 D .8 4.下列图案中,属于轴对称图形的是A .B .C .D . 5.一个几何体的三视图如右图所示,则这个几何体可能是A .B .C .D . 6.已知下列命题:①若22b a =,则b a =; ②对角线互相垂直平分的四边形是菱形; ③过一点有且只有一条直线与已知直线平行; ④在反比例函数xy 2=中,如果函数值y < 1时,那么自变量x > 2. 其中真命题的个数是A .4个B .3个C .2个D .1个第二部分 非选择题(132分)二、填空题(每小题3分,共30分)7.若2a ﹣b =5,则6a ﹣3b 的值是 . 8.一组数据2、-2、4、1、0的中位数是 . 9.已知∠α的补角是130°,则∠α= 度. 10.因式分解: =+2ab ab _____________.11.PM2.5是大气中直径小于或等于0.0000025米的颗粒物,将0.0000025用科学记数法表示为 .12.命题“平行四边形的对角线互相平分”的逆命题是______命题.(填“真”或“假”)13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,则∠2的度数是__________ .14.已知⊙O 1的半径r 1=2,⊙O 2的半径r 2是方程3(x -1)=2x 的根,⊙O 1与⊙O 2的圆心距为1,那么两圆的位置关系为_________.15.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________ .16.如图,在△ABC 中,AB =AC =7,BC =2,点Q 是BC 的延长线上一点,且AQ =BQ +CQ ,求tanQ= .三、解答题(本大题共10题,共102分)17.(本小题满分12分) (1)计算:02201430cos 2312+︒+--- (2)先化简22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,再从-2,0,2,4中选择一个合适的数代入,求出 这个代数式的值.18.(本题8分)解不等式组:()432123x x x x ⎧+≤+⎪⎨-<⎪⎩,并写出不等式组的整数解.19.(本小题满分8分)我市某中学九年级学生对市民“创建国家卫生城市“知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果 划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、 “从未听说”五个等级,统计后的数据整理如下表: 等级 非常了解 比较了解 基本了解 不太了解 从未听说 频数4060483616频率 0.2 m 0.24 0.18 0.08(1)本次问卷调查抽取的样本容量为________,表中m 的值为_______;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数; 20.(本小题满分8分)某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的过程:甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程各需几天?21.(本题满分10分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形OM A DA第13题 第15题 第16题状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35. (1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n ,随机地取出一个小球后不放回,再随机地取出一个小球,请用画树状图或列表的方法求第二次取出小球标号大于第一次取出小球标号的概率.22.(本题满分10分)如图,小明在大楼30米高(即PH =30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处 的俯角为60°,已知该山坡的坡度i (即tan ∠ABC)为1∶3, 点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条 直线上,且PH ⊥HC .(1)山坡坡角(即∠ABC)的度数等于 度;(2)求A 、B 两点间的距离.(结果精确到0.1米,参考数据:3≈1.73).23.(本小题满分10分)如图,在平面直角坐标系中,反比例函数y =xk(x >0)的图象和矩形ABCD 在第一象限,AD 平行于x 轴,且AB =2,AD =4, 点A 的坐标为(2,6). (1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点A 、C 恰好同时落在反 比例函数的图象上,请求矩形的平移距离和反比例函数的解析式.24.(本小题满分10分)如图,在△ABC 中,BE 是它的角平分线, ∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E , 交BC 于点F .(1)求证:AC 是⊙O 的切线; (2)已知sinA =21,⊙O 的半径为4,求图中阴影部分的面积.25.(本小题满分12分)如图,正方形ABCD 的边AB =8厘米,对角线AC 、BD 交于点O ,点P 沿射线AB 从点A 开始以2厘米/秒的速度运动;点E 沿DB 边从点D 开始向点B 以2厘米/秒的速度运动.如果P 、E 同时出发,用t 秒表示运动的时间(0< t <8). (1)如图1,当0< t <4时 ①求证:△APC ∽△DEC ; ②判断△PEC 的形状并说明理由;(2)若以P 、C 、E 、B 为顶点的四边形的面积为25,求运动时间t 的值.E O B C A D P O B C A D26.(本小题满分14分)如图1,抛物线234(0)y ax ax a a =--<交x 轴于点A 、B(A 左B 右),交y 轴正半轴于点C . (1)求A 、B 两点的坐标;(2)点D 在抛物线在第一象限的部分上一动点,当∠ACB =90°时 ①求抛物线的解析式;②当四边形OCDB 的面积最大时,求点D 的坐标;③如图2,若E 为的中点,DE 的延长线交线段AB 于点F ,当△BEF 为钝角三角形时,请直接 写出点D 的纵坐标y 的范围.参考答案15.20 16.324.(1)略 (2)63-π3825.(1)①略 ②等腰直角三角形,理由略 (2)t=3, t=425 26.(1)A(-1,0) B(4,0)(2)①y=-223212++x x ②D(2,3) ③913<y ≤825。

数学-(河北卷)2020年中考考前最后一卷(全解全析)

数学-(河北卷)2020年中考考前最后一卷(全解全析)
21.【解析】(1)由条形统计图可得,女生进球数的平均数为:(1×1+2×4+1×3+4×2)÷8=2.5(个);
∵第4,5个数据都是2,则其平均数为:2;
∴女生进球数的中位数为:2,
(2)样本中优秀率为: ,
故全校有女生1200人,“优秀”等级的女生为:1200× =450(人),
答:“优秀”等级的女生约为450人.
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
8.【答案】B
【解析】∵函数 的图象在其象限内y的值随x值的增大而增大,
∴m+2<0,
解得m<–2.
故选B.
9.【答案】D
【解析】∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10.∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.
故选A.
5.【答案】D
【解析】解不等式①得: ,
解不等式②得: ,
将两不等式解集表示在数轴上如下:
故选D.
6.【答案】B
【解析】设方程的两根为x1,x2,
根据题意得x1+x2=0,
所以a2–2a=0,解得a=0或a=2,
当a=2时,方程化为x2+1=0,△=–4<0,故a=2舍去,
所以a的值为0.
故选B.
序号为③的矩形的宽为3,长为5,5=2+3,
序号为④的矩形的宽为5,长为8,8=3+5,
序号为⑤的矩形的宽为8,长为13,13=5+8,

2020河北中考数学考前精准提分小卷练辑:河北小卷12套河北小卷06

2020河北中考数学考前精准提分小卷练辑:河北小卷12套河北小卷06

河北小卷6 二次函数与综合实践姓名:________ 班级:________ 限时:________分钟一、选择题1.抛物线y =3(x +2)2+2的对称轴是( ) A .直线x =-2 B .直线x =2 C .直线x =1 D .直线x =-12.已知二次函数y =x 2-2x +14m -1的图象与x 轴的一个交点坐标为(0,0),则另一个交点坐标为( )A .(-2,0)B .(1,0)C .(2,0)D .(3,0)3.如图,一次函数y 1=-x 与二次函数y 2=ax 2+bx +c 的图象相交于点M ,N ,则关于x 的一元二次方程ax 2+(b +1)x +c =0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .以上结论都正确4.抛物线y =ax 2+bx +c(a≠0)如图所示,则下列结论错误的是( )A .abc <0B .a +c <bC .b 2+8a >4acD .2a +b >05.对于题目“二次函数y =34(x -m)2+m ,当2m -3≤x≤2m 时,y 的最小值是1,求m 的值”,甲的结果是m =1,乙的结果是m =-2,则( ) A .甲的结果正确 B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确6.小明、小亮、小梅、小花四人共同探究代数式x 2-4x +5的值的情况,他们做了如下分工:小明负责找值为1时x 的值;小亮负责找值为0时x 的值;小梅负责找最小值;小花负责找最大值.几分钟后,他们各自通报探究的结论,其中错误的是( )A .小明认为只有当x =2时,x 2-4x +5的值为1B .小亮认为找不到实数x ,使得x 2-4x +5的值为0C .小梅发现x 2-4x +5的值随x 的变化而变化,因此认为没有最小值D .小花发现当x 取大于2的实数时,x 2-4x +5的值随x 的增大而增大,因此认为没有最大值7.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2 m 的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y =a(x -k)2+h.已知球与O 点的水平距离为6 m 时,达到最高2.6 m ,球网与O 点的水平距离为9 m ,高度为2.43 m ,球场的边界距O 点的水平距离为18 m ,则下列判断正确的是( ) A .球不会过球网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定8.对于抛物线y =ax 2+bx +c(a≠0),下列说法错误的是( )A .若顶点在x 轴下方,则一元二次方程ax 2+bx +c =0有两个不相等的实数根B .若抛物线经过原点,则一元二次方程ax 2+bx +c =0必有一根为0C .若ab >0,则抛物线的对称轴必在y 轴的左侧D .若2b =4a +c ,则一元二次方程ax 2+bx +c =0必有一根为-2 9.如图,抛物线y 1=12(x +1)2+1与y 2=a(x -4)2-3交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于B ,C 两点,且D ,E 分别为顶点,则下列结论:①a =23;②AC=AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个 二、填空题10.二次函数y =x 2+mx +m -2的图象与x 轴有________个交点.11.将抛物线y =3(x +1)2-2向右平移3个单位,再向上平移4个单位,那么得到的抛物线对应的函数表达式为________.12.定义:对于抛物线y =ax 2+bx +c(a ≠0),若其与x 轴有两个不同的交点A ,B ,顶点为C ,则△ABC 称为该抛物线的“顶轴三角形”.命题“任意抛物线都有‘顶轴三角形’”是________命题(填“真”或“假”);若抛物线y =ax 2-2ax 的“顶轴三角形”是直角三角形,则a 的值为________. 三、解答题13.如图,已知抛物线y=ax2+x+2的开口向下,与x轴的交点为A、B,点A 在点B的左侧,与y轴的交点为C.(1)当a=-1时,求此抛物线的顶点坐标和对称轴;(2)当点O将线段AB分为1∶3两部分时,求a的值;(3)当a=a1时,抛物线与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线与x轴的正半轴相交于点N(n,0).若点M在点N的左侧,试比较a1与a2的大小.14.某数学兴趣小组,对某种水果1月至7月的市场行情进行调研得到如下信息:月份x(月) 4 6单价P(元/千克) 5 3平均成本y(元/千克) 2 1①该水果的销售单价P(单位:元/千克)与时间x(单位:月)满足一次函数;②该水果的平均成本y(单位:元/千克)与时间x(单位:月)满足二次函数关系y =ax2+bx+10.(1)求该一次函数与二次函数的解析式;(2)请根据以上信息,求出该水果在几月份的平均利润L(单位:元/千克)最大,最大平均利润是多少?(注:平均利润=销售单价-平均成本)参考答案1.A 2.C 3.A 4.D 5.C 6.C 7.C 8.A9.B 【解析】 ∵抛物线y 1=12(x +1)2+1与y 2=a(x -4)2-3交于点A(1,3),∴3=a·(1-4)2-3,解得:a =23,故①正确;如解图,过点E 作EF⊥AC 于点F ,连接AE ,CE ,∵E 是抛物线的顶点,∴AE=EC ,E(4,-3),∴AF =3,EF =6,∴AE=62+32=35,AC =2AF =6,∴AC≠AE,故②错误;当y 1=3时,3=12(x +1)2+1,解得:x 1=1,x 2=-3,∴B(-3,3),D(-1,1),则AB =4,AD =BD =22,∴AD 2+BD 2=AB 2,∴△ABD 是等腰直角三角形,③正确;∵12(x +1)2+1=23(x -4)2-3时,解得:x 1=1,x 2=37,∴当1<x<37时,y 1>y 2,故④错误. 10.2 11.y =3(x -2)2+212.假;1或-1 【解析】 只有满足b 2-4ac>0的抛物线才有“顶轴三角形”,故是假命题.由题意可知,抛物线y =ax 2-2ax 的对称轴为直线x =1,其与x 轴的一个交点为O(0,0),则其与x 轴的另一个交点为B(2,0),设顶点为C ,∵其“顶轴三角形”是直角三角形,故△OBC 是等腰直角三角形,且BC =OC ,则点C 的坐标为(1,1)或(1,-1),代入抛物线可知a 的值为-1或1. 13.解:(1)当a =-1时,y =-x 2+x +2, ∴a=-1,b =1,c =2,∴抛物线的顶点坐标为(12,94),对称轴为直线x =12.(2)令ax 2+x +2=0, 解得x 1=-1-1-8a2a ,x 2=-1+1-8a 2a,∵点A 在点B 的左侧,a <0, ∴A 点的坐标为(-1+1-8a2a,0),∵点O 将线段AB 分为1∶3的两部分,点A 和点B 到对称轴的距离相等, ∴点A 到点O 的距离等于点O 到对称轴的距离,即|-1+1-8a 2a |=|-12a |,整理得 1-8a -1=1或-(-1+1-8a)=1,解得a =-38或a =18(舍).(3)∵抛物线开口向下, ∴a<0,∴a 1<0,a 2<0.经过点M 的抛物线y =a 1x 2+x +2的对称轴为直线x =-12a 1;经过点N 的抛物线y =a 2x 2+x +2的对称轴为直线x =-12a 2.∵点M 在点N 的左侧,且抛物线都经过点(0,2), ∴直线x =-12a 1在直线x =-12a 2的左侧,∴-12a 1<-12a 2,∴a 1<a 2.14.解:(1)设一次函数的解析式为P =kx +m ,将x =4,P =5和x =6,P =3代入,得⎩⎪⎨⎪⎧4k +m =5,6k +m =3,解得⎩⎪⎨⎪⎧k =-1,m =9,则P =-x +9;将x =4,y =2和x =6,y =1代入y =ax 2+bx +10,得:⎩⎪⎨⎪⎧16a +4b +10=2,36a +6b +10=1,解得:⎩⎪⎨⎪⎧a =14,b =-3,则y =14x 2-3x +10.(2)根据题意知,L =P -y =9-x -(14x 2-3x +10)=-14(x -4)2+3,∴当x =4时,L 取得最大值,最大值为3.答:该水果在4月份的平均利润最大,最大平均利润是3元/千克.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北小卷4 解不等式与优化设计
姓名:________ 班级:________ 限时:________分钟
一、选择题
1.已知a>b,则下列不等式一定成立的是( )
A.a+3>b+4 B. a-3<b-3
C.3a>3b D.-3a>-3b
2.不等式2-3x>-1的解集是( )
A.x>1 B.x<1
C. x>3 D.x<-1
3.若不等式x+a>0的解集在数轴上表示如图所示,则a的值为( )
A.1 B.-1 C.2 D.-2
4.点P(a+1,2-a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
5.若不等式组的两个不等式的解集在数轴上表示如图所示,则这个不等式组的解集是( )
A.-1<x<1 B. -1≤x≤1
C.-1<x≤1 D.-1≤x<1
6.设“○”“□”“△”表示三种不同的物体,用天平比较它们质量的大小,两次称量情况如图所示,那么每个“○”“□”“△”按质量从小到大的顺序排列正确的是( )
A.○□△ B.○△□
C.□△○ D.△□○
7.定义运算a⊕b,当a≥b时,a ⊕b=a,当a<b时,a ⊕b=b,如果(x+2) ⊕2x =2x,那么x的取值范围是( )
A.x≤2 B. x<2
C.x≥2 D.x>2
8.不等式组的正整数解有( )
A.4个B.3个
C.2个D.1个
9.不等式组的解集在数轴上表示正确的是( )
10.把m本练习本分给n名学生,如果每人分3本,可余8本,如果每人分5
本,那么最后一名同学有练习本但不足5本,则n的值为( )
A.4 B.4或5
C.5或6 D.6
11.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上表示正确的是( )
12.已知实数m使得关于x的分式方程2
x-1-m
x-1=4的解为非负数,且使得关
于y的不等式组的解集为y<0,则符合条件的所有整数m有
( )
A.2个B.4个C.6个D.7个
二、填空题
13.不等式x-5>-3的最小整数解是________.
14.若关于x的不等式(a-2)x>a-2的解集为x<1,则|a-3|=________.15.某商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,该商家最少应当定价为________元/千克.
16.已知关于x的不等式组若m=3,则不等式组的解集为________;若不等式组恰好有3个整数解,且关于x的方程x-2-m=0的解为
正数,则整数m的值为________.
三、解答题
17.解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.
18.请你阅读如图框内老师的新定义运算规定,然后解答下列各小题.
(1)若x⊕y=1,x⊕2y=-2,分别求出x和y的值;
(2)若x满足x⊕2≤0,且3x⊕(-8)>0,求x的取值范围.
19.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价为每个10元,请认真阅读结账时老板和小明的对话:
(1)结合两人的对话内容,求小明原计划购买文具袋多少个;
(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多购买钢笔多少支?
参考答案
1.C 2.B 3.A 4.A 5.C 6.D 7.C 8.B 9.B 10.C 11.B
12.C 【解析】 分式方程2x -1-m
x -1=4两边同时乘x -1得2-m =4(x -1),
整理得x =6-m 4,∵分式方程的解是非负数,∴6-m 4≥0且6-m
4≠1,解得m≤6
且m≠2.解不等式y +33-y
2>1得y<0,若要不等式组的解集为y<0,则m≥0,即
m 的取值范围是0≤m≤6,且m≠2,则所有整数m 为0,1,3,4,5,6,共6个.
13.3 14.3-a 15.10
16.1≤x<2;-1 【解析】 当m =3时,不等式组为⎩
⎪⎨⎪⎧x -2<0
2x -3≥-1,解得1≤x
<2;若不等式组恰好有3个整数解,则3个整数解分别为1,0,-1,∴-2<
m -1
2≤-1,解得-3<m≤-1-∵x-2-m =0的解为正数,∴x=2+m >0,∴m>-2,∴-2<m≤-1,则整数m 为-1. 17.解:去括号得:3x -1≥2x-2, 移项得:3x -2x≥-2+1, 解得:x≥-1.
将不等式的解集表示在数轴上如解图:
18.解:(1)根据题意得⎩⎪⎨⎪⎧4x -3y =1
4x -3×2y=-2,
解得⎩
⎪⎨⎪⎧x =1
y =1.
(2)根据题意得⎩
⎪⎨⎪⎧4x -3×2≤0
4×3x-3×(-8)>0,
解得:-2<x≤3
2
.
故x 的取值范围是-2<x≤3
2
.
19.解:(1)设小明原计划购买文具袋x 个,则实际购买了(x +1)个, 根据题意得10(x +1)·0.85=10x -17, 解得x =17.
答:小明原计划购买文具袋17个.
(2)设小明购买钢笔y 支,则购买签字笔(50-y)支, 根据题意得[8y +6(50-y)]·0.8≤400-10×17+17, 解得y≤4.375, ∵y 是正整数, ∴y 的最大值为4, 即小明最多购买钢笔4支.。

相关文档
最新文档