2018中考模拟试题(二)

合集下载

中考二模测试《数学试题》含答案解析

中考二模测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。

2018宁夏回族自治区中考英语模式试题【二】

2018宁夏回族自治区中考英语模式试题【二】

2018宁夏回族自治区中考英语模式试题【二】二、单项选择从A、B、C、D四个选项中,选出可以填入空白处的正确答案。

(共20小题,计分20分)21. I'm still . Could I have more rice, please?A. tiredB. hungryC. busyD. thirsty22. If you don't take more , you'll get fat.At medicine B. lessons C. photos D. exercise23. " !" called Mr Black when he heard the knock at his door.A. Come onB. Come inC. Come backD. Come down24. This is an old photo of when I was a child.A. meB. mineC. ID. my25. Telephone is way of saying phone.A. anotherB. otherC. the otherD. one26. people were hurt in the train accident.A. hundreds ofB. hundred ofC. hundredD. hundreds27. Look out! The knife is very sharp(U|). You cut your finger.A. needB. mustC. shouldD. may28. All my classmates, except Wu Lin, interested in singing English songs.A. isB. areC. amD. be29. The woman feels worried her sick baby.A. forB. toC. onD. about30. A: is the population of Ningxia?B: More than five million.A. How manyB. WhichC. HowD. What31. Keep quiet, please. They a meeting.A. haveB. hadC. are havingD. have had32. Can you make a sentence the word "produce"?A. withB. inC. byD. at33. He's waked there since the shop opened in 1998, ?A. isn't heB. hasn't heC. doesn't heD. wasn't he34. Mike did something wrong, the headmaster is talking with him.A. andB. butC. soD. at35. The you eat, the better your health will be.A. MeB. fewC. lessD. fewer36. Excuse me. you my dictionary? I can't find it.A. Do, seeB. Have, seenC. Are, seeingD. Did, see37. In most English-speaking countries, it's rude to ask a person's age. Here the word rude means .A. goodB. not politeC. sadD. friendly38. Woolen clothes are used for warm.A. keptB. keepC. to keepD. keeping39. Could you give me two , please?A. pieces of papersB. piece of papersC. piece of paperD. pieces of paper40. The policeman told the boys in the street.A. don't to playB. not playC. not to playD. don't pla三、完形填空(共10小题,计分10分)阅读下面短文,掌握其大意,然后从41—50各题所给的四个选项中选出一个答案。

九年级英语模拟试题及答案

九年级英语模拟试题及答案

九年级英语模拟试题及答案2018年九年级英语模拟试题及答案2018年中考临近,相关的中考试题也陆续公布了,下面是店铺整理的2018年中考模拟试题,希望能帮到你。

2018年度第二学期第二阶段学业质量监测试卷九年级选择题(共40分)一、单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。

1. The solar-powered airplane Solar Impulse 2 arrived in Nanjing ______ April, 2015.A. inB. onC. atD. to2. Eric will never win a gold in the swimming race ______ he works hard.A. ifB. whenC. unlessD. since3. If ______ is a high-stress job, it is important that you learn how to relax after a busy day.A. youB. yourC. yoursD. yourself4. We’d better ______ subjects like age, weight or money while talking in Western countries.A. agreeB. avoidC. affordD. allow5. — ______ will I stay in Singapore during the summer holiday?— Let me check it for you. For two days.A. How muchB. How lon gC. How farD. How many6. Tony is ______ than his father, though he is only eleven years old.A. tallB. tallerC. tallestD. the tallest7. Everyone lent a hand so that the work ______ a week earlierthan I had planned.A. finishesB. has finishedC. is finishedD. was finished8. If you ______ go, at least wait until the storm is over.A. mustB. canC. willD. may9. It is reported that thousands of people ______ since a terrible earthquake hit Nepal.A. diedB. have diedC. have been deadD. will die10. — Paul shows little ______ in the piano competition.— Yes, but his mother insists that he should catch the chance.A. painB. causeC. situationD. interest11. Kevin was ______ late for school this morning. The bell rang right after he walked into the classroom.A. usuallyB. alreadyC. reallyD. nearly12. — ______ big lanterns! I like them very much!— Yes. They sell well at the Lantern Festival.A. HowB. WhatC. What aD. What an13. Mr Green felt surprised and wondered _______.A. when did she come back homeB. who did the cleaning this morningC. how could I get to the post officeD. why they finish the work so early14. Walk along the street and turn right at the second crossing. Which of the following is correct?A. B. C. D.15. — It is raining heavily! Will the rain last long?— _______. The weather report says it will be sunny tomorrow.A. I don’t think soB. It doesn’t matterC. I a greeD. Yes, of course二、完形填空(共10小题;每小题1分,满分10分)阅读下面短文,从短文后所给各题的四个选项 (A、B、C和D) 中,选出可以填入空白处的最佳选项, 并在答题卡上将该项涂黑。

2018-2020年上海市中考数学各地区模拟试题分类(二)——《圆》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(二)——《圆》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(二)——《圆》一.选择题1.(2019•芦淞区一模)如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么∠1的大小是()A.8°B.15°C.18°D.28°2.(2019•虹口区二模)如图,在△ABC中,AB=AC,BC=4,tan B=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取()A.2 B.3 C.4 D.53.(2019•虹口区二模)正六边形的半径与边心距之比为()A.B.C.D.4.(2019•金山区二模)已知⊙O1与⊙O2内切于点A,⊙O1的半径等于5,O1O2=3,那么O2A的长等于()A.2 B.3 C.8 D.2或8 5.(2019•闵行区二模)在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆一定()A.与x轴和y轴都相交B.与x轴和y轴都相切C.与x轴相交、与y轴相切D.与x轴相切、与y轴相交6.(2019•嘉定区一模)已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,过点B、C的圆记作为圆O2,过点C、A的圆记作为圆O3,则下列说法中正确的是()A.圆O1可以经过点C B.点C可以在圆O1的内部C.点A可以在圆O2的内部D.点B可以在圆O3的内部7.(2019•崇明区一模)如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径r>1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外离D.相交8.(2019•金山区一模)如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外D.点B、点C都在⊙A外9.(2019•长宁区一模)在直角坐标平面内,点O是坐标原点,点A的坐标是(3,2),点B的坐标是(3,﹣4).如果以点O为圆心,r为半径的圆O与直线AB相交,且点A、B 中有一点在圆O内,另一点在圆O外,那么r的值可以取()A.5 B.4 C.3 D.2 10.(2019•崇明区二模)在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=﹣1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<﹣1时,点B在圆A外D.当﹣1<a<3时,点B在圆A内11.(2019•嘉定区二模)对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补12.(2018•虹口区二模)如图,在矩形ABCD中,点E是CD的中点,联结BE,如果AB=6,BC=4,那么分别以AD、BE为直径的⊙M与⊙N的位置关系是()A.外离B.外切C.相交D.内切13.(2018•松江区二模)如图,在△ABC中,∠C=90°,AC=3,BC=4,⊙B的半径为1,已知⊙A与直线BC相交,且与⊙B没有公共点,那么⊙A的半径可以是()A.4 B.5 C.6 D.7 14.(2018•长宁区一模)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能15.(2018•奉贤区二模)直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离B.相切C.相交D.不确定二.填空题16.(2020•嘉定区一模)如果正多边形的边数是n(n≥3),它的中心角是α°,那么α关于n的函数解析式为.17.(2020•崇明区一模)两圆的半径之比为3:1,当它们外切时,圆心距为4,那么当它们内切时,圆心距为.18.(2020•闵行区一模)已知在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙C与斜边AB 相切,那么⊙C的半径为.19.(2020•嘉定区一模)如图,⊙O的半径长为5cm,△ABC内接于⊙O,圆心O在△ABC的内部.如果AB =AC ,BC =8cm ,那么△ABC 的面积为 cm 2.20.(2020•闵行区一模)半径分别为3cm 与cm 的⊙O 1与⊙O 2相交于A 、B 两点,如果公共弦AB =4cm ,那么圆心距O 1O 2的长为 cm .21.(2020•奉贤区一模)公元263年左右,我国数学家刘徽发现当正多边形的边数无限增加时,这个正多边形面积可无限接近它的外接圆的面积,因此可以用正多边形的面积来近似估计圆的面积,如图,⊙O 是正十二边形的外接圆,设正十二边形的半径OA 的长为1,如果用它的面积来近似估计⊙O 的面积,那么⊙O 的面积约是 .22.(2020•闵行区一模)正五边形的边长与边心距的比值为 .(用含三角比的代数式表示)23.(2020•崇明区一模)正五边形的中心角的度数是 .24.(2019•青浦区二模)如图,在⊙O 中,OA 、OB 为半径,连接AB ,已知AB =6,∠AOB =120°,那么圆心O 到AB 的距离为 .25.(2019•杨浦区二模)如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E ,交边AD 于点F ,已知AD =5,AE =2,AF =4.如果以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,那么r 的取值范围是 .三.解答题26.(2020•静安区二模)在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.点D在边AB上(不与点A、B重合),以AD为半径的⊙A与射线AC相交于点E,射线DE与射线BC相交于点F,射线AF与⊙A交于点G.(1)如图,设AD=x,用x的代数式表示DE的长;(2)如果点E是的中点,求∠DFA的余切值;(3)如果△AFD为直角三角形,求DE的长.27.(2020•长宁区二模)已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD=CB.(1)如图1,如果BO平分∠ABC,求证:=;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.28.(2020•青浦区二模)如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为的中点时,求弦BC的长;(2)设OD=x,=y,求y与x的函数关系式;(3)当△AOD与△CDE相似时,求线段OD的长.29.(2020•浦东新区二模)已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.30.(2020•闵行区二模)如图,已知圆O是正六边形ABCDEF外接圆,直径BE=8,点G、H 分别在射线CD、EF上(点G不与点C、D重合),且∠GBH=60°,设CG=x,EH=y.(1)如图①,当直线BG经过弧CD的中点Q时,求∠CBG的度数;(2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;(3)联结AH、EG,如果△AFH与△DEG相似,求CG的长.参考答案一.选择题1.解:∵正五边形的内角的度数是×(5﹣2)×180°=108°,又∵正方形的内角是90°,∴∠1=108°﹣90°=18°;故选:C.2.解:如图,过点A作AF⊥BC于点F,连接CD交AF于点G,∵AB=AC,BC=4,∴BF=CF=2,∵tan B=2,∴,即AF=4,∴AB=,∵D为AB的中点,∴BD=,G是△ABC的重心,∴GF=AF=,∴CG=,∴CD=CG=,∵点B在⊙D内,点C在⊙D外,∴<r<,故选:B.3.解:∵正六边形的半径为R,∴边心距r=R,∴R:r=1:=2:,故选:D.4.解:设⊙O2的半径为r,∵⊙O1与⊙O2内切于点A,∴O2A=r,O1A=5,∴r﹣5=3或5﹣r=3,∴r=8或r=2,即O2A的长等于2或8.故选:D.5.解:∵点(3,4),∴点到x轴的距离是4,到y轴的距离是3,∴在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆一定与x轴相切,与y 轴相交,故选:D.6.解:∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,∴点C可以在圆O1的内部,故A错误,B正确;∵过点B、C的圆记作为圆O2,∴点A可以在圆O2的外部,故C错误;∵过点C、A的圆记作为圆O3,∴点B可以在圆O3的外部,故D错误.故选:B.7.解:∵r>1,∴2<3+r,∴这两个圆的位置关系不可能外离.故选:C.8.解:∵在Rt△ABC中,∠C=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=2BC=4,AC=BC=2,∵⊙A的半径为3,4>3,2>3,∴点B、点C都在⊙A外.故选:D.9.解:∵点A的坐标是(3,2),点B的坐标是(3,﹣4),∴OA==,OB==5,∵以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,∴<r<5,∴r=4符合要求.故选:B.10.解:如图:∵A(1,0),⊙A的半径是2,∴AC=AE=2,∴OE=1,OC=3,A、当a=﹣1时,点B在E上,即B在⊙A上,正确,故本选项不合题意;B、当a=﹣3时,B在⊙A外,即说当a<1时,点B在圆A内错误,故本选项符合题意;C、当a<﹣1时,AB>2,即说点B在圆A外正确,故本选项不合题意;D、当﹣1<a<3时,B在⊙A内正确,故本选项不合题意;故选:B.11.解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.12.解:如图所示:连接MN,可得M是AD的中点,N是BE的中点,则MN是梯形ABED的中位线,则MN=(AB+DE)=4.5,∵EC=3,BC=AD=4,∴BE=5,则⊙N的半径为2.5,⊙M的半径为2,则2+2.5=4.5.故⊙M与⊙N的位置关系是:外切.故选:B.13.解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵⊙A、⊙B没有公共点,∴⊙A与⊙B外离或内含,∵⊙B的半径为1,∴若外离,则⊙A半径r的取值范围为:0<r<5﹣1=4,若内含,则⊙A半径r的取值范围为r>1+5=6,∴⊙A半径r的取值范围为:0<r<4或r>6.故选:D.14.解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,15.解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.二.填空题(共10小题)16.解:由题意可得:边数为360°÷α=n,则α=.故答案为α=.17.解:设大圆的半径为R,小圆的半径为r,则有r:R=1:3;又R+r=4,解,得R=3,r=1,∴当它们内切时,圆心距=3﹣1=2.故答案为:2.18.解:Rt△ABC中,∠C=90°,AC=3,BC=4;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=r;∵S△ABC=AC•BC=AB•r,∴r=,故答案为:.19.解:作AD⊥BC于D,∵AB=AC,∴BD=CD=BC=4,∴AD垂直平分BC,∴圆心O在AD上,连接OB,在Rt△OBC中,∵BD=4,OB=5,∴OD===3,如图,AD=OA+OD=5+3=8,此时S△ABC=×8×8=32;故答案为:32.20.解:如图,∵⊙O1与⊙O2相交于A、B两点,∴O1O2⊥AB,且AD=BD;又∵AB=4厘米,∴AD=2厘米,∴在Rt△AO1D中,根据勾股定理知O1D=1厘米;在Rt△AO2D中,根据勾股定理知O2D=3厘米,∴O1O2=O1D+O2D=4厘米;同理知,当小圆圆心在大圆内时,解得O1O2=3厘米﹣1厘米=2厘米.故答案是:4或2;21.解:设AB为正十二边形的边,连接OB,过A作AD⊥OB于D,如图所示:∴∠AOB==30°,∵AD⊥OB,∴AD=OA=,∴△AOB的面积=OB×AD=×1×=∴正十二边形的面积=12×=3,∴⊙O的面积≈正十二边形的面积=3,故答案为:3.22.解:∵⊙O是正五边形ABCDE的外接圆,∴∠BOC=×360°=72°,∴∠1=∠BOC=×72°=36°,设这个正五边形的边长为a,半径为R,边心距为r,R2﹣r2=(a)2=a2,a=R sin36°,a=2R sin36°;a=r tan36°,∴a=2r tan36°,∴=2tan36°,故正五边形的边长与边心距的比值为2tan36°,故答案为:2tan36°.23.解:正五边形的中心角为:=72°.故答案为:72°.24.解:过O作OC⊥AB交AB于C点,如右图所示:由垂径定理可知,OC垂直平分AB,则AC=AB=3,∵OA=OB,∠AOB=120°,∴∠OAB=30°,∴tan∠OAB=tan30°=,∴OC=AC•tan30°=3×=,即圆心O到AB的距离为;故答案为:.25.解:如图,连接EF,∵四边形ABCD是矩形,∴∠BAC=90°,则EF是⊙O的直径,取EF的中点O,连接OD,作OG⊥AF,则点G是AF的中点,∴GF=AF=2,∴OG是△AEF的中位线,∴OG=AE=1,∴OF==,OD==,∵圆D与圆O有两个公共点,∴﹣<r<+,故答案为:﹣<r<+.三.解答题(共5小题)26.解:(1)如图,过点D作DH⊥AC,垂足为H.在Rt△AEH中,,.在⊙A中,AE=AD=x,∴,∴;(2)∵,∴可设BC=4k(k>0),AB=5k,则AC==3k.∵AC=15,∴3k=15,∴k=5.∴BC=20,AB=25.∵点E是的中点,由题意可知此时点E在边AC上,点F在BC的延长线上,∴∠FAC=∠BAC.∵∠FCA=∠BCA=90°,AC=AC,∴△FCA≌△BCA(ASA),∴FC=BC=20.∵,又∵∠AED=∠FEC,且∠AED、∠FEC都为锐角,∴tan∠FEC=2.∴.∴AE=AC﹣EC=20﹣10=5.过点A作AM⊥DE,垂足为M,则.∵,∴.在Rt△EFC中,.∴在Rt△AFM中,.答:∠DFA的余切值为;(3)当点E在AC上时,只有可能∠FAD=90°.∵FC=CE•tan∠FEC=2(15﹣x),∴.∴.∵,又∵∠AED=∠ADE,且∠AED、∠ADE都为锐角,∴.∴.∴AD=x=.∴.当点E在AC的延长线上时,只有可能∠AFD=90°,此时∠AFC=∠AEF.∵∠AFC、∠AEF都为锐角,∴tan∠AEF=tan∠AFC=2.∵CE=AE﹣AC=x﹣15,∴CF=CE•tan∠AEF=2(x﹣15).∴.∴AD=x=.∴.综上所述,△AFD为直角三角形时,DE的长为或.27.(1)证明:如图1中,∵BO平分∠ABC,∴∠ABO=∠CBO,∵OB=OA=OC,∴∠A=∠ABO,∠C=∠OBC,∴∠A=∠C,∵OB=OB,∴△OBA≌△OBC(AAS),∴AB=BC,∴=.(2)解:如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.∵OA⊥OB,∴∠MON=∠DMO=∠DNO=90°,∴四边形DMON是矩形,∴DN=OM=a,∵OA=OB,∠AOB=90°,∴∠A=∠ABO=45°,∵OC=OB,CD=CB,∴∠C=∠OBC,∠CDB=∠CBD,∵∠C+∠CDB+∠CBD=180°,∴3∠C+90°=180°,∴∠C=30°,∴∠CDB=∠CBD=75°,∵∠DMB=90°,∴∠MDB=∠DBM=45°,∴DM=BM,∠ODM=30°,∴DM=OM=a,DN=DM=a,AD=DN=a,∴==.(3)解:如图3﹣1中,当BO=BE时,∵CD=CB,∴∠CDB=∠CBD,∴∠A+∠AOD=∠OBA+∠OBC,∵∠A=∠ABO,∴∠AOD=∠OBC=∠C,∵AOD=∠COE,∴∠C=∠COE=∠CBO,∵∠C=∠C,∴△OCE∽△BCO,∴=,∴=,∴EC2+2EC﹣4=0,解得EC=﹣1+或﹣1﹣(舍弃),∴BC=+1.如图3﹣2中,当EO=EB时,同法可证△OEB是等腰直角三角形,∴EO=EB=EC=OB=,∴BC=2,∵∠OEB=∠C+∠COE>∠OBE,∴OE≠OB,综上所述,BC的值为+1或2.28.解:(1)如图1,联结OF,交BC于点H.∵F是中点,∴OF⊥BC,BC=2BH.∴∠BOF=∠COF.∵OA=OF,OC⊥AF,∴∠AOC=∠COF,∴∠AOC=∠COF=∠BOF=60°,在Rt△BOH中,sin∠BOH==,∵AB=6,∴OB=3,∴BH=,∴BC=2BH=3;(2)如图2,联结BF.∵AF⊥OC,垂足为点=D,∴AD=DF.又∵OA=OB,∴OD∥BF,BF=2OD=2x.∴,∴,即,∴,∴y=.(3)△AOD∽△CDE,分两种情况:①当∠DCE=∠DOA时,AB∥CB,不符合题意,舍去.②当∠DCE=∠DAO时,联结OF.∵OA=OF,OB=OC,∴∠OAF=∠OFA,∠OCB=∠OBC.∵∠DCE=∠DAO,∴∠OAF=∠OFA=∠OCB=∠OBC.∵∠AOD=∠OCB+∠OBC=2∠OAF,∴∠OAF=30°,∴OD=.即线段OD的长为.29.解:(1)作OM⊥EF于M,如图,则EM=FM,∵∠ACB=90°,∴OM⊥BC,∴OM=AC=×8=4,在Rt△OEM中,EM==3,∴EF=2EM=6;(2)CM=BC=8,∴CE=8﹣3=5,∴CE=OE,∴∠OEC=∠OCE,在Rt△OCM中,OC==4,∴sin∠OCM===,∴∠COE的正弦值为.30.解:(1)连接OQ,如图①所示:∵六边形ABCDEF是正六边形,∴BC=DE,∠ABC=120°,BE∥CD,∴=,∠EBC=∠ABC=60°,∵点Q是的中点,∴=,∴+=+,即=,∴∠BOQ=∠EOQ,∵∠BOQ+∠EOQ=180°,∴∠BOQ=∠EOQ=90°.∵BO=OQ,∴∠OBQ=∠BQO=45°,∴∠CBG=∠EBC﹣∠OBQ=60°﹣45°=15°;(2)在BE上截取EM=HE,连接HM,如图②所示:∵正六边形ABCDEF,直径BE=8,∴BO=OE=BC=4,∠BCD=∠FED=120°,∴∠FEB=∠FED=60°,∵EM=HE,∴△HEM是等边三角形,∴EM=HE=HM=y,∠HME=60°,∴∠BCD=∠HMB=120°,∵∠EBC=∠GBH=60°,∴∠EBC﹣∠GBE=∠GBH﹣∠GBE,即∠GBC=∠HBE,∴△BCG∽△BMH,∴.又∵CG=x,BE=8,CD=BC=4,∴,∴y与x的函数关系式为(0<x<4).(3)如图③,当点G在边CD上时.由于△AFH∽△EDG,且∠CDE=∠AFE=120°,①当.∵AF=ED,∴FH=DG,∴CG=EH,即:,解分式方程得:x=4.经检验x=4是原方程的解,但不符合题意舍去.②当.即:,解分式方程得:x=12.经检验x=12是原方程的解,但不符合题意舍去.如图④,当点G在CD的延长线上时.由于△AFH∽△EDG,且∠EDG=∠AFH=60°,①当.∵AF=ED,∴FH=DG,∴CG=EH,即:,解分式方程得:x=4.经检验x=4是原方程的解,但不符合题意舍去.②当.即:,解分式方程得:x=12.经检验x=12是原方程的解,且符合题意.综上所述,如果△AFH与△DEG相似,那么CG的长为12.。

南京市建邺区2018届中考二模语文试题(含答案)

南京市建邺区2018届中考二模语文试题(含答案)

2018 年中考第二次模拟调研九年级语文学科一(26 分)1.用诗文原句填空,其中第(6)题还需填写出作者。

(10分)(1)岂不罹凝寒,!(刘桢《赠从弟》)(2)遥知兄弟登高处,。

(王维《九月九日忆山东兄弟》)(3)?雪拥蓝关马不前。

(《左迁至蓝关示侄孙湘》)(4)过尽千帆皆不是,。

(温庭筠《望江南》)(5)夜阑卧听风吹雨,。

(陆游《十一月四日风雨大作》)(6),化作春泥更护花。

(龚自珍《己亥杂诗》)(7)不要悲伤,不要心急!。

(普希金《假如生活欺骗了你》)(8)自然山水常以其千姿百态的美平息人们热衷功名利禄的心,正如吴均所说:“,。

”(用《与朱元思书》中的句子回答)2.下列文化常识表述错.误.的一项是()(3分) A.《社戏》出自小说集《呐喊》,文中能连翻四十八个跟头的铁头老生属于戏曲四行当中的角色。

“戏曲四行当”指生、旦、净、丑。

B.《关雎》出自我国最早的一部诗歌总集《诗经》。

《诗经》是“四书”之一,共305篇,分为“风”“雅”“颂”三个部分。

C.《女娲造人》中的女娲在中国神话中是造人补天、福佑社稷的神,社稷分别指土地神和谷神,后来社稷成为国家的代称。

D.“香菱学诗”是清代小说家曹雪芹《红楼梦》中的故事。

故事中黛玉提到诗“当中承转是两副对子”,这里“对子”也叫“对联”,它讲究结构相应、平仄相协、意义相关。

3.请在田字格内用正.楷.字.或行.楷.字.抄写下面的句子。

(4 分)圣人师万物阅读下面两则材料,完成4-6题。

【材料一】清晨滚着金边的红云,是美的。

午后飘着yōn g()懒的白云,是美的。

黄昏燃烧炽.()烈的晚霞,是美的。

有时散得干净的天空,也是美的。

那密密层层包裹着青天的乌云,使我们带着冷冽的醒觉,何尝不美呢?(节选自林清玄《云散》)【材料二】冬天行将退尽春寒嫩生生料峭而滋润漾起离合纷纷的记忆如果骤.()尔明暖鸟雀疏狂飞鸣必定会吝悔似的剧转阴mái()甚或雨雪霏霏春天不是这样轻易来(节选自木心《魏玛早春》,有删改)4.给材料中加点字注音,根据拼音写汉字。

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式一.选择题(共22小题) 1.(2020•津南区一模)计算2a (a+1)2+2(a+1)2的结果为( ) A .1B .2C .1a+1D .2a+12.(2020•和平区三模)计算a (a+b)2+b (a+b)2的结果为( ) A .1B .1a+1bC .a +bD .1a+b3.(2020•红桥区三模)计算2−x x−1+2x−3x−1的结果为( )A .2x−1x−1B .1C .1x−1D .24.(2020•河北区二模)化简x 2x−2+42−x的结果是( )A .x +2B .x +4C .x ﹣2D .2﹣x5.(2020•滨海新区二模)计算3x−1x−1+2−3x x−1的结果为( ) A .3x−1B .x ﹣1C .1x−1D .−1x−16.(2020•西青区二模)化简a 2a−1+1−2a a−1结果为( )A .a+1a−1B .a ﹣1C .aD .17.(2020•天津二模)计算x−2x−1+1x−1的结果为( )A .1B .1x−1C .12D .xx−18.(2020•滨海新区一模)计算3x(x−1)2−3(x−1)2的结果是( )A .3B .3x ﹣3C .xx−1D .3x−19.(2020•红桥区一模)计算2a−1a−1−1a−1的结果是( )A .2B .2a ﹣2C .1D .2aa−110.(2020•南开区二模)化简x 2+2xy+y 2x 2−y 2−y x−y的结果是( )A .xx−yB .y x+yC .xx+yD .yx−y11.(2020•和平区一模)计算22a+b+b 2a+b的结果为( )A .1B .2+bC .2−b2a+bD .2+b2a+b12.(2020•红桥区模拟)计算x+2x+1−x x+1的结果为( )A .1B .2C .2x+1D .2xx+113.(2020•西青区一模)化简x 2x−1+x 1−x的结果是( )A .xB .x ﹣1C .﹣xD .x +114.(2019•津南区二模)计算a a 2−b 2−1a−b的结果为( )A .bB .﹣bC .ba−bD .−b a 2−b215.(2019•西青区二模)计算m 2m−n+n 2n−m的结果为( )A .m 2+n 2B .m +nC .m ﹣nD .n ﹣m16.(2019•天津二模)化简m 2m−4+164−m的结果是( )A .m ﹣4B .m +4C .m+4m−4D .m−4m+417.(2019•河北区二模)计算x 2−2x−1+1x−1的结果为( )A .x +1B .x ﹣1C .1x+1D .1x−118.(2019•和平区一模)计算xx−2+2x−2的结果为( )A .0B .1C .2−xx−2D .x+2x−219.(2019•红桥区一模)计算2x+13x−1−2−x3x−1的结果为( )A .1B .﹣1C .33x−1D .x+33x−120.(2019•天津模拟)计算2a a 2−1−1a+1的结果为( )A .1a+1B .1a−1C .aa+1D .aa−121.(2019•河西区模拟)计算2x5x−3÷325x 2−9⋅x5x+3的结果为( )A .2x 23B .(5x+3)23 C .2x5x−3D .2x15x−922.(2019•东丽区二模)计算a(a+1)2+1(a+1)2的结果为( ) A .1B .1aC .a +1D .1a+1二.填空题(共28小题)23.(2020•津南区一模)计算(√3+√5)2的结果等于 . 24.(2020•西青区二模)计算(√5−2)(√5+2)的结果等于 . 25.(2020•滨海新区二模)计算(√3−1)2的结果等于 . 26.(2020•河北区二模)化简(√5−1)2= .27.(2020•红桥区二模)计算(√11+2)(√11−2)的结果等于 . 28.(2020•南开区二模)计算(3+√6)2的结果等于 . 29.(2020•河东区一模)计算(√5+6)•(√5−6)= . 30.(2020•和平区二模)计算(2√2−3)(3+2√2)的结果等于 . 31.(2020•和平区一模)计算(√6+2)(√6−2)的结果等于 . 32.(2020•南开区一模)计算(√5+√2)2的结果是 . 33.(2020•天津二模)计算(√3+2)(√3−2)的结果是 . 34.(2020•河西区模拟)使式子√a −1有意义的a 的取值范围是 . 35.(2020•西青区一模)计算(2√5−√2)2的结果等于 .36.(2020•滨海新区一模)已知x =√3+1,y =√3−1,则x 2+2xy +y 2的值为 . 37.(2019•宝坻区模拟)将√423化为最简二次根式的结果为 .38.(2019•北辰区二模)当x =√10−1时,多项式x 2+2x +6的值等于 . 39.(2019•津南区二模)计算(√5−√2)2的结果等 . 40.(2019•天津二模)计算(√3−√2)2的结果等于 .41.(2019•红桥区二模)计算:(√5+√2)(√5−√2)的结果等于 . 42.(2019•红桥区一模)计算(√7+2)(√7−2)的结果等于 . 43.(2019•和平区二模)计算(2√2−3)2的结果等于 . 44.(2019•滨海新区模拟)计算(√5−√3)2的结果等于 . 45.(2019•东丽区一模)计算:(√3−√2)2= . 46.(2019•大港区模拟)计算√24−√18×√13−√19= .47.(2018•和平区二模)计算(2+√3)(√3−2)的结果等于.48.(2018•北辰区二模)计算(√10+√2)(√10−√2)的结果等于.49.(2018•天津二模)计算(√7+√5)(√7−√5)的结果等于.50.(2018•南开区二模)计算√2×(√6−2√12)的结果等于.2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式参考答案与试题解析一.选择题(共22小题) 1.【解答】解:2a (a+1)2+2(a+1)2=2(a +1)(a +1)2=2a+1. 故选:D . 2.【解答】解:原式=a+b (a+b)2=1a+b . 故选:D . 3.【解答】解:2−x x−1+2x−3x−1=2−x+2x−3x−1=x−1x−1=1.故选:B . 4.【解答】解:x 2x−2+42−x=x 2x −2−4x −2 =x 2−4x −2 =(x −2)(x +2)x −2=x +2. 故选:A . 5.【解答】解:3x−1x−1+2−3x x−1=3x −1+2−3xx −1=1x−1. 故选:C .6.【解答】解:原式=a 2+1−2aa−1=(a −1)2a −1=a ﹣1. 故选:B . 7.【解答】解:x−2x−1+1x−1=x −2+1x −1=1. 故选:A . 8.【解答】解:3x (x−1)2−3(x−1)2=3x−3(x−1)2=3(x−1)(x−1)2=3x−1;故选:D . 9.【解答】解:2a−1a−1−1a−1=2a −1−1a −1=2a −2a −1 =2(a −1)a −1=2, 故选:A .10.【解答】解:原式=(x+y)2(x+y)(x−y)−yx−y=x +y x −y −yx −y=xx−y , 故选:A .11.【解答】解:原式=2+b2a+b , 故选:D . 12.【解答】解:x+2x+1−x x+1=x+2−x x+1=2x+1,故选:C .13.【解答】解:原式=x 2x−1−x x−1=x(x−1)x−1=x ,故选:A.14.【解答】解:aa2−b2−1a−b=a(a+b)(a−b)−a+b(a+b)(a−b)=−ba2−b2,故选:D.15.【解答】解:原式=m2−n2 m−n=m+n,故选:B.16.【解答】解:原式=m2m−4−16m−4=m2−16m−4=(m+4)(m−4)m−4=m+4,故选:B.17.【解答】解:原式=x2−1 x−1=x+1,故选:A.18.【解答】解:xx−2+2 x−2=x+2x−2,故选:D.19.【解答】解:原式=2x+1−2+x3x−1=3x−13x−1=1,故选:A.20.【解答】解:2aa2−1−1a+1=2a(a+1)(a−1)−a−1(a+1)(a−1)=2a−(a−1)(a+1)(a−1)=a+1(a+1)(a−1)=1a−1, 故选:B .21.【解答】解:原式=2x 5x−3•(5x+3)(5x−3)3•x5x+3=2x 23, 故选:A . 22.【解答】解:a (a+1)2+1(a+1)2=1a+1,故选:D .二.填空题(共28小题) 23.【解答】解:原式=3+2√15+5 =8+2√15. 故答案为8+2√15.24.【解答】解:原式=(√5)2﹣22 =5﹣4 =1. 故答案为1.25.【解答】解:原式=3﹣2√3+1 =4﹣2√3. 故答案为4﹣2√3.26.【解答】解:原式=5﹣2√5+1 =6﹣2√5. 故答案为6﹣2√5.27.【解答】解:原式=(√11)2﹣22 =11﹣4 =7. 故答案为728.【解答】解:原式=9+6√6+6 =15+6√6. 故答案为15+6√6.29.【解答】解:原式=(√5)2﹣62=5﹣36=﹣31.故答案为:﹣31.30.【解答】解:(2√2−3)(3+2√2)=(2√2)2﹣32=8﹣9=﹣1,故答案为:﹣1.31.【解答】解:原式=(√6)2﹣22=6﹣4=2.故答案为2.32.【解答】解:原式=(√5)2+2√10+(√2)2=5+2√10+2=7+2√10.故答案为7+2√10.33.【解答】解:原式=(√3)2﹣22=3﹣4=﹣1,故答案为:﹣1.34.【解答】解:使式子√a−1有意义,则a﹣1≥0,解得:a≥1.故答案为:a≥1.35.【解答】解:原式=20﹣4√10+2=22﹣4√10.故答案为22﹣4√10.36.【解答】解:∵x=√3+1,y=√3−1,∴x2+2xy+y2=(x+y)2=(√3+1+√3−1)2=(2√3)2=12;故答案为:12.37.【解答】解:原式=√143=√423, 故答案为:√423; 38.【解答】解:解法一:当x =√10−1时, x 2+2x +6=(√10−1)2+2(√10−1)+6 =10﹣2√10+1+2√10−2+6 =15, 故答案为15;解法二:x 2+2x +6=(x +1)2+5 =(√10−1+1)2+5 =10+5 =15, 故答案为15.39.【解答】解:原式=5﹣2√10+2 =7﹣2√10. 故答案为7﹣2√10.40.【解答】解:原式=3﹣2√6+2 =5﹣2√6. 故答案为5﹣2√6. 41.【解答】解:原式=5﹣2 =3. 故答案为3.42.【解答】解:原式=7﹣4=3. 故答案为3.43.【解答】解:原式=(2√2)2﹣2×2√2×3+32 =8﹣12√2+9 =17﹣12√2, 故答案为:17﹣12√2.44.【解答】解:原式=5﹣2√15+3=8﹣2√15.故答案为8﹣2√15.45.【解答】解:原式=(√3)2+(√2)2−2√3×√2=3+2﹣2√3×2=5﹣2√6.故答案为:5﹣2√6.46.【解答】解:原式=2√6−√18×13−13=2√6−√6−1 3=√6−13.故答案为√6−1 3.47.【解答】解:(2+√3)(√3−2)=(√3)2﹣22=3﹣4=﹣1.故答案为:﹣1.48.【解答】解:原式=10﹣2=8.故答案为8.49.【解答】解:原式=7﹣5=2.故答案为2.50.【解答】解:原式=√2×6−2√2×1 2=2√3−2.故答案为2√3−2.。

泰州市初三英语模拟试题二及答案

泰州市初三英语模拟试题二及答案

泰州市初三英语模拟试题二及答案2018泰州市初三英语模拟试题二及答案中考临近,不知道大家是否全都了解中考考试的题目类型和结构?下面是店铺整理的最新中考模拟试题,希望能帮到你。

2018泰州市初三模拟试题二一、听力(共两节,每小题1分,计20分)第一节(本节共5小题)请你根据每小题所听到的内容,从所给的A、B、C三个选项中选择符合其意的图画。

每小题读一遍。

1. A B C2. A B C3. A B C4. A B C5. A B C第二节(本节共15小题)听下面的对话或独白,每段对话或独白后有几小题,请根据你所听到的内容,从所给的A、B、C三个选项中选出一个适当的答语。

每段对话或独白读两遍。

听第6段材料,回答6—7题。

6. What are the two speakers talking about?A. A birthday party.B. A new bike.C. Lucy's parents.7. What did Lucy ask Mike to do at the end of the conversation?A. Say thanks to his parents.B. Join her in the party.C. Try her new bike.听第7段材料,回答8—10题。

8. Whose birthday are they talking about?A. Tina’s.B. Jim’s.C. Linda’s.9. When is her birthday?A. On June 27 th.B. On July 27 th.C. On July 7 th.10. What does Jim want to give her for her birthday?A. Some books.B. A CD.C. A magazine.听第8段材料,回答11—15题。

湖北省随州市2018年英语中考模拟试题2(word版,无听力部分无答案 )-最新学习文档

湖北省随州市2018年英语中考模拟试题2(word版,无听力部分无答案 )-最新学习文档

九年级英语模拟试卷(2)B )从A、B、C、D四个选项中选出可填入空白处的最佳选项。

26. —I have never seen such beautiful sights.—_____________. A. Neither have IB. So have IC. Neither I haveD. So I ha ve27. —What a nice watch!—My grandpa gave it to me as a gift on my __________ birthday.A. nineB. ninthC. the ninthD. a ninth28. —Look at the girl! Is it Susan? —No, it __________ be her. She has gone back to her hometown.A. can’tB. mustn’tC. needn’tD. wouldn’t29. — You mus t keep the door _______ when you leave your room.— But I want to get the fresh air. I think I can keep the window ________ instead.A. close, openedB. open, closedC. closing, openD. closed, open30. — Mr King, how do you like the weather here?—It’s quite good. It’s __________ too cold __________ too hot.A. either; orB. both; andC. not only; but alsoD. neither; nor31. —Would you mind __________ in the office?—Sorry, I’ll put it out right away.A. don’t smokeB. not smokingC. my smokingD. not to smoke32. —Jim, could you tell me if you ________our party tomorrow? —I think I will ifI __________free.A. will take part in, will beB. take part in, amC. will take part in, amD. would take part in, will be33. —Excuse me, Michael. Do you know________?—I’m not sure. Maybe she’ll have it in her house next Sunday.A. why does Sally want to have a partyB. where will Sally have the partyC. who wants to have a partyD. when Sally will have the party34. —The twins are quite different. Sam is wild while Tom is quiet.—Yeah, Sam is ___________ than Tom.A. less outgoingB. more outgoingC. much tallerD. more serious35. —Don’t litter the ground, boy. Look at the sign, “Rubbish must be thrown into the dustbin.”—Sorry, I’ll __________ right now.A. pick it upB. put it upC. pick up itD. put up it第二节完形填空(共15小题;每小题1 分,满分15分)阅读下面短文,从短文后所给的四个选项中,选出可以填入空白处的最佳选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x =1
x y O -1
2018中考模拟试题(二)
一、选择题(每小题3分,共30分) 1. a 的相反数是( ) A.|a| B.
1
a
C. –a a 2.计算773.810 3.710⨯-⨯,结果用科学记数法表示为( )
A. 70.110⨯
B. 60.110⨯
C. 7110⨯
D. 6110⨯
3. 若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465。

则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是( ) A .3
1 B .21 C .3
2 D .65
4. 下图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )
A .主视图改变,左视图改变
B .俯视图不变,左视图不变
C .俯视图改变,左试图改变
D .主视图改变,左视图不变
5.2015年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往
观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是( )
6. 为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:
捐款的数额(单位:元) 5 10 20 50 100 人数(单位:个)
2
4
5
3
1
关于这15名学生所捐款的数额,下列说法正确的是( ) A .众数是100 B .平均数是30 C .极差是20 D .中位数是20 7. 正六边形的边心距与边长之比为( )
A 3:3
B 3 2
C .1:2
D 2:2
8.已知二次函数y = ax 2
+bx +c (a ≠ 0)的图象如右图所示,则下列结论中正确的是( ) 第8题图
A .a >0 B.3是方程ax 2
+bx +
c =0的一个根 C .a +b +c =0 D .当x <1时,y 随x 的增大而减小
9. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且2
1
==AC AD AB AE , 则BCED
ADE S S 四边形:∆ 的值为( )
A.13
B. 1∶2
C. 1∶3
D. 1∶4
(第9题图) (第10题图)
10. 如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为 120°的菱形,剪口与第二次折痕所成角的度数应为( )
A .15°或30°
B .30°或45°
C .45°或60°
D .30°或60°
二、填空题(每小题4分,共20分)
11. 如图,已知AB //CD ,∠EBA =45°,那么∠E +∠D 的度数为
12.不等式组8<4-121>7-3x x x x +⎧⎪
+⎨⎪⎩
的解集为 .
13. 某校九年级有560名学生参加了教育局举行的读书活动,现随机调查了70名学生读书
的数量,根据所得数据绘制了如图所示的条形统计图,请估计该校九年级学生在此次读书活动中共读书______本.
(第13题图) (第15题图)
14.当x 2-1时,代数式
22211
1x x x x x x x
-+-÷+++的值是 . 15. 如图,折叠矩形纸片ABCD ,使B 点落在AD 上一点E 处,折痕的两端点分别在AB 、BC
上(含端点),且AB=6,BC=10。

设AE=x ,则x 的取值范围是 . 三、解答题
16. (8分)已知0142=--x x ,求代数式2
2
))(()32(y y x y x x --+--的值. 17. (8分) 天山旅行社为吸引顾客组团去具有科斯塔地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):
某单位组织员工去具有科斯塔地貌特征的黄果树风景区旅游,共支付给天山旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有科斯塔地貌特征的黄果树风景区旅游?
18. (10分)贵阳市“有效学习儒家文化”课题于今年4月结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出.小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题: (1)m =___________,n =___________;(4分)
(2)计算乙校的扇形统计图中“话剧”的圆心角;(3分) (3)哪个学校参加“话剧”的师生人数多?说明理由.(3分) 甲校参加汇报演出的师生人数统计表
甲、乙两校参加汇报演出的师生人数统计图
19.(10分)已知:在菱形ABCD 中,O 是对角线BD 上的一动点. (1)如图甲,P 为线段BC 上一点,连接PO 并延长交AD 于点Q ,当O 是BD 的中点时,求证:OP OQ =;
(2)如图乙,连结AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .若460,10AD DCB BS ===,∠,求AS 和OR 的长.
(第19题图) (第20题图)
20(10分).
某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两 位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字. (1)求第一位抽奖的同学抽中文具与计算器的的概率分别是多少?
(2)有同学认为,如果.甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗? 并用列表格或画树状图的方式加以说明.
21.(10分)如图,点A (1﹣
,1+
)在双曲线y=(x <0)上.
(1)求k 的值;
(2)在y 轴上取点B (0,1),为双曲线上是否存在点D ,使得以AB ,AD 为邻边的平行四边形ABCD 的顶点C 在x 轴的负半轴上?若存在,求出点D 的坐标;若不存在,请说明理由.
(第21题图) (第22题图
)
22.(10分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:3,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)
23.(10分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;
(2)若CD ﹦6,AC ﹦8,则⊙O的半径为,CE的长是.
(第23题图) (第24题图)
24.(12分)矩形OBCD在如图所示的平面直角坐标系中,其中三个顶点分别为O(0,0),B(0,3),D(-2,0),直线AB交x轴于点A(1,0)
(1)求直线AB的解析式;
(2)求过A、B、C三点的抛物线的解析式,并写出其顶点E的坐标;
(3)过点E作x轴的平行线EF交AB于点F,将直线AB沿x轴向右平移2个单位,与x轴
3S 交于点G,与EF交于点H,请问过A、B、C三点的抛物线上是否存在点P,使得S△PAG=
4
△PEH,若存在,求点P的坐标;若不存在,请说明理由。

25. (12分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,
①△AEM的周长=_____cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.。

相关文档
最新文档