时频分析方法

合集下载

声学信号处理的时频分析方法概述

声学信号处理的时频分析方法概述

声学信号处理的时频分析方法概述声学信号处理是指对声音信号进行处理和分析的一门学科,其目的是从声音信号中获取有用的信息和特征。

声学信号处理在音频处理、语音识别、音频编码等领域有着广泛的应用。

而声学信号的时频分析是声学信号处理中的重要内容之一,它可以将信号在时间和频率上进行分析,从而揭示出声音信号的时域特征和频域特征。

时频分析是一种将信号在时间和频域上进行分析的方法。

在声学信号处理中,时频分析可以帮助我们理解声音信号的频率内容随时间的变化。

常用的时频分析方法有傅里叶变换、短时傅里叶变换、小波变换和光谱分析等。

傅里叶变换是一种将信号从时域转换到频域的方法。

它可以将一个连续时间的信号分解为不同频率的正弦波成分,从而得到信号在频域上的表示。

傅里叶变换的主要思想是将信号拆解成一系列正弦波的叠加,而每个正弦波都有不同的频率和振幅。

通过对傅里叶变换结果的分析,可以得到信号的频谱信息,即不同频率成分的强度和相位。

短时傅里叶变换(STFT)是一种将信号分解成时域和频域上的幅度谱的方法。

它通过在时间上将信号进行分帧处理,然后对每一帧信号进行傅里叶变换,得到该时刻的频谱信息。

STFT的一个重要参数是窗函数,它决定了每一帧信号的长度和形状。

不同的窗函数选择会影响到STFT的频率分辨率和时间分辨率。

小波变换是一种时频分析方法,它可以同时提供高时间分辨率和高频率分辨率。

小波变换使用一组具有不同尺度和位置的小波函数来分析信号的时频内容。

通过对小波变换系数的处理和分析,可以得到信号在时频域上的局部特征,更好地揭示信号的瞬时变化。

除了以上提到的方法,光谱分析也是声学信号处理中常用的一种时频分析方法。

光谱分析通过对信号的频谱进行分析,得到信号在频率上的分布情况。

常用的光谱分析方法包括理想光谱估计、周期图谱和功率谱估计等。

这些方法可以帮助我们分析信号的频率特征和谱线性质。

总结起来,声学信号处理的时频分析方法有傅里叶变换、短时傅里叶变换、小波变换和光谱分析等。

时频分析方法

时频分析方法

时频分析方法时频分析方法是一种有效的信号处理方法,它将时域信号转换成频域信号,从而更加清晰地定位频率分量,从而提高信号处理的效率。

时频分析方法可以被用于各种应用领域,包括信号处理,通信,音频处理等。

本文将详细介绍时频分析方法的原理和应用,并分析其优缺点。

一、时频分析方法原理时频分析方法是指将时域信号转换成频域信号,从而更加清楚地定位频率分量,从而提高信号处理的效率。

它的基本原理是将一个信号的时域特性映射到频域,以得到与时域历史信号相关的周期统计信息。

时频分析主要是通过傅里叶变换、渐进式变换和时频技术等来实现的。

傅里叶变换是把信号由时域变换到频域的一种变换,傅里叶变换的基本原理是通过将信号中的时域特性映射到频域,从而更加清楚地定位频率分量,从而提高信号处理的效率。

在傅里叶变换中,时间信号会被变换成频率信号,从而得到与时域历史信号有关的周期统计信息。

渐进变换是一种分析信号的有效方法,它可以利用信号的渐变特性来实现时频分析。

渐进变换的基本思想是先将信号折叠成多个时间小段,然后计算每个时间小段的频率,依次推导出不同时间小段的频率分布特性,从而完成时频分析。

时频技术是一种将时域信号转换成频域信号的有效方法。

这种技术可以同时兼顾时域和频域特性,综合利用信号的时域和频域特性来分析信号的复杂结构,从而提高信号处理的效率。

时频技术的关键在于如何利用时间和频率信号的特性,从而更加清楚地定位频率分量,从而提高信号处理的效率。

二、时频分析方法的应用时频分析方法可以用于各种应用领域,主要包括信号处理、音频处理、语音识别等。

1、信号处理时频分析方法可以用于信号处理,其主要作用是增强信号特性,在提取信号特征时具有较高的精度和稳定性。

时频分析方法在信号分析、压缩、滤波、采样和降噪等应用中都有着广泛的应用。

2、音频处理时频分析方法可以用于音频处理,可以改善音频质量,消除各种音色,滤除噪声并进一步提高音频质量。

3、语音识别时频分析方法在语音识别中也有重要应用,可以帮助分析语音的特征,识别音频的特征,消除噪声并得到更高的识别率。

信号的时频域检测方法及在频谱监测中的应用

信号的时频域检测方法及在频谱监测中的应用

信号的时频域检测方法及在频谱监测中的应用引言:一、时频分析方法STFT将信号分成多个时间窗口,对每个窗口进行傅里叶变换,以得到每个时刻的频谱信息。

STFT是一种常用的时频域分析方法,可用于信号的时频特征提取和信号的时频分布分析。

2. 小波变换(Wavelet Transform)小波变换是一种多分辨率分析方法,它可以将信号分解成不同频率的小波系数,从而得到信号在不同频带上的时频特征。

小波变换可以提取信号的瞬时频率和瞬时振幅,并可用于信号降噪、特征提取和边缘检测等应用。

3. Wigner-Ville分布(Wigner-Ville Distribution,WVD)WVD是一种高分辨率的时频分析方法,它可以提供信号的瞬时频率、瞬时幅度和瞬时相位等信息。

WVD通过在时频平面上绘制信号的二维时频图像来描述信号的时频特性,对于非线性和非平稳信号具有较好的分析效果。

1.无线通信系统中的频谱监测在无线通信系统中,频谱监测是保障无线通信质量和避免频谱干扰的重要手段。

时频域检测方法可以用于对通信信号进行监测,从而提供通信信号的时频特征和频谱分布情况。

通过对频谱进行实时监测和分析,可以及时发现频谱异常和干扰信号,并采取相应的措施来保障通信质量。

2.频谱资源管理频谱资源是有限的,如何合理分配和管理频谱资源是频谱监测的另一个重要应用。

时频域检测方法可以用于对频谱资源的现状进行评估和分析,包括频率利用率、频谱效益、频谱利用方式等。

通过对频谱资源进行分析,可以优化频谱分配方案,提高频谱利用效率。

3.频谱监测中的信号识别和分类时频域检测方法对于信号的识别和分类具有重要意义。

不同类型的信号在时频域上具有不同的特征,如调制方式、调制参数、调制深度等。

时频域检测方法可以提取信号的特征,从而实现信号的自动识别和分类。

通过信号的识别和分类,可以对频谱进行合理管理和优化利用。

结论:时频域检测方法是信号处理领域中的重要技术之一,能够提取信号的时频特征,并在频谱监测中得到广泛应用。

时频分析方法范文

时频分析方法范文

时频分析方法范文时频分析是一种用于分析非平稳信号的方法,它基于时间和频率域的分析技术,能够给出信号在不同时间和频率上的变化规律。

时频分析通常用于处理具有瞬态特征的信号,例如声音、图像、生物信号等。

本文将介绍时频分析的基本原理、常见方法及其在不同领域的应用。

一、基本原理时频分析基于声学和数学等领域的原理,旨在研究信号在时间和频率两个维度上的变化。

传统的傅里叶变换只能提供信号的频域信息,无法描述非定常或非线性信号在时间上的变化。

时频分析通过引入窗函数来实现信号在时间和频率上的分解。

1.窗函数窗函数是时频分析的关键概念,它将信号在时间上切割成多个片段,并将每个片段与一个特定的函数进行乘积。

窗函数通常是时域上的一种窄带滤波器,能够减小信号在时频域的交叉干扰。

常见的窗函数有矩形窗、汉宁窗、高斯窗等。

2.短时傅里叶变换(STFT)短时傅里叶变换是时频分析的最基本方法,它将信号分成多个时间窗口,并对每个窗口进行傅里叶变换。

STFT的窗口长度和重叠率可以根据信号的特性进行调整,从而控制时间和频率分辨率。

STFT分析得到的结果是一个时频矩阵,可以直观地表示信号在不同时间和频率上的能量分布。

3. 维纳-辛钦(Wigner-Ville)分布维纳-辛钦分布是一种时频分析方法,它基于短时傅里叶变换,通过在矩阵的对角线上进行平均来消除交叉干扰。

Wigner-Ville分布能够提供更精确的时频信息,但对噪声和窗口选择比较敏感。

4.小波变换小波变换是一种基于频率域的时频分析方法,它利用小波函数的局部性质,将信号分解成不同频率段的子信号。

小波变换具有良好的时间和频率局部化特性,能够捕捉到信号中的瞬态特征。

常见的小波变换方法有连续小波变换(CWT)和离散小波变换(DWT)。

二、常见方法除了上述方法,时频分析还有一些其他常见的方法,如下所示。

1. 希尔伯特-黄(Hilbert-Huang)变换希尔伯特-黄变换是一种非平稳信号的时频分析方法,它由希尔伯特变换和经验模态分解(EMD)两部分组成。

几种时频分析方法及其工程应用

几种时频分析方法及其工程应用

几种时频分析方法及其工程应用时频分析是一种将时间和频率维度综合起来分析信号的方法,广泛应用于信号处理、通信、音频处理、图像处理等领域。

在实际工程应用中,根据不同的需求和应用场景,可以采用多种不同的时频分析方法。

本文将介绍几种常见的时频分析方法及其工程应用。

短时傅里叶变换是一种将信号分为多个小片段,并对每个小片段进行傅里叶变换的方法。

它在时域上采用滑动窗口的方式将信号分段,然后进行傅里叶变换得到频域信息。

STFT方法具有时间和频率分辨率可调的特点,可用于信号的频域分析、谱估计、声音的频谱显示等。

工程应用:STFT广泛应用于语音处理、音频编解码、信号分析等领域。

例如在音频编解码中,可以利用STFT分析音频信号的频谱特征,进行数据压缩和编码。

2. 小波变换(Wavelet Transform)小波变换是一种时频分析方法,它通过将信号与一系列基函数(小波)进行卷积来分析信号的时间和频率特性。

小波变换具有多分辨率分析的特点,可以在不同尺度上对信号进行分析。

工程应用:小波变换可以用于信号处理、图像压缩等领域。

在图像处理中,小波变换被广泛应用于图像的边缘检测、图像去噪等处理过程中。

3. Wigner-Ville分布(Wigner-Ville Distribution,WVD)Wigner-Ville分布是一种在时间-频率平面上分析信号的方法,它通过在信号的时域和频域上进行傅里叶变换得到瞬时频率谱。

WVD方法可以展现信号在时间和频率上的瞬时变化特性。

工程应用:Wigner-Ville分布在通信领域中被广泛应用于信号的调制识别、通信信号的自适应滤波等方面。

例如在调制识别中,可以利用WVD方法对调制信号的频谱特征进行分析,从而判断信号的调制类型。

4. Cohen类分析(Cohen's class of distributions)Cohen类分析是一种将信号在时间-频率域上进行分析的方法,它结合了瞬时频率和瞬时能量的信息。

信号处理中的时频分析方法研究

信号处理中的时频分析方法研究

信号处理中的时频分析方法研究一、引言在信号处理领域,时频分析是一种重要的分析方法,它可以展示信号在时间和频率两个维度上的变化规律。

时频分析方法可以被广泛应用于许多领域,例如通信、医学、音乐和地震学等领域。

本文将介绍一些常见的时频分析方法,并探讨它们的应用与优缺点。

二、短时傅里叶变换(STFT)短时傅里叶变换是时频分析中最常见的一种方法。

它可以通过将信号分解成不同时间窗口内的频率成分来获得时域和频域分布。

在STFT中,信号被乘以一个窗口函数,然后在每个时间点上窗口的长度和形状都保持不变。

然后,使用快速傅里叶变换在每个时间窗口内计算频域分量。

由于不同的时间窗口可以为其提供不同的频率分辨率,因此可以选择窗口长度以平衡时间和频率分辨率之间的折衷。

STFT的优点是可以清晰地看到信号随时间和频率的变化。

它在信号处理和地震学分析方面得到了广泛的应用。

但它也有一些局限性,例如窗口函数的选择对分析结果有很大的影响,一般情况下只能得到离散的时频信息,无法获得连续的时频特性。

三、连续小波分析(CWT)连续小波分析是一种时变滤波器的应用,是一种常用的时频分析方法。

它采用一组母小波(通常称为分析小波),在不同的时刻对输入信号进行滤波。

这些分析小波可以缩放和平移,以便提供不同的频率和时间精度,并且可以在尺度和时间轴上提供常规分析不能提供的信息。

相较于STFT,CWT可以获得更连续的时频信息,而且由于可以根据需要改变小波的尺度和位置,因此比STFT更加灵活。

然而,CWT计算时需要进行大量的计算,处理大量的数据将导致算法效率较低。

四、峭度尺度分析(KSA)峭度尺度分析是一种基于二阶统计的非参数时频分析方法。

它利用峭度作为指标来计算信号在不同尺度下的频率分解表达。

KSA通过计算每个尺度下信号的二阶矩来确定信号的局部频率,因此不需要进行时域和频域的分析。

此外,KSA可以提供高频率分辨率和极低频的有效处理,因此可以获得有关信号的更广泛的信息。

数字信号处理中的时频分析算法

数字信号处理中的时频分析算法

数字信号处理中的时频分析算法时频分析是数字信号处理领域中一种重要的信号分析方法,它能够同时提供信号在时间和频率上的特性信息。

在许多应用中,时频分析被广泛应用于信号识别、通信系统、雷达和生物医学工程等领域。

本文将介绍几种常见的数字信号处理中的时频分析算法。

1. 短时傅里叶变换(STFT)短时傅里叶变换是时频分析中最基本的方法之一。

它将信号分成一段段的小片段,并对每个小片段进行傅里叶变换,从而得到该时间段内信号的频谱。

由于信号随时间的变化,STFT能够提供信号在各个时刻的频谱特性。

然而,由于STFT使用固定的时间窗口宽度,无法在时间和频率上同时获得高分辨率。

2. 连续小波变换(CWT)连续小波变换是时频分析中一种基于小波理论的算法。

它与STFT类似,也将信号分成一段段的小片段,但不同之处在于小波变换使用了不同尺度的小波基函数进行变换。

这使得连续小波变换可以在时间和频率上自适应地调整分辨率,并能够对信号的瞬时频率进行较好的估计。

3. 峭度分析方法峭度分析方法通过计算信号的高阶统计moments,如峭度和偏度等,来提取信号的时频特征。

峭度反映了信号在短时间尺度上的频率成分,能够用于检测信号中的瞬时频率变化。

然而,峭度分析方法在实际应用中对信号的平稳性和高斯性有一定的要求。

4. Wigner-Ville变换(WVT)Wigner-Ville变换是一种经典的时频分析方法,它通过计算信号的时域和频域的自相关函数之间的关系,得到信号的时频表示。

WVT能够提供更精确的时频信息,但也存在交叉项干扰和分辨率衰减的问题。

为了克服这些问题,后续的研究提出了改进的时频分析方法,如Cohen's class分布和Cohen's class分布等。

5. 累积频谱分析方法累积频谱分析方法通过将多个STFT结果累积,从而提高分辨率和信噪比。

累积频谱分析方法包括短时傅里叶变换累积、小波包累积、Wigner-Ville累积等。

时频分析

时频分析

时频分析时频分析是一种用于研究信号的数学工具,它可以将信号在时域和频域上进行分析。

时域是指信号的时间变化特性,而频域是指信号的频率变化特性。

时频分析的主要目的是确定信号的频率、幅度和相位随时间的变化规律,从而更好地理解信号的性质和特征。

时频分析的基本原理是将信号在时域和频域上进行相互转换。

通过傅里叶变换,我们可以将信号从时域转换到频域,得到信号的频谱。

频谱描述了信号在不同频率上的能量分布情况,可以帮助我们了解信号中哪些频率成分起主导作用。

而逆傅里叶变换则可以将信号从频域转换回时域,复原原始信号。

时频分析的经典方法之一是短时傅里叶变换(Short-TimeFourier Transform,STFT)。

STFT是一种将信号分成很短的时间段,然后对每个时间段进行傅里叶变换的方法。

通过在不同时间段上进行傅里叶变换,我们可以观察到信号在时域和频域上的变化。

但是,STFT在时间和频率上的分辨率不能同时很高,即时间越精细,频率越模糊,反之亦然。

为了克服STFT的局限性,人们提出了许多改进方法。

其中一种方法是连续小波变换(Continuous Wavelet Transform,CWT)。

CWT的特点是可以在不同尺度上进行时频分析,即同时提供时间和频率的高分辨率。

CWT使用一系列不同宽度的小波函数来分析信号,每个尺度上的小波函数都对应不同频率的分量。

通过选取合适的小波函数,我们可以更好地捕捉信号的局部特征。

另一个常用的时频分析方法是瞬时频率估计(Instantaneous Frequency Estimation,IFE)。

IFE是一种用于估计信号瞬时频率的方法,即信号在某一时刻的频率。

IFE通常基于信号的瞬时相位,通过计算相邻时间点上相位变化的一阶差分来估计瞬时频率。

IFE在振动分析和信号处理中得到了广泛应用,例如故障诊断、语音处理和图像处理等领域。

时频分析在许多领域都有着广泛的应用。

在通信领域,时频分析可以用于信号调制识别、频谱分配和多载波信号处理等;在生物医学领域,时频分析可以用于心电图、脑电图和声音信号分析等;在地震学领域,时频分析可以用于地震信号处理和地震事件定位等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gabor只做了高斯窗的傅里叶变换,它是窗口傅里变换的一种。尽管窗口傅里叶变换是一种时频分析,是信号处理的重要工具,并得到广泛的应用,但是窗口傅里叶变换的一个主要缺点是时域和频域的采样间隔都是常数,即这种窗口大小和形态与频率无关,是固定不变的,不能使变换窗口大小随频率而变化。但在处理实际问题,我们希望时域的采样间隔随着频率的增高而减小,同时窗口傅里叶变换不管如何离散化均不能使它成为一组正交基。为此,J.Morlet等人对窗口傅里叶变换进行了改造,引入了小波变换。
随着τ的位置变动,所确定的“时间窗”在t轴上移动,使逐步进入被分析的状态。窗口函数,一般为实的偶函数,窗口外数据为零(紧支集)或很快趋于零。这时傅里叶变换结果不再为,而是,这里大致反映了在时刻时频率为的“信号成分”的相对含量。时频局部化就是希望找一种信号的表示方法,它能同时提供时域和频域的局部化信息。而这种变换确实能反映函数在窗口内部(τ附近)的频谱特征。窗口傅里叶变换可使信号达到局部平稳,更好地研究局部范围的特性。窗口函数的傅里叶变换,它在有限区间之外数据恒等于零。用乘,即在附近开窗口,为窗口傅里叶变换。
PWVD在频率方向进行平滑,信号的频率分辨率变差了。
2.3、平滑的伪WVD(简称SPWVD)
PWVD实际上只在频率方向进行平滑,如同时能在时间方向上也进行平滑,效果更好,这即平滑的伪WVD(SPWVD),定义为:
上式中当g(t)=s(t)时,成为PWVD,由于SPWVD在时域也加平滑窗,因此交叉项的影响要小得多,是牺牲时域分辨率换来得,在时域或频域中越平滑,在时间或频率域中分辨率越低。SPWVD的交叉项最小,但在时间和频率两个方向都进行平滑,它的时间分辨率和频率分辨率在三种分布中是最差的。
时频分析
时频分析(JTFA)即时频联合域分析(Joint Time-Frequency Analysis)的简称,作为分析时变非平稳信号的有力工具,成为现代信号处理研究的一个热点,它作为一种新兴的信号处理方法,近年来受到越来越多的重视。时频分析方法提供了时间域与频率域的联合分布信息,清楚地描述了信号频率随时间变化的关系。
时频分析的基本思想是:设计时间和频率的联合函数,用它同时描述信号在不同时间和频率的能量密度或强度。时间和频率的这种联合函数简称为时频分布。利用时频分布来分析信号,能给出各个时刻的瞬时频率及其幅值,并且能够进行时频滤波和时变信号研究。信号时频分析具有重要的意义。我们很有必要对信号的时频进行研究分析。
时频分析的几种方法:
3.傅里叶变换在时间和频率分辨率上的局限性
分辨率是信号处理的基本概念之一,包括频率分辨率和时间分辨率.在时域分析中,信号处理的目标是尽可能地同时获得高的时间分辨率和频率分辨率.然而,可以证明时域窗和频域窗乘积恒定且大于等于12,也即不可能同时获得高的时频分辨率,这就是著名的不确定性原理.傅里叶变换在这方面的表现尤其不尽如人意.傅里叶变换可以改写成内积的形式,即
4、Cohen类时频分布
Cohen类时频分布是建立在Wigner2Ville分布基础上的分布的统称,通过对Wigner2Ville分布加不同的核函数来抑制交叉项的影响。Cohen类时频分布在模糊域(相关域)的表现形式为
式中,θ、τ分别为频移与时移(文中θ表示的是归一化频率的偏移量,τ表示的是采样点数的偏移量) ;t、ω分别为时间和角频率;A (θ,τ)是信号的模糊函数; (θ,τ)为核函数,给定不同的核函数就得到不同的分布。
3、Gabor变换
Gabor变换是Heisenberg不确定准则下的最优短时傅里叶变换,是具有高斯窗函数的短时傅里叶变换,高斯窗函数是短时傅里叶变换时间分辨率和频率分辨率最优的窗函数。与传统的时频分析方法(如短时傅里叶变换)相比,Gabor变换具有更好的时间-频率分辨率,在诸如地震信号非平稳信号处理中,Gabor变换发挥着积极的作用。
1、短时傅里叶变换
其基本想法为:傅里叶变换是频域分析的基本工具,为了达到时间域上局部化,在傅里叶分析中的基本变换函数之前乘上一个时间上有限的时限函数,即窗口函数,然后再用它们来作傅里叶分析,这样起频限作用,起到时限作用,合起来,就可起到时频双限制作用。其中是有紧支集(即窗口外数据为零)的函数。为被分析的信号。
(1)
(2)
由以上两式可知,傅里叶变换是一种整体变换,对信号的表征要么完全在时域内,要么完全在频域内,ω和t是互相排斥的两个变量.用傅里叶变换的方法得到某一个频率 的频谱分量S( ),必须从-∞~+∞的整个时间轴上进行积分.如果要从频谱得到信号在某一时刻 的值s( ),则需要对S(ω)在整个频率轴上进行积分.因此,傅里叶变换得到的是信号s(t)在整个时间范围内的频率特性,它不能告诉人们在某段时间里信号发生了什么变化,也无法获得某一频率出现的时刻信息,因此,它不具有时间和频率的定位功能
.(3)
由于傅里叶变换等效于s(t)和基函数 做内积,而 对不同的ω构成一族正交基,因此S(ω)精确地反映了s(t)在该频率点的分量大小.基函数 在频域是位于ω处的δ函数,因此,当用傅里叶变换来分析信号的频域特性时,具有最好的频率分辨率.但是 在时域对应的是正弦函数,其在时域的持续时间是-∞~+∞,因此,其时域分辨率最差.对于傅里叶逆变换,分辨率的情况正好相反.这一结果既体现了信号的时频不确定性原理,也反映了傅里叶变换在时域和频域分辨率方面所固有的矛盾.显然,傅里叶变换本身不可能根据信号的特性来自动调节时域和频域的分辨率。
2.傅里叶变换对于非平稳信号的局限性
信号的瞬时频率,表示了信号的谱峰在时间-频率平面上的位置及其随时间的变化情况,一般平稳信号的瞬时频率为常数,而非平稳信号的瞬时频率是时间t的函数.从傅里叶变换变换的表达式可以看出,S(ω)是单变量ω的函数,信号的傅里叶变换不随时间的变化而变化,因此,傅里叶变换仅仅适用于平稳信号.但是,在实际工作中,我们分析和处理的往往是时变的或非平稳的信号,它们的频率随时间变化而变化,其相关函数、功率谱等也是时变信号,用傅里叶变换进行分析,得到的信号频谱反映的是整体信号中包含的某一频率分量的平均值.所以傅里叶变换不能反映信号瞬时频率随时间的变化情况,仅仅适用于分析平稳信号.对频率随时间变化的非平稳信号,傅里叶变换只能给出其总体效果,不能完整地把握信号在某一时刻的本质特征
傅里叶变换分析信号的缺点
基于傅里叶(Fourier)变换的信号频域表示,揭示了时间函数和频谱函数之间的内在联系,在传统的平稳信号分析和处理中发挥了极其重要的作用,很多理论研究和应用研究都把傅里叶变换当作最基本的经典工具来使用.但是傅里叶变换存在着严重的缺点:
1.பைடு நூலகம்里叶变换缺乏时间和频率的定位功能
傅里叶变换及其逆变换表示如下:
2.1、Wigner-Ville分布
维格纳—威利时频分布的最早形式,是由诺贝尔奖获得者维格纳建立并于1932年发表的。在物理学与信息论关于信号瞬时频率与瞬时频谱的研究中,为克服短时傅立叶变换特点,1948年,威利将这个分布函数引为信号分析领域。WVD是一种双线性时频分布,信号s(t)的维格纳分布为:
2.2、伪Wigner-Ville分布(简称PWVD)
尽管WVD存在明显的交叉项,但由于交叉项的振荡特性,可通过对WVD的平滑来实现对交叉项的消除,在时域加一个平滑的窗函数,便得到伪Wigner-Ville分布:
h(t)是一个窗函数,所加窗函数在时域上越短,在频域上的平滑效果越明显,消除交叉项的效果也越好,但WVD的有用性质如频率紧支集性,满足边缘条件等被破坏的也严重,交叉项的消除是以分辨率的降低为代价的。
S(w)为s(t)频谱函数,S∗(t)为s(t)复值共轭形式WVD有许多优良的性质,时频聚焦好,比线形时频有较高分辨率。如果信号在中间某段时间为零,但WVD在信号为零的时间不一定为零,同样在频谱为零的地方,WVD不一定为零,这个现象称为交叉项或干扰项,在分析多分量信号时,WVD的双线形引起的交叉项出现在时频分布中信号能量本应为零的位置。WVD虽存在交叉项,但不存在窗函数或母小波的选取问题,再者,其时频聚焦性好,因而受到人们的喜爱。
相关文档
最新文档