南京市2011届高三第三次模拟考试数学答案
2011南京三模数学(word)修正版

南京市2010/2011学年度高三年级第三次调研考试数学试卷注意事项:1、本试卷共160分。
考试时间150分钟。
2、答题前,考生务必将学校、姓名、准考证号写在答题纸的对应位置。
答案写在答题纸上对应题目的横线上。
考试结束后,请交回答题纸。
一、题空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题纸相应位置上........。
1、命题“0sin ,>∈∀x R x ”的否定 ▲ .2、已知复z=4-3i (i 为虚数单位),则复数i z 5+的虚部为 ▲ .3、如图,已知集合A={2,3,4,5,6,8},B={1,3,4,5,7},C={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为 ▲ .4、在水平放置的长为5cm 的木杆上挂一盏灯,则悬挂点与木杆两端距离都大于2cm 的概率是 ▲ .5、设变量x ,y 满足约束条件⎪⎨⎧≥++≤-0101y x x ,则目标函数y x z +=2的最小值是 ▲ .= ▲ .上,且CD=2DB , 121>++k a ,则的最小值为 ▲ .11、若不等式xy y x k29422≥+对一切正数x ,y 恒成立,则整数k 的最大值为 ▲ .12、已知直线)(R m mx y ∈=与函数⎪⎪⎩⎪⎪⎨⎧>+≤-=0,1210,)21(2)(2x x x x f x 的图象恰有三个不同的公共点,则实数m 的取值范围是 ▲ . 13、已知椭圆)0(12222>>=+b a b y a x 的左右焦点分别为F 1,F 2,离心率为e ,若椭圆上存在点P ,使得e PF PF =21,则该离心率e 的取值范围是 ▲ .14、如图,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当BNMN 取最小值时,CN= ▲ .二、解答题:本大题共6小题,共计90分,请在答题纸指定的区域内.........作答,解答是时应写出文字说明、证明过程或演算步骤。
数学_2011年江苏省南京市某校高三摸底数学试卷(含答案)

2011年江苏省南京市某校高三摸底数学试卷一、填空题(共14小题,每小题5分,满分70分)1. 若复数(2+a)−ai(i为虚数单位)是纯虚数,则实数a的值为________.2. 若sin(π6−α)=−13,则cos(π3+α)=________.3. 过原点作曲线y=1nx的切线,则切线方程为________.4. 设集合A={x|13<3x<√3},B={x|x−1x<0},则A∪B=________.5. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20−80mg/100ml(不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2009年8月15日至8月28日,全国查处酒后驾车和醉酒驾车共28800人,如图是对这28800人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为________人.6. 已知扇形的半径为10cm,圆心角为120∘,则扇形的面积为________cm2.7. 将函数y=sin2x的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是________.8. 把一根均匀木棒随机地按任意点拆成两段,则“其中一段长度大于另一段长度2倍”的概率为________.9. 学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50, 60)元的同学有30人,则n的值为________.10. 已知抛物线y2=2px(p>0)焦点F恰好是双曲线x2a2−y2b2=1的右焦点,且双曲线过点(3a2 p ,2b2p),则该双曲线的渐近线方程为________11. 已知函数f(x)={2x−1,x>0−x2−2x,x≤0,若函数g(x)=f(x)−m有3个零点,则实数m的取值范围是________.12. 当0≤x ≤12时,|ax −2x 3|≤12恒成立,则实数a 的取值范围是________.13. 首项为正数的数列{a n }满足a n+1=14(a n 2+3),n ∈N +,若对一切n ∈N +都有a n+1>a n ,则a 1的取值范围是________.14. 已知函数f(x)=|x|−1,关于x 的方程f 2(x)−|f(x)|+k =0,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为________.二、解答题(共6小题,满分90分)15. 已知A 、B 、C 为△ABC 的三个内角,且其对边分别为a 、b 、c ,且2cos 2A2+cosA =0.(1)求角A 的值;(2)若a =2√3,b +c =4,求△ABC 的面积.16. 如图:PA ⊥平面ABCD ,ABCD 是矩形,PA =AB =1,AD =√3,点F 是PB 的中点,点E 在边BC 上移动.(Ⅰ)求三棱锥E −PAD 的体积;(Ⅱ)当点E 为BC 的中点时,试判断EF 与平面PAC 的位置关系,并说明理由; (Ⅲ)证明:无论点E 在边BC 的何处,都有PE ⊥AF .17. 某公园准备建一个摩天轮,摩天轮的外围是一个周长为k 米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为8k 元/根,且当两相邻的座位之间的圆弧长为x 米时,相邻两座位之间的钢管和其中一个座位的总费用为[(1024√x+20)x100+2]k 元.假设座位等距离分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为y 元. (1)试写出y 关于x 的函数关系式,并写出定义域;(2)当k =100米时,试确定座位的个数,使得总造价最低?18. 已知椭圆P 的中心O 在坐标原点,焦点在x 轴上,且经过点A(0, 2√3),离心率为12 (1)求椭圆P 的方程;(2)是否存在过点E(0, −4)的直线l 交椭圆P 于点R ,T ,且满足OR →⋅OT →=167.若存在,求直线l 的方程;若不存在,请说明理由.19. 数列{a n }满足:a n+1=3a n −3a n 2,n =1,2,3,…, (1)若数列{a n }为常数列,求a 1的值;(2)若a 1=12,求证:23<a 2n ≤34;(3)在(2)的条件下,求证:数列{a 2n }单调递减. 20. 已知函数f(x)=a |x|+2a x(a >0, a ≠1),(1)若a >1,且关于x 的方程f(x)=m 有两个不同的正数解,求实数m 的取值范围; (2)设函数g(x)=f(−x),x ∈[−2, +∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a 无关.试求a 的取值范围.2011年江苏省南京市某校高三摸底数学试卷答案1. −22. −133. y =1e x4. {x|−1<x <1}5. 43206.1003π7. y =2cos 2x 8. 239. 100 10. y =±√104x 11. (0, 1) 12. −12≤a ≤32 13. 0<a 1<1或a 1>3 14. ①②③④15. 解:(1)由2cos 2A2+cosA =0,得1+cosA +cosA =0,即cosA =−12,∵ A 为△ABC 的内角,∴ A =2π3,(2)由余弦定理:a 2=b 2+c 2−2bccosA∴ a 2=(b +c)2−bc 即12=42−bc∴ bc =4 ∴ S △ABC =12bcsinA =√3.16. (1)三棱锥E −PAD 的体积V =13PA ⋅S △ADE =13PA ⋅(12AD ⋅AB)=√36.(2)当点E 为BC 的中点时,EF 与平面PAC 平行. ∵ 在△PBC 中,E 、F 分别为BC 、PB 的中点,∴ EF // PC ,又EF ⊄平面PAC ,而PC ⊂平面PAC , ∴ EF // 平面PAC . (Ⅲ)证明:∵ PA ⊥平面ABCD ,BE ⊂平面ABCD ,∴ EB ⊥PA ,又EB ⊥AB ,AB ∩AP =A ,AB ,AP ⊂平面PAB , ∴ EB ⊥平面PAB ,又AF ⊂平面PAB , ∴ AF ⊥BE .又PA =AB =1,点F 是PB 的中点, ∴ AF ⊥PB ,又∵ PB ∩BE =B ,PB ,BE ⊂平面PBE , ∴ AF ⊥平面PBE . ∵ PE ⊂平面PBE , ∴ AF ⊥PE .17. 解:(1)设摩天轮上总共有n 个座位,则x =kn即n =kx,y =8k kx+k x [(1024√x+20)x100+2]k =k 2(10x+1024√x+20100),定义域{x|0<x ≤k2,kx ∈Z}; (2)当k =100时,令y =100(1000x+1024√x +20)f(x)=1000x+1024√x ,则f′(x)=−1000x 2+√x=−1000+512x 32x 2=0,∴ x 32=12564⇒x =(12564)23=2516,当x ∈(0,2516)时,f′(x)<0,即f(x)在x ∈(0,2516)上单调减, 当x ∈(2516,50)时,f′(x)>0,即f(x)在x ∈(2516,50)上单调增,y min 在x =2516时取到,此时座位个数为1002516=64个.18. 解:(1)设椭圆P 的方程为x 2a 2+y 2b 2=1(a >b >0), 由题意得b =2√3,ca =12, ∴ a =2c ,b 2=a 2−c 2=3c 2, ∴ c =2,a =4,∴ 椭圆P 的方程为:x 216+y 212=1.(2)假设存在满足题意的直线L .易知当直线的斜率不存在时,OR →⋅OT →<0,不满足题意. 故设直线L 的斜率为k ,R(x 1, y 1),T (x 2, y 2 ).∵ OR →⋅OT →=167,∴ x 1⋅x 2+y 1⋅y 2=167,由{y =kx −4x 216+y 212=1 ,可得(3+4k 2 )x 2−32kx +16=0, 由Δ=(−32k)2−4(3+4k 2)⋅16>0, 解得k 2>14 ①. ∴ x 1+x 2=32k 3+4k2,x 1⋅x 2=163+4k 2,∴ y 1⋅y 2=(kx 1−4 )(kx 2−4)=k 2 x 1⋅x 2−4k(x 1+x 2)+16, ∴ x 1⋅x 2+y 1⋅y 2=163+4k 2+16k 23+4k 2−128k 23+4k 2+16=167,∴ k 2=1 ②,由①、②解得k =±1,∴ 直线l 的方程为y =±x −4, 故存在直线l:x +y +4=0,或x −y −4=0,满足题意. 19. 解:(1)因为数列{a n }为常数列, 所以a n+1=a n ,a n =√a n +32,解得a n =0或a n =23,由n 的任意性知,a 1=0或a 1=23,所以a =0,或a =23;(2)用数学归纳法证明23<a 2n ≤34, 1当n =1时,a 2=34,符合上式, ②假设当n =k(k ≥1)时,23<a 2k ≤34,因为23<a 2k ≤34,所以916≤3a 2k −3a 2k 2<23,即916≤a 2k+1<23,从而23<3a 2k+1−3a 2k+12≤189256,即23<a 2k+2≤189256, 因为189256<34,所以,当n =k +1时,23<a 2k+2≤34成立,由①,②知,23<a 2k ≤34;(3)因为a 2n −a 2n−2=3(3a 2n−2−3a 2n−22)−3(3a 2n−2−3a 2n−22)2−a 2n−2=−27a 2n−24+54a 2n−23−36a 2n−22+8a 2n−2(n ≥2),所以只要证明−27a 2n−24+54a 2n−23−36a 2n−22+8a 2n−2<0,由(2)可知,a 2n−2>0,所以只要证明−27a 2n−23+54a 2n−22−36a 2n−2+8<0,即只要证明27a 2n−23−54a 2n−22+36a 2n−2−8>0, 令f(x)=27x 3−54x 2+36x −8,f ′(x)=27×3x 2−54×2x +36=9(9x 2−12x +4)=9(3x −2)2≥0, 所以函数f(x)在R 上单调递增,因为23<a 2n−2≤34,所以f(a 2n−2)>f(23)=0,即27a 2n−23−54a 2n−22+36a 2n−2−8>0成立, 故a 2n <a 2n−2,所以数列{a 2n }单调递减. 20. 解:(1)令a x =t ,x >0, ∵ a >1,所以t >1,∴ 关于x 的方程f(x)=m 有两个不同的正数解转化为:方程t +2t=m 有相异的且均大于1的两根,∴ {△=m 2−8>0m2>112−m +2>0解得2√2<m <3,故实数m 的取值范围是(2√2,3).(2)g(x)=a |x|+2a x ,x ∈[−2, +∞) ①当a >1时,x ≥0时,a x ≥1,g(x)=3a x ,所以g(x)∈[3, +∞),−2≤x <0时,1a 2≤a x <1,g(x)=a −x +2a x ,所以g′(x)=−a −x lna +2a x lna =2(a x )2−1a xlnaⅰ当1a 2>√12即1<a <√24时,对∀x ∈(−2, 0),g′(x)>0,所以g(x)在[−2, 0)上递增,所以g(x)∈[a 2+2a 2,3),综上:g(x)有最小值为a 2+2a 2与a 有关,不符合ⅱ当1a 2≤√12即a ≥√24时,由g′(x)=0得x =−12log a 2, 且当−2<x <−12log a 2时,g′(x)<0, 当−12log a 2<x <0时,g′(x)>0,所以g(x)在[−2,−12log a2]上递减,在[−12log a2,0]上递增,所以g(x)min=g(−12log a2)=2√2,综上:g(x)有最小值为2√2与a无关,符合要求.②当0<a<1时,a)x≥0时,0<a x≤1,g(x)=3a x,所以g(x)∈(0, 3]b)−2≤x<0时,1<a x≤1a2,g(x)=a−x+2a x,所以g′(x)=−a−x lna+2a x lna=2(a x)2−1a xlna<0,g(x)在[−2, 0)上递减,所以g(x)∈(3,a2+2a2],综上:a)b)g(x)有最大值为a2+2a2与a有关,不符合综上所述,实数a的取值范围是a≥√24.。
南京2011届高三第三次模拟考试

南京市2011届高三第三次模拟考试政治参考答案及评分标准2011.05 一、单项选择题:每小题2分,共计66分。
二、简析题:每小题各12分,共计36分。
34.(1)图表1反映“十一五”期间,A市地区生产总值和民生支出总体呈上升趋势,(1分)民生支出增速总体上高于地区生产总值增速,(1分)说明A市坚持富民优先,同时说明经济发展是民生支出增长的基础。
(1分)图表2反映截至2010年,A市经济社会发展水平高于全省平均水平,更好地实现协调发展。
(2分)材料一表明,经济建设与社会发展相互影响相互促进。
(1分)(2)①贯彻落实科学发展观,统筹城乡协调发展,加强生态文明建设,实现科学发展。
(2分)②大力发展生产力,促进就业,千方百计增加居民收入。
(2分)③重视社会公平,加强宏观调控,发挥财政的积极作用,完善社会保障制度。
(2分)35.(1)①坚持在矛盾普遍性指导下,具体分析矛盾的特殊性。
我国借鉴国际原子能机构以及核电先进国家的安全标准,形成了自己的核安全法规体系。
②根据同一事物在不同阶段的不同矛盾决定发展思路。
在核电发展道路的不同发展阶段,各有不同的侧重点。
③着重把握、解决主要矛盾。
当前,国家强调“安全第一”体现了这一点。
④坚持辩证否定观,树立创新意识。
我国在核电技术利用上,注重在引进消化吸收基础上进行自主创新。
(答出其中3点给6分,如从联系、发展的观点加以阐述,并且材料与观点一致,可酌情给分)(2)①我国是人民民主专政的社会主义国家,政府坚持为人民服务的宗旨以及对人民负责的工作原则。
我国政府加强核安全管理是维护人民利益,对人民负责的体现。
(2分)②我国政府具有组织社会主义经济建设和提供社会公共服务的职能。
政府有责任保护环境、防治污染,安全利用核能,促进经济发展。
(2分)③主权国家作为国际社会的最基本成员必须履行国际义务。
我国在坚定地维护自身利益的同时,也维护各国人民的共同利益。
我国政府加强核安全管理,体现了一个负责任的大国形象。
南京市届高三第三次模拟考试数学试题及答案

南京市2017届高三年级第三次模拟考试数 学参考公式:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数.柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1.已知全集U ={1,2,3,4},集合A ={1,4},B ={3,4},则∁U(A ∪B )= .2.甲盒子中有编号分别为1,2的2个乒乓球,乙盒子中有编号分别为3,4,5,6的41个乒乓球,则取出的乒乓球的编号之和大于63.若复数z 满足z +2-z =3+2i ,其中i 复数z 的共轭复数,则复数z 的模为 .4.执行如图所示的伪代码,若输出y 的值为1,则输入x 的值为 .5.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 .6.在同一直角坐标系中,函数y =sin(x +π3) (x ∈[0,2π])的图象和直线y =12的交点的个数是 .7.在平面直角坐标系xOy 中,双曲线x 22m 2-y 23m=1的焦距为6,则所有满足条件的实数m 构成的集合是 .8.已知函数f (x )是定义在R 上且周期为4的偶函数.当x ∈[2,4]时,f (x )=|log 4(x -32)|,则f (12)的值为 .9.若等比数列{a n }的各项均为正数,且a 3-a 1=2,则a 5的最小值为 .10.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时, 三棱锥D -ABC 1的体积为 .11.若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为 .12.在凸四边形ABCD 中, BD =2,且AC →·BD →=0,(AB →+→DC )•(→BC +→AD )=5,则四边形ABCD 的面积为 .13. 在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆M :(x +a +3)2+(y -2a )2=1(a 为实数).若圆O 与圆M 上分别存在点P ,Q ,使得∠OQP =30,则a 的取值范围为 .14.已知a ,b ,c 为正实数,且a +2b ≤8c ,2a +3b ≤2c ,则3a +8b c的取值范围为 .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)如图,在三棱锥A -BCD 中,E ,F 分别为棱BC ,CD 上的点,且BDACBA B CD A∥平面AEF .(1)求证:EF ∥平面ABD ;(2)若BD ⊥CD ,AE ⊥平面BCD ,求证:平面AEF ⊥平面ACD .16.(本小题满分14分)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈(0,π2).(1)若a -b =(25,0),求t 的值;(2)若t =1,且a • b =1,求tan(2α+π4)的值.17.在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);A(2)若表演台每平方米的造价为万元, 求表演台的最低造价.18.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM →·AB →=-32b 2. (1)求椭圆的离心率;(2)已知a =2,四边形ABCD BC的斜率分别为k 1,k 2,求证:k 1·k 2为定值.19.已知常数p >0,数列{a n }满足a n +1=|p -a n |+2 a n +p ,n ∈N *.(1)若a 1=-1,p =1,①求a 4的值; ②求数列{a n }的前n 项和S n .(2)若数列{a n}中存在三项a r,a s,a t (r,s,t∈N*,r<s<t)依次成等差数列,求a1p的取值范围.20.已知λ∈R,函数f (x)=e x-e x-λ(x ln x-x+1)的导函数为g(x).(1)求曲线y=f (x)在x=1处的切线方程;(2)若函数g (x)存在极值,求λ的取值范围;(3)若x≥1时,f (x)≥0恒成立,求λ的最大值.南京市2017届高三第三次模拟考试数学参考答案及评分标准一、填空题(本大题共14小题,每小题5分,计70分.)1.{2} 2.383.54.-15. 6.27.{32} 8.129.8 10.1311.-1+5212.313.[-65,0] 14.[27,30]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤) 15.(本小题满分14分) 证明:(1)因为BD ∥平面AEF ,BD 平面BCD ,平面AEF ∩平面BCD =EF ,所以BD ∥EF . …………………… 3分因为BD 平面ABD ,EF 平面ABD , 所以EF ∥平面ABD . …………………… 6分(2)因为AE ⊥平面BCD ,CD 平面BCD , 所以AE ⊥CD . …………………… 8分因为 BD ⊥CD ,BD ∥EF , 所以CD ⊥EF , …………………… 10分又 AE ∩EF =E ,AE 平面AEF ,EF 平面AEF , 所以CD ⊥平面AEF . …………………… 12分又 CD 平面ACD , 所以平面AEF ⊥平面ACD . …………………… 14分16.(本小题满分14分)解:(1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ),且a -b =(25,0),所以cos α-sin α=15,t =sin 2α. …………………… 2分由cos α-sin α=15 得 (cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈(0,π2),所以cos α+sin α=75. …………………… 5分 所以sin α=(cos α+sin α)-(cos α-sin α)2=35,从而t =sin 2α=925. …………………… 7分 (2)因为t =1,且a • b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈(0,π2),所以cos α≠0,从而tan α=14. …………………… 9分 所以tan2α=2tan α1-tan 2α=815. …………………… 11分 从而tan(2α+π4)=tan2α+tan π41-tan2α·tan π4=815+11-815=237. …………………… 14分17.(本小题满分14分)解:(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB=3AC.在△ABC中,S△ABC=12AB•AC•sinθ=4003,所以AC2=800sinθ. (3)分由余弦定理可得BC2=AB2+AC2-2AB•AC•cosθ,=4AC2-23AC2 cosθ.=(4-23cosθ) 800sinθ,即BC=(4-23cosθ)•800sinθ=402-3cosθsinθ.所以BC=402-3cosθsinθ,θ∈(0,π).…………………… 7分(2)设表演台的总造价为W万元.因为CD=10m,表演台每平方米的造价为万元,所以W =3BC =1202-3cos θsin θ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. (11)分由f ′(θ)=0,解得θ=π6.当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元). 答:表演台的最低造价为120万元. …………………… 14分18.(本小题满分16分)解:(1)A (a ,0),B (0,b ),由M 为线段AB 的中点得M (a 2,b2).所以OM →=(a 2,b 2),AB →=(-a ,b ). 因为OM →·AB →=-32b 2,所以(a 2,b 2)·(-a ,b )=-a 22+b 22=-32b 2,整理得a 2=4b 2,即a =2b . …………………… 3分因为a 2=b 2+c 2,所以3a 2=4c 2,即3a =2c .所以椭圆的离心率e =ca=32. …………………… 5分 (2)方法一:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12. …………………… 7分 因为AB ∥DC ,故可设DC 的方程为y =-12x +m .设D (x 1,y 1),C (x 2,y 2).联立⎩⎨⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2m 2-2=0,所以x 1+x 2=2m ,从而x 1=2m -x 2. ……………………… 9分直线AD 的斜率k 1=y 1x 1-2=-12x 1+m x 1-2,直线BC 的斜率k 2=y 2-1x 2=-12x 2+m -1x 2,……………………… 11分所以k 1·k 2=-12x 1+m x 1-2·-12x 2+m -1x 2=14x 1x 2-12(m -1)x 1-12mx 2+m (m -1)(x 1-2)x 2=14x 1x 2-12m (x 1+x 2)+12x 1+m (m -1)x 1x 2-2x 2=14x 1x 2-12m ·2m +12(2m -x 2)+m (m -1)x 1x 2-2x 2=14x 1x 2-12x 2x 1x 2-2x 2=14,即k 1·k 2为定值14. ………………………16分 方法二:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12. …………………… 7分 设C (x 0,y 0),则x 024+y 02=1.因为AB ∥CD ,故CD 的方程为y =-12(x -x 0)+y 0.联立⎩⎨⎧y =-12(x -x 0)+y 0,x24+y 2=1,消去y ,得x 2-(x 0+2y 0)x +2x 0y 0=0,解得x =x 0(舍去)或x =2y 0.所以点D 的坐标为(2y 0,12x 0). ……………………… 13分所以k1·k2=12x02y0-2·y0-1x0=14,即k1·k2为定值14.……………………… 16分19.(本小题满分16分)解:(1)因为p=1,所以a n+1=|1-a n|+2 a n+1.①因为a1=-1,所以a2=|1-a1|+2 a1+1=1,a3=|1-a2|+2 a2+1=3,a4=|1-a3|+2a3+1=9.…………………………… 3分②因为a2=1,a n+1=|1-a n|+2 a n+1,所以当n≥2时,a n≥1,从而a n+1=|1-a n|+2 a n+1=a n-1+2 a n+1=3a n,于是有a n=3n-2(n≥2) .…………………………… 5分当n=1时,S1=-1;当n ≥2时,S n =-1+a 2+a 3+…+a n =-1+1-3n -11-3=3n -1-32.所以 S n =⎩⎨⎧1,n =1,3n-1-32,n ≥2,n ∈N *,即S n =3n -1-32,n ∈N *. …………………………8分(2)因为a n +1-a n =|p -a n |+a n +p ≥p -a n +a n +p =2 p >0,所以a n +1>a n ,即{a n }单调递增. ………………………… 10分(i )当a 1p≥1时,有a 1≥p ,于是a n ≥a 1≥p ,所以a n +1=|p -a n |+2 a n +p =a n -p +2 a n +p =3a n ,所以a n =3n -1a 1. 若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,则有2 a s =a r +a t ,即2×3s -1=3r -1+3t -1. (*)因为s ≤t -1,所以2×3s -1=23×3s <3t -1<3r -1+3t -1,即(*)不成立.列.……………………… 12分(ii)当-1<a1p<1时,有-p<a1<p.此时a2=|p-a1|+2 a1+p=p-a1+2 a1+p=a1+2 p>p,于是当n≥2时,a n≥a2>p,从而a n+1=|p-a n|+2 a n+p=a n-p+2 a n+p=3a n.所以a n=3n-2a2=3n-2(a1+2p) (n≥2).若{a n}中存在三项a r,a s,a t (r,s,t∈N*,r<s<t)依次成等差数列,同(i)可知,r=1,于是有2×3s-2(a1+2 p)=a1+3t-2(a1+2p).因为2≤s≤t-1,所以a1a1+2 p =2×3s-2-3t-2=29×3s-13×3t-1<0.因为2×3s-2-3t-2是整数,所以a1a1+2 p≤-1,于是a1≤-a1-2p,即a1≤-p,与-p<a1<p相矛盾.列.………………… 14分(iii)当a1p≤-1时,则有a1≤-p<p,a1+p≤0,于是a2=| p-a1|+2a1+p=p-a1+2 a1+p=a1+2p,a3=|p-a2|+2a2+p=|p+a1|+2a1+5p=-p-a1+2a1+5p=a1+4p,此时有a1,a2,a3成等差数列.综上可知:a1p≤-1.……………………………… 16分20.(本小题满分16分)解:(1)因为f′(x)=e x-e-λln x,所以曲线y=f (x)在x=1处的切线的斜率为f′(1)=0,又切点为(1,f (1)),即(1,0),所以切线方程为y=0.………………………… 2分(2)g (x )=e x -e -λln x ,g ′(x )=e x-λx.当λ≤0时,g ′(x )>0恒成立,从而g (x )在(0,+∞)上单调递增, 故此时g (x )无极值. ………………………… 4分当λ>0时,设h (x )=e x-λx,则h ′(x )=e x+λx 2>0恒成立,所以h (x )在(0,+∞)上单调递增. ………………………… 6分 ①当0<λ<e 时,h (1)=e -λ>0,h (λe)=e λe -e <0,且h (x )是(0,+∞)上的连续函数,因此存在唯一的x 0∈(λe ,1),使得h (x 0)=0.②当λ≥e 时,h (1)=e -λ≤0,h (λ)=e λ-1>0,且h (x )是(0,+∞)上的连续函数,因此存在唯一的x 0∈[1,λ),使得h (x 0)=0.故当λ>0时,存在唯一的x0>0,使得h(x0)=0.…………………… 8分且当0<x<x0时,h(x)<0,即g′(x)<0,当x>x0时,h(x)>0,即g′(x)>0,所以g (x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,因此g (x)在x=x0处有极小值.所以当函数g(x)存在极值时,λ的取值范围是(0,+∞).…………………… 10分(3)g (x)=f′(x)=e x-e-λln x,g′(x)=e x-λx.若g′(x)≥0恒成立,则有λ≤x e x恒成立.设φ(x)=x e x(x≥1),则φ′(x)=(x+1) e x>0恒成立,所以φ(x)单调递增,从而φ(x)≥φ(1)=e,即λ≤e.于是当λ≤e时,g (x)在[1,+∞)上单调递增,此时g (x)≥g (1)=0,即f′(x)≥0,从而f (x)在[1,+∞)上单调递增.所以f(x)≥f(1)=0恒成立.…………………………… 13分当λ>e时,由(2)知,存在x0∈(1,λ),使得g(x)在(0,x0)上单调递减,即f′(x)在(0,x0)上单调递减.所以当1<x<x0时,f′(x)<f′(1)=0,于是f (x)在[1,x0)上单调递减,所以f (x0)<f (1)=0.这与x≥1时,f (x)≥0恒成立矛盾.因此λ≤e,即λ的最大值为e.…………………………… 16分南京市2017届高三第三次模拟考试数学附加参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连结BE .因为AD 是边BC 上的高,AE 是△ABC 所以∠ABE =∠ADC =90°. ……………∠AEB =∠ACD , …………… 6分 所以△ABE ∽△ADC , …………… 8分所以AB AD = AEAC.即AB ·AC =AD ·AE . …………… 10分 B .选修4—2:矩阵与变换解:(1)AX =⎣⎢⎢⎡⎦⎥⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 =⎣⎢⎡⎦⎥⎤x -22-y . …………… 2分 因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎨⎧x -2=1,2-y =2,解得x =3,y =0. …………… 4分(2)由(1)知A =⎣⎢⎢⎡⎦⎥⎥⎤2 30 2 ,又B =⎣⎢⎢⎡⎦⎥⎥⎤1 -10 2 , 所以AB = ⎣⎢⎢⎡⎦⎥⎥⎤2 30 2 ⎣⎢⎢⎡⎦⎥⎥⎤1 -102 =⎣⎢⎢⎡⎦⎥⎥⎤2 40 4 . …………… 6分 设(AB )-1= ⎣⎢⎢⎡⎦⎥⎥⎤a b c d ,则 ⎣⎢⎢⎡⎦⎥⎥⎤2 40 4 ⎣⎢⎢⎡⎦⎥⎥⎤a b c d = ⎣⎢⎢⎡⎦⎥⎥⎤1 00 1 , 即 ⎣⎢⎢⎡⎦⎥⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎢⎡⎦⎥⎥⎤1 00 1 . …………… 8分 所以 ⎩⎨⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14,即 (AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤12 -120 14 .…………… 10分(说明:逆矩阵也可以直接使用公式求解,但要求呈现公式的结构)C.选修4—4:坐标系与参数方程解:由于 2 =x2+y2,cosθ=x,所以曲线C的直角坐标方程为x2+y2-8x+15=0,即 (x-4)2+y2=1,所以曲线C是以 (4,0) 为圆心,1为半径的圆.…………… 3分直线l的直角坐标方程为y=x ,即x-y=0.…………… 6分因为圆心(4,0) 到直线l的距离d=|4-0|2=22>1.…………… 8分所以直线l与圆相离,从而PQ的最小值为d-1=22-1. (10)分D.选修4—5:不等式选讲证明:因为x>0,所以x3+2 =x3+1+1 ≥ 33x3×1×1 = 3x,当且仅当x3=1,即x=1时取“=”.…………… 4分因为y 2+1-2y =(y -1)2≥0,所以y 2+1≥2y , 当且仅当y =1时取“=”. …………… 8分 所以 (x 3+2)+(y 2+1)≥3x +2y ,即x 3+y 2+3≥3x +2y ,当且仅当x =y =1时,取“=”. …………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡..指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)设P (x ,y )为曲线C 上任意一点 .因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ). 因为T (3,0),所以OP→=(x ,y ), ST →=(4,-y ). 因为OP →·ST →=0,所以4x -y 2=0,即y 2=4x . 所以曲线C 的方程为y 2=4x . …………… 3分 (2)因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1.P (x 1,y 1),Q (x 2,y 2).联立⎩⎨⎧y 2=4x ,x =my +1,消去x ,得y 2―4my ―4=0.所以y 1+y 2=4m ,y 1y 2=―4. …………… 5分因为M 为线段PQ 的中点,所以M 的坐标为(x 1+x 22,y 1+y 22),即M (2m 2+1,2m ).又因为S (-1,y 1),N (-1,0),所以SM →=(2m 2+2,2m -y 1),NQ →=(x 2+1,y 2)=(my 2+2,y 2). …………… 7分因为(2m 2+2) y 2-(2m -y 1)(my 2+2)=(2m 2+2) y 2-2m 2y 2+my 1y 2-4m +2y 1=2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0. 所以向量SM→与NQ→共线. …………… 10分 23.(本小题满分10分)解:(1)由题意,当n =2时,数列{a n }共有6项.要使得f(2)是2的整数倍,则这6项中,只能有0项、2项、4项、6项取1,故T2=C06+C26+C46+C66=25=32.……………………… 3分(2)T n=C03n+C33n+C63n+…+C3n3n.……………………… 4分当1≤k≤n,k∈N*时,C3k 3n+3=C3k3n+2+C3k-13n+2=C3k-13n+1+C3k3n+1+C3k-13n+1+C3k-23n+1=2C3k-13n+1+C3k 3n+1+C3k-23n+1=2 (C3k-13n+C3k-23n)+C3k-13n+C3k3n+C3k-33n+C3k-23n= 3 (C3k-13n+C3k-23n)+C3k3n+C3k-33n,……………………… 6分于是T n+1=C03n+3+C33n+3+C63n+3+…+C3n+33n+3=C03n+3+C3n+33n+3+3(C13n+C23n+C43n+C53n+…+C3n-23n+C3n-13n)+T n-C03n+T n-C3n3n=2 T n+3(23n-T n)=3×8n-T n.……………………… 8分下面用数学归纳法证明T n =13[8n+2(-1)n ].当n =1时,T 1=C 03+C 33=2=13[81+2(-1)1],即n =1时,命题成立.假设n =k (k ≥1,k ∈N *) 时,命题成立,即T k =13[8k+2(-1)k ].则当n =k +1时,T k +1=3×8k-T k =3×8k-13[8k +2(-1)k]=13[9×8k -8k -2(-1)k]=13[8k +1+2(-1)k +1],即n =k +1时,命题也成立.于是当n ∈N *,有T n =13[8n +2(-1)n ].。
2011届高三数学模拟试题 (理科)

2011届高三数学模拟试题(理科) 满分:150分 时间:120分钟一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,1,2,3},{|2,}A B x x a a A ===∈集合,则( )A .AB A = B .A B A ÙC .A B B =D .A B A Ø2.命题p :若0,a b a b ⋅<则与的夹角为钝角,命题q :定义域为R 的函数()(,0)(0,)f x -∞+∞在及上都是增函数,则()(,)f x -∞+∞在 上是增函数下列说法正确的是 ( ) A .“p 且q ”是假命题 B .“p 或q ”是真命题C .p ⌝为假命题D .q ⌝为假命题3.函数sin (3sin 4cos )()y x x x x R =+∈的最大值为M ,最小正周期为T ,则有序数对(M ,T )为 ( )A .(5,)πB .(4,)πC .(1,2)π-D .(4,2)π4.“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、c ,若120,C c ==,则( )A .45B > B .45A >C .b a >D .b a <6.定义在区间(0,)a 上的函数2()2xx f x =有反函数,则a 最大为 ( )A .2ln 2B .ln 22C .12 D .27.已知22(,)(3)1P x y x y +-=是圆上的动点,定点A (2,0),B (—2,0),则PA PB⋅ 的最大值为( )A .4B .0C .—12D .128.如图,在1,3ABC AN NC∆=中,P 是BN 上的一点, 若211AP mAB AC=+,则实数m 的值为( )A .911B .511C .311D .2119.设二次函数2()4()f x ax x c x R =-+∈的值域为19[0,),19c a +∞+++则的最大值为( )A .3125B .3833C .65D .312610.有下列数组排成一排:121321432114321(),(,),(,,),(,,,),(,,,,),112123123452345如果把上述数组中的括号都去掉会形成一个数列:121321132154321,,,,,,,,,,,,,,,112123423412345则此数列中的第2011项是( )A .757B .658C .559D .460二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
苏北四市2011届高三年级第三次调研考试

苏北四市2011届高三年级第三次调研考试数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1.复数(1i)i z =-(i 为虚数单位)的共轭复数为 ▲ .2.在空间直角坐标系O xyz -中,点(4,3,7)P -关于坐标平面yOz 的对称点的坐标为 ▲ .3.已知函数22,0,(),0x x x f x ax bx x ⎧+=⎨+>⎩≤为奇函数,则a b += ▲ .4.在某个容量为300的样本的频率分布直方图中, 共有9个小长方形,若中间一个小长方形的面 积等于其他8个小长方形面积和的15,则中间 一组的频数为 ▲ .5.如图是一个算法的程序框图,其输出的结果是 ▲ .6.若1cos 3α=,则cos(2)sin()sin()tan(3)2ααααπ-⋅π+π+⋅π-的值为 ▲ .7.数列{}n a 满足11()2n n a a n *++=∈N ,112a =-,n S 是{}n a 的前n 项和,则2011S = ▲ .8.若()0,3m ∈,则直线(2)(3)30m x m y ++--=与x 轴、y 轴围成的三角形的面积小于98的概率为 ▲ .(第5题)9.若中心在原点、焦点在坐标轴上的双曲线的一条渐近线方程为30x y +=,则此双曲线的离心率为 ▲ .10.已知二次函数2()()f x ax x c x =-+∈R 的值域为[0,)+∞,则22c a a c+++的最小值 为 ▲ .11.已知点,,,P A B C 是球O 表面上的四个点,且,,PA PB PC 两两成60 角,1P A P B P C ===cm ,则球的表面积为 ▲ 2cm .12.如图,过点(5,4)P 作直线l 与圆22:25O x y +=交于,A B 两点,若2PA =,则直线l 的方程为 ▲ .13.如图,在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,2CA CB ==,若2AB AE AC AF ⋅+⋅=,则EF 与BC 的夹角等于 ▲ . 14.若关于x 的方程43210x ax ax ax ++++=有实数根,则实数a 的取值范围为 ▲ . 二、解答题: 本大题共6小题,共计90分.请在答题卡指定的区域........内作答,解答时应写出文字说明、求证过程或演算步骤. 15.(本小题满分14分)已知函数22()sin ()cos ()sin cos 63f x x x x x ππ=-+-+⋅,x ∈R .(1) 求()f x 的最大值及取得最大值时的x 的值;(2) 求()f x 在[0,]π上的单调增区间.FC(第13题)EB A(第12题)16. (本小题满分14分)在直角梯形ABCD 中,AB ∥CD ,24AB BC ==,3CD =,E 为AB 中点,过E 作EF CD ⊥,垂足为F ,如(图一),将此梯形沿EF 折成一个直二面角A EF C --,如(图二).(1)求证:BF ∥平面ACD ; (2)求多面体ADFCBE 的体积.17. (本小题满分14分)在平面直角坐标系xOy 中,已知圆B :22(1)16x y -+=与点(1,0)A -,P 为圆B 上的动点,线段PA 的垂直平分线交直线PB 于点R ,点R 的轨迹记为曲线C . (1) 求曲线C 的方程;(2)曲线C 与x 轴正半轴交点记为Q ,过原点O 且不与x 轴重合的直线与曲线C 的交点记为,M N ,连接,QM QN ,分别交 直线x t =(t 为常数,且2t ≠)于点,E F ,设,E F 的纵坐标分别为12,y y , 求12y y ⋅的值(用t 表示).(第17题)(第16题)(图一) BCD E FA (图二)BACFDE18.(本小题满分16分)如图,某新建小区有一片边长为1(单位:百米)的正方形剩余地块ABCD ,中间部分MNK 是一片池塘,池塘的边缘曲线段MN 为函数29y x =12()33x ≤≤的图象,另外的边缘是平行于正方形两边的直线段.为了美化该地块,计划修一条穿越该地块的直路l (宽度不计),直路l 与曲线段MN 相切(切点记为P ),并把该地块分为两部分.记点P 到边AD 距离为t ,()f t 表示 该地块在直路 l 左下部分的面积. (1)求()f t 的解析式; (2)求面积()S f t =的最大值.19.(本小题满分16分)设函数2()ln f x x a x =-与1()g x x a=1x =于点,A B ,且曲线()y f x =在点A 处的切线与曲线()y g x =在点B 处的切线平行(斜率相等).(1)求函数()f x ,()g x 的表达式;(2)当1a >时,求函数()()()h x f x g x =-的最小值;(3)当1a <时,不等式()()f x m g x ⋅≥在11,42x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围.20. (本小题满分16分)已知各项均为正数的等比数列{}n a 的公比为q ,且102q <<. (1)在数列{}n a 中是否存在三项,使其成等差数列?说明理由;(2)若11a =,且对任意正整数k ,12()k k k a a a ++-+仍是该数列中的某一项. (i)求公比q ;(ii)若1log 1)n n a b +=-,12n n S b b b =+++ ,12n n T S S S =+++ ,试用2011S 表示2011T .(第18题)徐州市2011届高三年级第三次调研考试数学Ⅰ答案及评分标准一、填空题:1. 1i - 2.(4,3,7)-- 3.0 4.50 5.16 6.13 7.502 8.23 910.10 11.32π 12.4y =或4091640x y --= 13.3π 14. [)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦二、解答题:15. (1)1cos(2)1cos(2)133()sin 2222x x f x x π2π--+-=++………………………………2分 11(sin 2cos2)2x x =+-)14x π=-+,………………………………4分 当2242x k ππ-=π+,即3,8x k k π=π+∈Z 时,……………………………………6分()f x1.………………………………………………………………8分 (2)由222242k x k ππππ--π+≤≤,即3,88k x k k πππ-π+∈Z ≤≤,又因为0x π≤≤,所以所求()f x 的增区间为3[0,],[,π]88π7π.……………………14分16.(1)连接EC ,交BF 于点O ,取AC 中点P ,连接,PO PD ,可得PO ∥AE ,且12PO AE =,而DF ∥AE ,且12DF AE =,所以DF ∥PO , 且DF PO =,所以四边形DPOF 为平行四边形,所以FO ∥PD ,即BF ∥PD ,又PD ⊂平面ACD ,BF ⊄平面ACD ,所以BF ∥平面ACD .……………………………………………8分(2)二面角A EF C --为直二面角,且AE EF ⊥,所以AE ⊥平面BCFE , 又BC ⊂平面BCFE ,所以AE BC ⊥,又BC BE ⊥,BE AE E = , 所以BC ⊥平面AEB ,所以BC 是三棱锥C ABE -的高,同理可证CF 是四棱锥C AEFD -的高,……………………………………………10分B C F D E A OP所以多面体ADFCBE 的体积111110222(12)2232323C ABE C AEFD V V V --=+=⨯⨯⨯⨯+⨯+⨯⨯=.………………14分17. (1)连接RA ,由题意得,RA RP =,4RP RB +=,所以42RA RB AB +=>=,…………………………………………………………2分由椭圆定义得,点R 的轨迹方程是22143x y +=.……………………………………4分 (2)设M 00(,)x y ,则00(,)N x y --,,QM QN 的斜率分别为,QM QN k k , 则002QM y k x =-,002NQ y k x =+,………………………………………………………6分 所以直线QM 的方程为00(2)2y y x x =--,直线QN 的方程00(2)2y y x x =-+,…8分 令(2)x t t =≠,则001200(2),(2)22y y y t y t x x =-=--+,……………………………10分 又因为00(,)x y 在椭圆2200143x y +=,所以2200334y x =-, 所以222022********(3)(2)34(2)(2)444x t y y y t t x x --⋅=-==----,其中t 为常数.……14分 18.(1)因为29y x=,所以229y x '=-,所以过点P 的切线方程为222()99y x t t t -=--,即22499y x t t=-+,…………2分令0x =,得49y t=,令0y =,得2x t =.所以切线与x 轴交点(2,0)E t ,切线与y 轴交点4(0,)9F t .………………………4分①当21,41,912,33t tt ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤即4192t ≤≤时,切线左下方的区域为一直角三角形, 所以144()2299f t t t =⨯⨯=.…………………………………………………………6分②当21,41,912,33t tt ⎧⎪>⎪⎪⎨⎪⎪⎪⎩≤≤≤ 即1223t <≤时,切线左下方的区域为一直角梯形, 22144241()()12999t t f t t t t --=+⋅=,……………………………………………………8分 ③当21,41,912,33t tt ⎧⎪⎪⎪>⎨⎪⎪⎪⎩≤≤≤即1439t <≤时,切线左下方的区域为一直角梯形, 所以221499()(2)12224t t f t t t t -=+⋅=-. 综上229142,,439441(),,9924112,.923t t t f t t t t t ⎧-<⎪⎪⎪=⎨⎪-⎪<⎪⎩≤≤≤≤……………………………………………………10分 (2)当1439t <≤时, 29()24f t t t =- 29444()4999t =--+<,……………………………12分当1223t <≤时, 241()9t f t t -=21144(2)999t =--+<,………………………………14分 所以max 49S =.…………………………………………………………………………16分19.(1)由2()ln f x x a x =-,得22()x a f x x-'=,………………………………………2分由1()g x x a ='()g x =.又由题意可得(1)(1)f g ''=,即222a a a --=,故2a =,或12a =.………………………………………………4分 所以当2a =时,2()2ln f x x x =-,1()2g x x =;当12a =时,21()ln 2f x x x =-,()2g x x =6分(2)当1a >时,21()()()2ln 2h x f x g x x x x =-=--212(1)(1)'()22x x h x x x x -+=--+=1)=⎣⎦,………………………………………8分由0x >0>,故当(0,1)x ∈时,()0h x '<,()h x 递减, 当(1,)x ∈+∞时,()0h x '>,()h x 递增, 所以函数()h x 的最小值为13(1)12ln1122h =--+=.…………………10分 (3)12a =,21()ln 2f x x x =-,()2g x x =当11[,)42x ∈时, 21()ln 2f x x x =-,2141'()2022x f x x x x -=-=<, ()f x 在1142⎡⎤⎢⎥⎣⎦,上为减函数,111()()ln 20242f x f =+>≥,………………………12分当11[,)42x ∈时,()2g x x ='()20g x ==>,()g x 在1142⎡⎤⎢⎥⎣⎦,上为增函数,1()()12g x g =-≤,且1()()04g x g =≥.……14分要使不等式()()f x m g x ⋅≥在11,42x ⎡⎤∈⎢⎥⎣⎦上恒成立,当14x =时,m 为任意实数;当11(,]42x ∈时,()()f x m g x ≤,而min1()()21()()2f f xg x g ⎡⎤==⎢⎥⎣⎦.所以m .……………………………………………………………16分20.⑴由条件知:11-=n n q a a ,102q <<,01>a , 所以数列{}n a 是递减数列,若有k a ,m a ,n a ()k m n <<成等差数列,则中项不可能是k a (最大),也不可能是n a (最小),………………………………2分 若 k n k m n k m q q a a a --+=⇔+=122,(*) 由221m k q q -<≤, 11>+-k h q ,知(* )式不成立,故k a ,m a ,n a 不可能成等差数列. ………………………………………………4分 ⑵(i)方法一: ⎥⎦⎤⎢⎣⎡++-=--=----++45)21()1(21121121q q a q q q a a a a k k k k k ,……6分由)1,41(45)21(2∈++-q 知, 121k k k k k a a a a a ++---<<< , 且>>>--++++3221k k k k k a a a a a … ,………………………………………………8分 所以121+++=--k k k k a a a a ,即0122=-+q q , 所以12-=q ,………………………………………………………………………10分方法二:设12k k k m a a a a ++--=,则21m k q q q ---=,…………………………………6分由211,14q q ⎛⎫--∈ ⎪⎝⎭知1m k -=,即1m k =+, ……………………………………8分以下同方法一. …………………………………………………………………………10分 (ii) nb n 1=,………………………………………………………………………………12分 方法一:nS n 131211++++= ,)131211()31211()211(1n T n +++++++++++=n n n n n n )1(3221--++-+-+= )1433221()131211(nn n n -++++-++++=)]11()411()311()211[(nnS n -++-+-+--=)]13121()1[(n n nS n +++---=)]131211([nn nS n ++++--=n n S n nS +-=(1)n n S n =+-,所以2011201120122011T S =-.…………………………………………………16分方法二:11111312111++=++++++=+n S n n S n n 所以 1(1)(1)1n n n S n S ++-+=,所以1(1)1n n n n S nS S ++-=+, 12112+=-S S S , 123223+=-S S S , … … 1)1(1+=-++n n n S nS S n ,累加得n T S S n n n +=-++11)1(,所以1(1)1(1)(1)()1n n n n n T n S n n S n n S b n +=+--=+-=++--1(1)()11n n S n n =++--+ (1)n n S n =+-, 所以2011201120122011T S =-. ……………………………………………………16分徐州市2011届高三年级第三调研考试数学Ⅱ(附加题)21.【选做题】在下面A 、B 、C 、D 四个小题中只能选做两题,每小题10分,共20分. A .选修4-1:几何证明选讲如图所示,圆O 的两弦AB 和CD 交于点E ,EF ∥CB ,EF 交AD 的延长线于点F ,FG 切圆O 于点G .(1)求证:△DFE ∽△EFA ;(2)如果1FG =,求EF 的长.B .选修4—2 矩阵与变换设M 是把坐标平面上点的横坐标不变、纵坐标沿y 轴方向伸长为原来5倍的伸压变换. (1)求直线4101x y -=在M 作用下的方程; (2)求M 的特征值与特征向量.(第21—A 题)C .选修4-4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若曲线1C 的方程为2=8sin 15ρρθ-,曲线 2C的方程为,x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)将1C 的方程化为直角坐标方程; (2)若2C 上的点Q 对应的参数为34απ=,P 为1C 上的动点,求PQ 的最小值. D .选修4—5:不等式选讲设函数()11f x x x =-++,若不等式2()a b a b a f x +--⋅≤对任意,a b ∈R 且0a ≠恒成立,求实数x 的范围. 22.(本小题满分10分)如图, 在直三棱柱111ABC A B C -中,3AC =,4BC =,5=AB ,14AA =.(1)设AD AB λ= ,异面直线1AC 与CD 所成角的余弦值为925,求λ的值;(2)若点D 是AB 的中点,求二面角1D CB B --的余弦值.23.(本小题满分10分)在0,1,2,3,…,9这十个自然数中,任取3个不同的数字. (1)求组成的三位数中是3的倍数的有多少个?(2)将取出的三个数字按从小到大的顺序排列,设ξ为三个数字中相邻自然数的组数(例如:若取出的三个数字为0,1,2,则相邻的组为0,1和1,2,此时ξ的值是2),求随机变量ξ的分布列及其数学期望E ξ.(第22题)BAC A 1D B 1C 1徐州市2011届高三年级第三次调研考试数学Ⅱ(附加题)答案及评分标准21.【选做题】A .选修4-1:几何证明选讲(1)因为EF ∥CB ,所以BCE FED ∠=∠,又BAD BCD ∠=∠,所以BAD FED ∠=∠,又EFD EFD ∠=∠,所以△DEF ∽△EFA .……………………………………6分 (2)由(1)得,EF FDFA EF=,2EF FA FD =⋅. 因为FG 是切线,所以2FG FD FA =⋅,所以1EF FG ==.…………………10分B .选修4—2:矩阵与变换(1)1005⎡⎤=⎢⎥⎣⎦M .………………………………………………………………………2分 设(,)x y ''是所求曲线上的任一点,1005x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦, 所以,5,x x y y '=⎧⎨'=⎩所以,1,5x x y y '=⎧⎪⎨'=⎪⎩代入4101x y -=得,421x y ''-=,所以所求曲线的方程为124=-y x .……………………………………………4分(2)矩阵M 的特征多项式1()(1)(5)005f λλλλλ-==--=-, 所以M 的特征值为5,121==λλ.………………………………………………6分当11=λ时,由111λ=M αα,得特征向量110⎡⎤=⎢⎥⎣⎦α;当52=λ时,由222λ=M αα,得特征向量201⎡⎤=⎢⎥⎣⎦α.………………………10分C .选修4-4:坐标系与参数方程(1)228150x y y +-+=.…………………………………………………………4分 (2)当34απ=时,得(2,1)Q -,点Q 到1C , 所以PQ 1.………………………………………………10分D .选修4—5:不等式选讲 由2()a b a bf x a +--≥,对任意的,a b ∈R ,且0a ≠恒成立,而223a b a ba b a b+--++-=≤,()3f x ≥,即113x x -++≥,解得32x -≤,或32x ≥,所以x 的范围为33,22x x x ⎧⎫-⎨⎬⎩⎭≤或≥. …………10分22.(1)以1,,CA CB CC 分别为x y z ,,因为3AC =,4BC =,14AA =,所以(300)A ,,, (0,4,0)B ,(000)C ,,,1(0,0,4)C =, 所以1(3,0,4)AC =-,因为AD AB λ= ,所以点(33,4,0)D λλ-+,所以(33,4,0)CD λλ=-+,因为异面直线1AC 与CD 所成角的余弦值为925,所以 19|cos ,|25AC CD <>==,解得12λ=.……………4分 (2)由(1)得1(044)B ,,,因为 D 是AB 的中点,所以3(20)2D ,,,所以3(20)2CD = ,,,1(044)CB = ,,,平面11CBB C 的法向量 1n (1,0,0)=, 设平面1DB C 的一个法向量2000(,,)x y z =n ,则1n ,2n 的夹角(或其补角)的大小就是二面角1D CB B --的大小,由2210,0,CD CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 得0000320,2440,x y y z ⎧+=⎪⎨⎪+=⎩令04x =,则03y =-,03z =, 所以2n (4,3,3)=-, 12122cos ||||⋅<>==⋅,n n n n n n , 所以二面角1D B C B --. …………………………………10分 23.(1)要想组成的三位数能被3整除,把0,1,2,3,…,9这十个自然数中分为三组:0,3,6,9;1,4,7;2,5,8.若每组中各取一个数,含0,共有1112332236=C C C A 种; 若每组中各取一个数不含0,共有11133333=162C C C A 种;若从每组中各取三个数,共有322233223=30A +C A A 种.所以组成的三位数能被3整除,共有36+162+30=228种.………………………6分 (2)随机变量ξ0,1,2所以ξ的数学期望为77130121515155E ξ=⨯+⨯+⨯=.……………………………10分。
2011届高三数学模拟试题(文科)

2011届高三数学模拟试题(文科)满分:150分 时间:120分钟一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,1,2,3},{|2,}A B x x a a A ===∈集合,则( )A .AB A = B .A B A ÙC .A B B =D .A B A Ø2.命题p :若0,a b a b ⋅<则与的夹角为钝角,命题q :定义域为R 的函数()(,0)(0,)f x -∞+∞在及上都是增函数,则()(,)f x -∞+∞在 上是增函数下列说法正确的是 ( ) A .“p 且q ”是假命题 B .“p 或q ”是真命题C .p ⌝为假命题D .q ⌝为假命题3.“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数sin (3sin 4cos )()y x x x x R =+∈的最大值为M ,最小正周期为T ,则有序数对(M ,T )为( )A .(5,)πB .(4,)πC .(1,2)π-D .(4,2)π5.在ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、c ,若120,C c ==,则( )A .45B > B .45A >C .b a >D .b a <6.函数()7)f x x =≤≤的反函数是( )A .1()770)f x x -=+-≤≤B .1()7)f x x -=≤≤C .1()7)fx x -=≤≤D .1()770)f x x -=-≤≤ 7.已知22(,)(3)1P x y x y +-=是圆上的动点,定点A (2,0),B (—2,0),则PA PB⋅ 的最大值为 ( )A .12B .0C .—12D .48.如图,在1,3ABC AN NC ∆= 中,P 是BN 上的一点,若211AP mAB AC=+,则实数m 的值为( )A .911B .511C .311D .2119.设4901,1x x x <<+-则的最小值为 ( )A .24B .26C .25D .110.有下列数组排成一排:121321432114321(),(,),(,,),(,,,),(,,,,),112123123452345如果把上述数组中的括号都去掉会形成一个数列:121321132154321,,,,,,,,,,,,,,,112123423412345则此数列中的第2011项是( )A .757B .658C .559D .460二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
南京市2011届高三年级第三次模拟考试

南京市2011届高三年级第三次模拟考试化 学 2011.05本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
共120分。
考试用时100分钟。
注意事项:答题前,考生务必将自己的学校、姓名、班级、准考证号写在答题纸的对应位置。
选择题答案按要求填涂在答题纸上;非选择题的答案写在答题纸上对应题目的答案空格内,答案不要写在试卷上。
考试结束后,交回答题纸。
可能用到的相对原子质量:Hl N14 016 Na23 S32 Mo 96选择题单项选择题:本题包括8小题,每小题2分,共计16分。
每小题只有一个选项符合题意。
1.2011年世界地球日主题是“倡导绿色消费、支持绿色生产、共建绿色家园”。
下列做法不正确的是A .用活性炭、漂白粉消除水中藻类产生的毒素B .用二氧化碳与环氧化合物合成聚碳酸酯类可降解塑料C .大量重复使用以橡胶、炭黑、硫化剂、促进剂、防老化剂等为原料炼制而成的混炼胶制造橡胶轮胎D .核电站为阻止高辐射污水由碎石层流入竖井裂缝进入海中,向碎石层内注入“水玻璃”2.下列有关化学用语正确的是A .H 2S 的结构式:H —S —HB .¦Mg 2+的结构示意图:C .二氧化碳的电子式:D .2-甲基丁醛的结构简式:3.下列离子方程式书写正确的是A .用Ba(OH)2溶液吸收氯气:2OH -+ 2Cl 2 =2Cl - +2ClO -+H 2OB .淀粉碘化钾溶液在空气中变蓝:4I -+O 2 +2H 2O = 4OH -+2I 2C .用酸性K 2Cr 2O 7溶液检验酒精:3CH 3CH 2OH + 2Cr 2O 72-+ 13H += 4Cr 3++ 11H 2O + 3CH 3COO-D .用氨水吸收足量的SO 2气体:OH -+SO 2 = HSO 3-4.下列有关物质应用的说法不正确的是A .碳酸钠用于治疗胃溃疡病人的胃酸过多症B .Na 2O 2用作呼吸面具的供氧剂C .明矾用于净化生活用水D .福尔马林用于浸制生物标本5.设n A 为阿伏加德罗常数的值,下列叙述正确的是A .常温下,1 L 0.1 mol·L -1的NH 4NO 3溶液中NH 4+和NO 3-总数为0.2n AB .标准状况下,4. 48L 重水(D 2O)含有的中子数为2n AC .在反应KIO 3+6HI =KI +3I 2 +3H 2O 中,每生成3mol I 2转移的电子数为5n AD .标准状况下,22. 4LNO 和11. 2LO 2充分反应,所得气体中NO 2的分子数为n A6.常温下,下列各组离子在指定溶液中能大量共存的是+12 8 2 2 C O O CH 3 CH 3—CH —CH 2—CHOA .pH=l 的溶液中:Mg 2+、Na +、AlO 2-、SO 42-B .含有大量NO 3-的溶液中:H +、Na +、Fe 3+、Cl —C .c(OH —)/c(H +) =1012的溶液中:SO 32-、NH 4+、NO 3-、K +D .含有大量MnO 4-的溶液中:Ca 2+、K +、Cl -、I -7.下列实验图示及有关描述正确的是甲 乙 丙 丁A .用甲图所示装置可以电解精炼铝B .用乙图所示装置可以检验有乙烯生成C .用丙图所示装置可以制得金属锰D .用丁图所示装置可以收集Cl 28.三种不同物质有如图所示转化关系:甲NaOH −−−−→溶液乙−−−→盐酸丙△甲,则甲不可能是A .Al 2O 3B .SiO 2C .CO 2D .NH 4Cl不定项选择题:本题包括6小题,每小题4分,共计24分。