四轴飞行器毕业设计论文

合集下载

四旋翼无人机设计与制作毕业论文

四旋翼无人机设计与制作毕业论文

四旋翼无人机设计与制作毕业论文目录摘要 ................................................................................................ 错误!未定义书签。

Abstract ................................................................................................... 错误!未定义书签。

1绪论 .. (2)1.1研究背景及意义 (2)1.2 国内外四旋翼飞行器的研究现状 (2)1.2.1国外四旋翼飞行器的研究现状 (2)1.2.2国内四旋翼飞行器的研究现状 (4)1.3 本文研究内容和方法 (5)2 四旋翼飞行器工作原理 (7)2.1 四旋翼飞行器的飞行原理 (7)2.2 四旋翼飞行器系统结构 (7)3 四旋翼飞行器硬件系统设计 (9)3.1 微惯性组合系统传感器组成 (9)3.1.1 MEMS陀螺仪传感器 (9)3.1.2 MEMS加速度计传感器 (9)3.1.3 三轴数字罗盘传感器 (10)3.2 姿态测量系统传感器选型 (10)3.3 电源系统设计 (12)3.4 其它硬件模块 (12)3.4.1 无线通信模块 (12)3.4.2 电机和电机驱动模块 (13)3.4.3 机架和螺旋桨的选型 (14)3.4.4 遥控控制模块 (15)4 四旋翼飞行器姿态参考系统设计 (17)4.1 姿态参考系统原理 (17)4.2 传感器信号处理 (18)4.2.1 加速度传感器信号处理 (18)4.2.2 陀螺仪信号处理 (18)4.2.3 电子罗盘信号处理 (19)4.3 坐标系 (19)4.4 姿态角定义 (20)4.5 四元数姿态解算算法 (21)4.6 校准载体航向角 (29)5 四旋翼飞行器系统软件设计 (31)5.1 系统程序设计 (31)5.1.1 姿态参考系统软件设计 (31)5.1.2 PID控制算法设计 (32)结论 (34)参考文献 (35)绪论1.1研究背景及意义随着MEMS传感器、无刷电机、单片机以及锂电池技术的发展,四旋翼飞行器现在已经成为航模界的后起之秀。

四轴飞行器设计毕业设计论文

四轴飞行器设计毕业设计论文

目录第一部分设计任务与调研 (1)1研究背景 (1)2毕业设计的主要任务 (1)第二部分设计说明 (2)1理论分析 (2)2设计方案 (6)2.1 微控制器的选择 (6)2.2 无线模块的选择 (7)2.3 其他模块图片 (9)第三部分设计成果 (10)第四部分结束语 (11)第五部分致谢 (12)第六部分参考文献 (13)第一部分设计任务与调研1研究背景四轴飞行器具备VTOL(Vertical Take-Off and Landing,垂直起降)飞行器的所有优点,又具备无人机的造价低、可重复性强以及事故代价低等特点,具有广阔的应用前景。

可应用于军事上的地面战场侦察和监视,获取不易获取的情报。

能够执行禁飞区巡逻和近距离空中支持等特殊任务,可应对现代电子战、实现通信中继等现代战争模式。

在民用方面可用于灾后搜救、城市交通巡逻与目标跟踪等诸多方面。

工业上可以用在安全巡检,大型化工现场、高压输电线、水坝、大桥和地震后山区等人工不容易到达空间进行安全任务检查与搜救工作,能够对执行区域进行航拍和成图等。

因此,四轴飞行器的研究意义重大。

2毕业设计的主要任务本设计基于Arduino平台的四轴飞行器,包括Arduino最小系统、传感器模块、供电模块、电机驱动模块、蓝牙通讯模块等部分组成。

通过Arduino最小系统采集各传感器模块的数据并进行分析,将处理结果送入电机驱动模块进行姿态调整,实现四轴平稳飞行,系统框图如下:图1 系统框图第二部分设计说明1理论分析设计一个基于Arduino开源硬件平台的最小系统板,采集传感器的数据,传递给主芯片,芯片通过具体算法得出数据调整翼动部分实现水平。

下面将分析一种常见的四轴飞行器姿态解算方法,Mahony的互补滤波法。

此法简单有效,先定义Kp,Ki,以及halfT 。

Kp,Ki,控制加速度计修正陀螺仪积分姿态的速度halfT ,姿态解算时间的一半。

此处解算姿态速度为500HZ,因此halfT 为0.001#define Kp 2.0f#define Ki 0.002f#define halfT 0.001f初始化四元数float q0 = 1, q1 = 0, q2 = 0, q3 = 0;定义姿态解算误差的积分float exInt = 0, eyInt = 0, ezInt = 0;以下为姿态解算函数。

基于GPS的四轴飞行器的导航系统设计

基于GPS的四轴飞行器的导航系统设计

密级:NANCHANG UNIVERSITY学士学位论文THESIS OF BACHELOR(2011—2015年)题目:四轴飞行器的GPS导航系统设计学院:信息工程学院系自动化系专业班级:测控技术与仪器学生姓名:程浩学号:5801211090 指导教师:张宇职称:讲师起讫日期:2015年3月15日至2015年5月29日南昌大学学士学位论文原创性申明本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。

对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。

本人完全意识到本申明的法律后果由本人承担。

作者签名:日期:学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

保密□,在年解密后适用本授权书。

本学位论文属于不保密□。

(请在以上相应方框内打“√”)作者签名:日期:导师签名:日期:目录摘要 (1)第一章绪论 (3)1.1 四轴飞行器定义 (3)1.2 国内外研究现状及发展趋势 (3)第二章四轴飞行器GPS导航模块分析实现设计 (5)2.1 GPS导航系统整体实现程序流程图 (5)2.2 GPS导航系统实现方向框图 (5)2.3 GPS导航模块介绍 (6)2.4 GPS导航模块协议信息接收分析设计 (6)2.5 GPS导航模块协议信息提取设计 (10)2.6 LCD12864液晶显示设计 (10)2.7 按键响应设计 (10)第三章四轴飞行器GPS导航模块硬件设计 (11)3.1 最小系统硬件设计 (11)3.1.1 单片机STC89C52 (11)3.1.2 单片机晶振部分 (12)3.1.3 单片机复位部分 (13)3.1.4 电源模块部分 (13)3.1.5 轻触按键控制部分 (14)3.2 12864液晶显示硬件设计 (14)3.3 GPS导航模块硬件设计 (16)第四章结束语 (18)4.1 展望 (18)4.2 小结与体会 (18)参考文献 (19)附录 (20)四轴飞行器的GPS导航系统设计专业:测控技术与仪器学号:5801211090学生姓名:程浩指导教师:张宇摘要在四轴飞行器诞生之前,如某地发生灾害,救援人员到达现场路途艰辛,派无人机探路虽可以节省时间成本很高,动辄几十万。

毕业设计论文四旋翼飞行器PID控制器的设计

毕业设计论文四旋翼飞行器PID控制器的设计
Keywords:Quad-rotor,STM32F103,MPU6050,Attitude calculation,PID controller
第一章 四旋翼飞行器概述
1.1引言
目前国内外对飞行器的研究主要包括三种:固定翼、旋翼及扑翼式,四旋翼飞行器在布局形式上属于旋翼式的一种。国外早在上世纪初期就开始研究四旋翼飞行器。这种飞行器由军方率先研发并制造用于情报侦查等领域。很多科技企业、大学及研究所也研发并实现了自己的四旋翼飞行器。
目前,国内有很多致力于开源四旋翼飞行器研发的科技企业及技术团队,最受欢迎的有匿名科创开发的匿名四轴,圆点博士小四轴等。匿名四轴的控制方法主要是对姿态欧拉角进行控制,圆点博士小四轴主要是对姿态四元数进行控制,控制效果都很好。这给很多电子技术爱好者提供了丰富的学习资料。
国内有很多针对多旋翼飞行器的技术论坛,也有很多技术论坛专门开设了四旋翼飞行器讨论版块,汇聚了众多四旋翼飞行器的爱好者,提供了飞行器技术学习和提升的平台。
本设计主要介绍一种四旋翼飞行器的实现方案,以意法半导体公司生产的基于AMR Cortex-M3内核的STM32F103C8T6微型控制器作为计算控制单元,以Invensense公司生产的MPU6050作为惯性测量单元,整合飞行器姿态,以NRF24L01无线通信模块作为通信渠道,实现了上位机与下位机各项数据的实时传输,使用WFLY07遥控器实现了对四旋翼飞行器的无线遥控。本文详细介绍了四旋翼飞行器的飞行原理、硬件构造和软件设计,设计了一种PID控制器,实现了四轴飞行器的各项动作控制。
Yaw角为偏航角,如图,机体绕Z轴旋转产生原来XOZ面的夹角,为偏航角。
在+模式下,A组螺旋桨与B组螺旋桨基本没有关系。实现基本的飞行动作只需调节一组螺旋桨的转速。当四个螺旋桨转速相同时,螺旋桨间的扭力矩相互抵消,实现飞行器姿态水平,如果增加螺旋桨的转速,可实现飞行器上升,下降等动作。当1、3号螺旋桨转速增加,而2、4号螺旋桨转速不变时,飞行器可以实现偏航。当1、3号螺旋桨转速不变,2号螺旋桨转速增加,4号螺旋桨转速减小,飞行器可实现横滚运动,即飞行器向左飞。当2、4号螺旋桨转速不变,1号螺旋桨转速增加,3号螺旋桨转速减小,飞行器可实现俯仰运动,即飞行器向前后飞。由此,可以想像飞行器在不同螺旋桨转速下的飞行动作。

四轴飞行器的设计与研究

四轴飞行器的设计与研究

The Research and Design of Quadrotor
Candidate: Cheng Xuegong Supervisor:Prof. Xue Anke, Lecturer Zou Hongbo
December,2012
杭州电子科技大学硕士学位论文


四轴飞行器具备 VTOL(Vertical Take-Off and Landing,垂直起降)飞行器的所有优 点, 又具备无人机的造价低、 可重复性强以及事故代价低等特点, 具有广阔的应用前景。 可应用于军事上的地面战场侦察和监视,获取不易获取的情报。能够执行禁飞区巡逻和 近距离空中支持等特殊任务,可应对现代电子战、实现通信中继等现代战争模式。在民 用方面可用于灾后搜救、城市交通巡逻与目标跟踪等诸多方面。工业上可以用在安全巡 检,大型化工现场、高压输电线、水坝、大桥和地震后山区等人工不容易到达空间进行 安全任务检查与搜救工作,能够对执行区域进行航拍和成图等。因此,四轴飞行器的研 究意义重大。 本文主要讨论四轴飞行器的设计实现、建模分析与控制器设计。首先从历史的角度 介绍小型四轴飞行器的发展以及研究成果,引入现代四轴飞行器的研究,以及运用现代 控制理论进行的研究方法和所取得成果。 其次给出本项目所设计的四轴飞行器样机模型 与飞行控制器电路设计。 着重从机械结构与飞行控制器硬件电路设计方面论述四轴飞行 器的样机设计。文中详细分析了机械结构设计中的选材以及元器件选型,实现了一个切 实可用,能够满足应用研究的四轴飞行器样机模型。一个稳定可用的样机模型是实现四 轴飞行器的基础。之后分析四轴飞行器的飞行控制原理,在此基础上进行动力学分析, 建立四轴飞行器的动力学模型。准确建立数学模型,对分析其飞行姿态原理具有很重要 的作用;准确的分析与建模是四轴飞行器控制算法设计的基础。在飞行器动力学建模的 基础上提出切实可行的控制算法, 并对控制器中需要用到姿态角求解部分进行了详细论 述。姿态角的求解在整个四轴飞行器设计中也是核心内容之一。通过软件设计实现飞行 控制器方案。最后对飞行器各性能指标进行考察,进行实地飞行、调试优化飞行器软件 控制器设计。 关键词:四轴飞行器,无人机,飞行控制器,嵌入式

四旋翼飞行器的稳定悬停与飞行设计论文

四旋翼飞行器的稳定悬停与飞行设计论文

四旋翼飞行器的稳定悬停与飞行设计论文四旋翼飞行器的稳定悬停与飞行设计论文四旋翼飞行器的研究解决了众多的军用与民用上的问题。

下面由学术堂为大家整理出一篇题目为“四旋翼飞行器的稳定悬停与飞行设计”的航天工程论文,供大家参考。

原标题:四旋翼控制系统的设计摘要:在充分考虑四旋翼飞行器功能及性能的基础上,给出了微型四旋翼飞行器的实现方案,采用RL78G13为核心处理器,采用MPU6050实现飞行姿态数据的采集,利用nRF24L01无线模块实现参数的无线传输,并进行了驱动电路、电源稳压电路、电池电压检测电路的设计。

针对四旋翼飞行器在工作过程中供电电压不断降低导致控制不稳的问题,采用电池电压反馈的控制策略有效解决了该问题。

在搭建的硬件平台上,编写了相应的控制程序,经过测试,实现了四旋翼飞行器的稳定控制。

关键词:四旋翼飞行器;姿态数据;无线传输四旋翼飞行器的研究解决了众多的军用与民用上的问题。

军方利用四旋翼飞行器进行侦查、监视、诱饵与通信中继,解决了人为操作困难的问题,甚至减免了人员的伤亡;而在民用上,四旋翼飞行器能够实现大气监测、交通监控、森林防火等功能,有效预防了危机的产生,而促使四旋翼飞行器得到广泛应用的前提,是实现其平稳飞行及自主运行[1].本设计以实现四旋翼飞行器的稳定悬停与按照预定轨道自主飞行为目标,旨在探索四旋翼飞行器的硬件结构与飞行原理,并通过实际调试,理解四旋翼飞行器的相关控制理论,并解决四旋翼飞行器在工作过程中由于供电电压不断降低导致控制不稳的问题。

1设计原理方案四旋翼飞行器的核心是利用MPU6050对其飞行过程中的三轴加速度与三轴角速度值进行采集,主控制器采用四元数方法及PID算法对姿态数据进行解算,并将计算后的PWM控制信号施加到电机上,进而实现对四旋翼飞行器的控制。

通过调研及综合目前四旋翼飞行器系统的特点及要求,确定了设计的性能及指标如下。

(1)通信功能:具有无线接口,实现飞行功能的无线设定。

基于单片机的四轴飞行器毕业设计

基于单片机的四轴飞行器毕业设计

基于单片机的四轴飞行器毕业设计目录摘要 ................................................................................................ 错误!未定义书签。

ABSTRACT ..................................................................................... 错误!未定义书签。

第1章绪论 .. (1)1.1 论文研究背景及意义 (1)1.2 国内外的发展情况 (2)1.3 本文主要研究内容 (4)第2章总体方案设计 (5)2.1 总体设计原理 (5)2.2 总体设计方案 (5)2.2.1 系统硬件电路设计方案 (5)2.2.2 各部分功能作用 (6)2.2.3 系统软件设计方案 (7)第3章系统硬件电路设计 (8)3.1 Altium Designer Summer 09简介 (8)3.2 总体电路设计 (8)3.2.1 遥控器总体电路设计 (8)3.2.2 飞行器总体电路设计 (10)3.3 各部分电路设计 (10)3.3.1 电源电路设计 (10)3.3.2 主控单元电路设计 (12)3.3.3 无线通信模块电路设计 (13)3.3.4 惯性测量单元电路设计 (16)3.3.5 电机驱动电路设计 (18)3.4 PCB设计 (21)3.4.1 PCB设计技巧规则 (21)3.4.2 PCB设计步骤 (22)3.5 实物介绍 (25)第4章系统软件设计 (27)4.1 Keil MDK5.12简介 (27)4.1.1 Keil MDK概述 (27)4.1.1 Keil MDK功能特点 (27)4.2 软件设计框图 (28)4.3 软件调试仿真 (29)4.4 飞控软件设计 (30)4.4.1 MPU6050数据读取 (30)4.4.2 姿态计算IMU (32)4.4.3 PID电机控制 (32)结论 (36)致谢 (38)参考文献 (39)附录1 遥控器主程序源代码 (40)附录2 飞行器主程序源代码 (45)附录3 遥控器原理图 (50)附录4 飞行器原理图 (51)第1章绪论1.1 论文研究背景及意义图1-1 典型四轴飞行器四轴飞行器是一种具有4个对称旋翼的直升机(如图1-1),具有垂直起降、结构简单、操纵方便及机动灵活等优点,在飞行器上挂载摄像头等模块能够实现许多实用功能。

(完整版)基于单片机的微型四旋翼飞行器毕业设计论文

(完整版)基于单片机的微型四旋翼飞行器毕业设计论文

[摘要]本文对微型四旋翼飞行器自平衡算法进行研究,详细分析了应用互补滤波器,进行信号处理的思路和参数整定过程,应用滤波后的数据,进行飞行器姿态角度融合,解算出飞行器实时的俯仰角、翻滚角、偏航角。

在解算出飞行姿态角度的基础上应用PID算法控制四旋翼飞行器进行自平衡悬停及相关的运动姿态控制。

硬件上,采用STM32F103作为微控制器,以MPU6050作为四旋翼飞行器姿态传感器件,通过AO3402MOS管驱动四个空心杯电机改变飞行器姿态,设计结果是能准确测量飞行器姿态并将测量角度输出给相应坐标的电机,进行姿态调整。

本文将从硬件、软件初始化、控制算法及调试等几个篇幅详细展示整个微型四旋翼飞行器的制作过程。

[关键词] 微型四旋翼飞行器;互补滤波算法;PD控制算法;STM32F103;自平衡Abstract: This paper is a research about algorithm of Quadrotor Micro-aircraft Self-balancing. It will detailed analysis the idea about using Complementary filter deal with the digital signals and the basis of flying-Angle using PID algorithm controlling Quadrotor Micro-aircraft achieves the self-balancing control. Hardware uses STM32F103 as micro controller, with MPU6050 as attitude sensor of Quadrotor Micro-aircraft, through AO3402MOS tube driving four result can accurately measure spacecraft attitude and output the measuring Angle to the corresponding coordinates of the motor and realize the attitude adjustment. This article will show the whole production process of the Quadrotor Micro-aircraft in detail from the , control algorithm, debug and so on.Key words: Micro four rotor aircraft;Complementary filter;PD control algorithm; STM32F103;Self-balancing目录1 绪论............................................................................................................................1.1 本课题的研究意义及必要性 ............................................................................1.2 相关领域国内外研究现状及发展趋势 ............................................................1.3论文篇幅简介 .....................................................................................................2 四旋翼飞行器系统分析 ...............................................................................................2.1系统基本原理 .....................................................................................................2.2系统功能要求 .....................................................................................................2.3 系统可行性分析 ................................................................................................3 四旋翼飞行器总体设计 ...............................................................................................3.1 功能模块划分 ....................................................................................................3.2 系统模块设计图 ................................................................................................3.3 系统流程图.........................................................................................................3.4 开发工具和开发框架介绍 ................................................................................3.4.1 Altium Designer 6.9介绍........................................................................3.4.2 Keil for ARM介绍 ..................................................................................3.4.3 Serial_Digital_Scope V2介绍 ................................................................4 四旋翼飞行器详细方案设计 .......................................................................................4.1 硬件模块的功能及设计 ....................................................................................4.1.1 最小系统板STM32F103模块 ..............................................................4.1.2 低压差电源模块 .....................................................................................4.1.3 倾角传感器模块 .....................................................................................4.1.4 空心杯电机驱动模块 .............................................................................4.1.5 NRF24L01无线模块...............................................................................4.2 驱动程序功能及设计 ........................................................................................4.2.1 最小系统板初始化 .................................................................................4.2.2 MPU6050初始化 ....................................................................................4.2.3 NRF24L01初始化...................................................................................4.2.4 空心杯电机驱动初始化 .........................................................................5 四旋翼飞行器控制算法实现 .......................................................................................5.1角度及角速度数据处理算法 .............................................................................5.1.1 互补滤波器可行性分析 .........................................................................5.1.2 互补滤波器算法软件实现 .....................................................................5.2姿态控制算法 .....................................................................................................5.2.1 PID控制算法可行性分析.......................................................................5.2.2 PID控制算法软件实现...........................................................................5.2.3 多维度控制量输出融合算法 .................................................................6 四旋翼飞行器综合调试 ...............................................................................................6.1基本功能实现 .....................................................................................................6.1.1 姿态角度数据采集功能 .........................................................................6.1.2 四旋翼飞行器遥控功能 .........................................................................6.1.3 电机多维度矢量输出功能 .....................................................................6.2高级功能实现 .....................................................................................................6.2.1 姿态角度数据融合功能 .........................................................................6.2.2 四旋翼飞行器自平衡飞行功能 .............................................................结束语............................................................................................................................致谢..................................................................................................................................参考文献............................................................................................................................附录A 部分代码..............................................................................................................1 绪论1.1 本课题的研究意义及必要性信息时代,微电子技术及惯性传感器件的不断进步,使自平衡算法实现成为可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四轴飞行器毕业设计论文 This model paper was revised by the Standardization Office on December 10, 2020毕业论文基于单片机的四轴飞行器夏纯吉林建筑大学2015年6月毕业论文基于单片机的四轴飞行器学生:夏纯指导教师:许亮专业:电子信息工程所在单位:电气与电子信息工程学院答辩日期: 2015 年6月目录摘要 (I)ABSTRACT (II)第1章绪论 (1)论文研究背景及意义 (1)国内外的发展情况 (2)本文主要研究内容 (4)第2章总体方案设计 (5)总体设计原理 (5)总体设计方案 (5)系统硬件电路设计方案 (5)各部分功能作用 (6)系统软件设计方案 (7)第3章系统硬件电路设计 (8)Altium Designer Summer 09简介 (8)总体电路设计 (8)遥控器总体电路设计 (8)飞行器总体电路设计 (10)各部分电路设计 (10)电源电路设计 (10)主控单元电路设计 (12)无线通信模块电路设计 (13)惯性测量单元电路设计 (16)电机驱动电路设计 (18)串口调试电路设计 (19)PCB设计 (21)PCB设计技巧规则 (21)PCB设计步骤 (22)PCB外形设计 (23)实物介绍 (25)第4章系统软件设计 (27)Keil 简介 (27)Keil MDK概述 (27)Keil MDK功能特点 (27)软件设计框图 (28)软件调试仿真 (29)飞控软件设计 (30)MPU6050数据读取 (30)姿态计算IMU (32)PID电机控制 (32)结论 (36)致谢 (38)参考文献 (39)附录1 遥控器主程序源代码 (40)附录2 飞行器主程序源代码 (45)附录3 遥控器原理图 (50)附录4 飞行器原理图 (51)摘要四轴飞行器具备 VTOL(Vertical Take-Off and Landing,垂直起降)飞行器的所有优点,又具备无人机的造价低、可重复性强以及事故代价低等特点,具有广阔的应用前景。

可应用于军事上的地面战场侦察和监视,获取不易获取的情报。

能够执行禁飞区巡逻和近距离空中支持等特殊任务,可应对现代电子战、实现通信中继等现代战争模式。

在民用方面可用于灾后搜救、城市交通巡逻与目标跟踪等诸多方面。

工业上可以用在安全巡检,大型化工现场、高压输电线、水坝、大桥和地震后山区等人工不容易到达空间进行。

本设计主要包括遥控器和飞行器两大部分,其中央处理器CPU均采用基于32位ARM Corex-M3内核的NXP LPC1549,时钟频率为72MHz;飞行器与遥控器之间的无线通信采用通信频段的NRF24L01模块,NRF24L01模块与MCU之间通过SPI协议以1MHz的通信速率通信;飞行器端搭载有3轴加速度计与三轴陀螺仪融合一体的MPU6050惯性测量单元作为姿态欧拉角测量单元,MPU6050与飞行器MCU之间通过I2C协议以400Hz的频率进行通信;飞行器端MCU通过接收无线数据以及采集MPU6050数据通过四元数互补滤波计算出的欧拉角,再进行电机PID 自动控制,最终以20KHz的PWM通过MOS管来驱动空心杯820直流有刷电机,得以实现遥控四轴飞行器的设计。

关键词四轴飞行器;PID自动控制;MPU6050;PWMABSTRACTFour-axis aircraft equipped with VTOL (Vertical Take-Off and Landing, vertical take off and landing) aircraft with all the advantages, and UAV's low cost strong, repeatable, and low accident costs, has broad application prospects. Can be used in military battlefield reconnaissance and surveillance, access is not easy to get information. Able to perform special tasks such as patrolling the no fly zone and close air support, could cope with modern electronic warfare, communications relay of modern warfare. In civil use can be used for post-disaster rescue, traffic patrol and tracking, and many other aspects of the city. Can be used in a safety inspection on the industrial, large-scale chemical sites, high-voltage power lines, dams, bridges and artificial mountain after the earthquake are not easy to reach space.This design includes two remote controls and aircraft parts, central processing unit CPU using of 32ARM NXP Corex-M3 kernel LPC1549,clock frequency is 72MHz; Wireless communication 2.4G communication with the remote control of aircraft band NRF24L01 module NRF24L01 module between the MCU and 1MHz communicationspeed through the SPI protocol communications; Aircraft end carrying a 3-axis accelerometer and integrating three-axis gyro MPU6050 inertial measurement unit as a gesture of Euler angle measurement unit,MPU6050aircraftbetweentheMCU communicatesthroughtheI2CProtocolwith400Hzfrequency; Aircraft end-MCU by receiving wireless data MPU6050 data collected by Quaternion complementary filters calculate the Euler angles. PID motor control, ultimately 20KHz PWM drive through the MOS tube hollow glass 820 DC brush motor, remote control design of four axis aircraft.Keywords Quadrocopter;PID Auto control;MPU6050;PWM第1章绪论论文研究背景及意义图1-1 典型四轴飞行器四轴飞行器是一种具有4个对称旋翼的直升机(如图1-1),具有垂直起降、结构简单、操纵方便及机动灵活等优点,在飞行器上挂载摄像头等模块能够实现许多实用功能。

在实际应用方面,以四轴飞行器为代表的小型无人机在执行军事任务时具有很大的优势。

它们能够在士兵的操控下进行战场上近距离、小范围、复杂地形环境的敌情侦察,还可以用作通信联系工具或者指示目标机,甚至还能装上弹药直接执行战略攻击任务。

在民用与工业领域,四轴飞行器也具有广泛的应用前景。

通过携带特定的功能检测模块,四轴飞行器可以感知危险区域的有毒物质浓度或核辐射强度等。

微型四轴无人飞行器可以自主完成上述任务,不仅节约成本,而且大大简化了人力劳动,也在人类无法到达的危险、危害环境可以完全代替人类工作。

近年来,很多学者和研究机构通过对四轴飞行器进行动力学和运动学分析,建立了系统的数学模型,提出了各种控制算法,并设计了飞行控制系统进行验证;加上传感器技术和控制理论的不断发展,尤其是微电子和微机械技术的逐步成熟,使四轴飞行器的飞行控制成为了一个具有广阔前景的研究课题。

国内外的发展情况早在二战时,载人四轴的原型机已经被设计出来,但因为控制技术还跟不上,飞行器因不稳定而无法投入实际应用。

那时欠缺的技术主要是惯性测量和控制器的缺陷,那时候的惯性导航系统一般是十几公斤的大铁疙瘩。

为了把这么重的东西放到一个多旋翼飞行器上,飞行器的载荷必须很大,可是人们发现,不管是用油机还是电机做多旋翼飞行器的动力系统,都很难得到足够的载荷。

同时,因为固定翼和直升机已经很够实际使用了,所以没有人愿意多花功夫去研究多旋翼飞行器这个棘手的问题。

很长一段时间里,只有美国一些研发性的项目做出了多旋翼飞行器的样机。

20世纪90年代之后,随着微机电系统(MEMS)研究的成熟,几克重的MEMS 惯性导航系统被制作了出来,使得多旋翼飞行器的自动控制器可以制作了。

但是MEMS传感器数据噪音很大,不能直接读出来用,于是人们又花了一些年的时间研究MEMS去噪声的各种数学算法。

这些算法以及自动控制器本身通常需要速度比较快的单片机来运行,于是人们又等了一些年时间,等速度比较快的单片机诞生。

接着人们再花了若干年的时间理解多旋翼飞行器的非线性系统结构,给它建模、设计控制算法、实现控制算法。

因此,直到2005年左右,真正稳定的多旋翼无人机自动控制器才被制作出来。

之前一直被各种技术瓶颈限制住的多旋翼飞行器系统突然出现在人们视野中,大家惊奇地发现居然有这样一种小巧、稳定、可垂直起降、机械结构简单的飞行器存在。

一时间研究者趋之若鹜,纷纷开始多旋翼飞行器的研发和使用。

四旋翼飞行器是多旋翼飞行器中最简单最流行的一种。

如上所述,最初的一段时间主要是学术研究人员研究四旋翼。

四旋翼飞行器最早出现在公众视野可能要追溯到2009年的着名印度电影《三傻大闹宝莱坞》,到了2010年,法国Parrot公司发布了世界上首款流行的四旋翼飞行器。

作为一个高科技玩具,它的性能非常优秀:轻便、灵活、安全、控制简单,还能通过传感器悬停,用WIFI传送相机图像到手机上。

相关文档
最新文档