应用二重积分解决定积分问题
二重积分及三重积分的计算

第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限.)0(21lim 1>++++∞→a nn a a a a n . 解 原式=⎰∑=⋅⎪⎭⎫ ⎝⎛=∞→1011lim aani n x n n i dx =a a x a +=++11111.例2 求极限 ⎰+∞→1021lim xx n n dx . 解法1 由10≤≤x ,知nn x x x ≤+≤210,于是⎰+≤1210x x n ⎰≤1n x dx dx .而⎰10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得⎰+∞→1021lim xx n n dx =0.解法2 利用广义积分中值定理()()x g x f ba⎰()()⎰=bax g f dx ξdx (其中()x g 在区间[]b a ,上不变号),().101111212≤≤+=+⎰⎰n n nn dx x dx xx ξξ由于11102≤+≤nξ,即211nξ+有界,()∞→→+=⎰n n dx x n01110,故⎰+∞→1021lim x x nn dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R -型可作相应变换.如对积分()⎰++3122112xxdx,可设t x tan =;对积分()02202>-⎰a dx x ax x a,由于()2222a x a x a x --=-,可设t a a x s i n =-.对积分dx e x ⎰--2ln 021,可设.sin t e x =-(2)()0,cos sin cos sin 2≠++=⎰d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]',可求出22d c bdac A ++=,22dc adbc B +-=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+'++=⎰.ln2dc B A +=π例3 求定积分()dx x x x ⎰-1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ⎰-1211arcsin 2t x xt ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==-⎰⎰.1632π= 解法2 ()dx x x x⎰-1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=⎰u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)⎰+=2031cos sin sin πx x xdx I , dx xx x I ⎰+=2032cos sin cos π; (2).1cos 226dx e xx ⎰--+ππ解 (1)⎰+=2031cos sin sin πxx xdxI)(sin cos cos 2023du uu uu x -+-=⎰ππ=.sin cos cos 223⎰=+πI dx xx x故dx xx xx I I ⎰++==203321cos sin cos sin 21π=()41cos cos sin sin 212022-=+-⎰ππdx x x x x . (2)=I .1cos 226dx e xx ⎰--+ππ()dxe xdu e uu x x u ⎰⎰--+=-+-=2262261cos 1cos ππππ⎥⎦⎤⎢⎣⎡+++=⎰⎰--2222661cos 1cos 21ππππdx e x dx e x e I x xx.3252214365cos cos 21206226πππππ=⨯⨯⨯===⎰⎰-xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n⎰⎰=2020cos sin ππ()()()()()()⎪⎪⎩⎪⎪⎨⎧=⋅⨯-⨯--=⨯-⨯--=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。
二重积分的概念和性质

D x2(y)
d
x1(y) D
c
x2(y)
[Y—型区域的特点]穿过区域且平行于x 轴的直线与区 域边界相交不多于两个交点.
(3) [既非X-型域也非Y-型域]
则必须分割.
在分割后的三个区域上分别都 是X-型域(或Y—型域)
1
解 I1, I2, I3 被积函数相同, 且非负, 由它们的积分域范围可知
o 1x
I2I1I3
21
2. 设D 是第二象限的一个有界闭域 , 且 0 < y <1, 则
I1 yx3d, I2 y2x3d,
D
D
的大小顺序为 ( D)
I3 y12x3d
D
提示
(A )I1I2I3 ; (B )I2I1I3; (C )I3I2I1; (D )I3I1I2.
f(x,y)df(,)
D
二重积分中值定理
几何意义 曲顶柱体的体积等于一个平顶柱体的体积
16
以下仅证性质7(中值定理)
证明
f(x,y)是有D 上 界的 闭连 域续
必有最大、最 M、 小 m值
由估值性质得
由于 0
m f(x,y)dM m1Df(x,y)dM
[二重积分的比较大小] 1.若区域D相同,则比较被积函数的大小; 2.若被积函数相同,则比较区域D的大小.
25
26
§10.2 二重积分的计算法(一)
一 利用直角坐标计算二重积分 二 小结 思考题
27
复习与回顾
n
(1)二重积分 Df(x,y)dl i0m i 1f(i,i) i
10
(1)积分存在时,其值与区域的分法和点 (i,的i) 取法无关
二重积分的计算

0
1
2
x
注意:
当D {( x , y ) | a x b, c y d }, 且 f ( x , y ) f1 ( x ) f 2 ( y ),f1 ( x ),f 2 ( y ) 均为连续函数时,总有:
f ( x, y )dxdy a f1 ( x )dx c
y x 4 2 2
1 2
y
1
y y
e dx;
y x
解: e dx 不能用初等函数表示
y x
先改变积分次序.
y x
原式 I 1dx
2
1
x
2
x
e dy
y x
y x2
1
1 2
3 1 x(e e )dx e e. 8 2
x
交换二次积分顺序时应注意: 先化为二重积分,然后再将二重积分化为 另一次序的二次积分。
原式 = dy 2 y 0
f ( x , y )dx
2a 2a
0 dy a
a
2a
2a
a y
2 2
f ( x , y )dx a dy y 2 f ( x , y )dx .
2a
或
D:
y
ax x y
ax
0 x 2a
I
2a
y ax
在直角坐标系下用平行于 坐标轴的直线网来划分区 域D,
则面积元素为 d dxdy
y
D
o x
故二重积分可写为
f ( x , y )d f ( x , y )dxdy
D D
1. [X-型]区域 如果积分区域为: a x b,
二重积分计算及其应用(已处理)

二重积分计算及其应用包头师范学院本科毕业论文题目:二重积分的计算及其应用学生姓名:学院:数学科学院专业:数学与应用数学班级:08本一班指导教师: 讲师二 ? 一二年五月二重积分计算及其应用内容摘要在二重积分的计算中,由于计算和函数比较繁杂,因此按照二重积分的定义计算二重积分有很大的局限性。
常用方法是化简二重积分为两次定积分或累次积分,又因为二重积分的计算与被积函数和积分区域有关。
掌握二重积分计算和它的性质的基础上,讨论如何利用函数的奇偶性与区域的对称性,探讨如何利用二重积分的性质解决二重积分的计算中的证明不等式、确定积分值的符号、估计积分之值、求极限等问题。
对于这些问题我们可以利用二重积分的性质和函数的奇偶性与区域的对称性来解决问题,试图找到一些简便方法,简化二重积分的计算。
关于二重积分的应用它可以求曲面面积以外,二重积分在物理学当中的应用也极其广泛,尤其是在平面薄板当中巧妙而简练的利用二重积分来解决平面薄板的重心坐标、转动惯量以及对质点的引力等问题,二重积分的应用在物理学当中是一种不可忽视的知识。
关键词:二重积分; 直角坐标; 极坐标系; 曲面面积;平面薄片Abstract In the calculation of double integrals, due to the complex calculations and comparison functions, in accordance with the definition of double integral calculation of double integrals have a lot of limitations. A common approach to simplification double integrals are definite integral and repeated integral as twice, because the calculationof double integrals with integrand and integral region. Mastering double integral calculation and on the basis of its nature, discusses how to use functions of symmetry of parity with regional, nature of the discussion on how to use double integral to prove inequality solving double integral calculation, identifying symbols, estimated value of the integral, the integral values for limit and so on. These questions we can use the double integral and parity of the nature and functions of symmetry to solving problems of the region, trying to find some easy way to simplify the calculation of double integrals. But also concise and clear to problem conclusion. On the application of double integral it can be found outside of the surface area of, and applications of double integrals in physics are very widely, especially in a flat sheet, ingenious and simple to use double integral to solving Planar sheet of Barycentric coordinates, moments of inertia and gravitational energy of the particle, and other issues, applications of double integrals in physics is a knowledge that cannot be neglected.Key words: double integral;Cartesian; polar; surface area; flat blades目录内容摘要 (2)关键词 (2)引言 (7)二重积分的定义 (8)二. 二重积分的计算 (8)(一)直角坐标系下二重积分的计算 (8)(二)极坐标系下二重积分的计算 (9)三.利用函数的奇偶性与区域的对称性计算二重积分 (9)(一)计算二重积分,设区域D关于轴对称 (9)若函数关于是奇函数 (9)若函数关于是偶函数 (9)(二)计算二重积分,设区域D关于轴对称 (10)若函数关于是奇函数 (10)若函数关于是偶函数 (10)(三)计算二重积分,设区域D关于轴和轴都对称,同时也是关于,对称的 (10)四.二重积分的性质 (13)五.应用二重积分的性质解题 (14)(一)证明不等式 (14)(二)确定积分值的符号 (14)(三)估计积分之值 (15)(四)求极限 (16)六.二重积分的应用 (17)(一)曲面的面积 (17)1.曲面由显函数给出的情形 (17)2.曲面由参数方程给出的情形 (18)(二)平面薄片的重心 (19)(三)平面薄片的转动惯量 (20)(四)平面薄片对质点的引力 (21)结语 (23)参考文献 (24)引言在二重积分的计算中,由于计算和函数比较繁杂,因此按照二重积分的定义计算二重积分有很大的局限性。
二重积分的计算与应用

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1.二重积分的概念 (1)1.1二重积分的定义 (1)1.2可积条件 (2)1.3可积类 (2)1.4二重积分的性质 (2)2.二重积分的计算方法 (3)2.1直角坐标系下的二重积分的计算 (3)2.2二重积分的变量变换 (4)2.2.1普通情况下的变换 (4)2.2.2极坐标计算二重积分 (4)3.广义二重积分 (6)4.二重积分的应用 (6)4.1体积 (7)4.2曲面的面积 (8)4.3其它 (8)参考文献 (9)二重积分的计算与应用学生姓名:学号:数学与信息科学学院数学与应用数学专业指导教师:职称:摘要:研究了二重积分的几何意义,概念,性质以及在直角坐标系及极坐标下的计算方法,并给出了计算公式及相关例题,最后总结了二重积分的计算方法.关键词:二重积分;直角坐标系;极坐标;曲顶柱体The calculation and application of double integral Abstract : This paper mainly studies the geometric significance of double integral, the concept, nature and calculation method under the rectangular coordinate system and polar coordinate calculation method.Key Words: Double integral; The rectangular coordinate system; The polar coordinate; Curved top cylinder前言我们已经很熟悉定积分的一些性质及计算方法.同样,二重积分在实际中应用广泛,且有直观的几何解释,所不同的是现在讨论的对象为定义在平面区域上的二元函数.这类问题在物理学与工程技术中也常遇到,如求非均匀平面的质量、质心、转动惯量等.二重积分的计算的基本途径是将其转化成二次积分计算,计算二重积分时选择积分顺序,交换积分次序以及转换坐标系都是至关重要的问题.本文对二重积分的计算方法进行了全面的概括和总结,并对各种计算方法的选择进行了认真地研究,为准确的计算二重积分提供有效的帮助.1.二重积分的概念1.1[]2二重积分的定义设(,)f x y是定义在可求面积的有界闭区域D上的函数.J是一个确定的数,若对任给的某个正数ε,总存在某个正数δ,是对于D的任何分割T,当它的细度||T||时,属于T 的所有积分和都有1(,)||ni i i i f J ξσσε=∆-<∑则成(,)f x y 在D 上可积,数J 称为(,)f x y 的二重积分,记为(,)σDJ f x y d =⎰⎰.1.2[]1可积条件二重积分的可积条件与定积分类似(1)必要条件:函数(,)f x y 在D 上可积,则(,)f x y 在D 上必有界. (2)充要条件:①函数(,)f x y 在D 上可积s S =⇔(其中S ,s 分别为在上的上积分和下积分). ②函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得()().ε<-T s T S③函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得.1εσω<∑=∆ni i i1.3[]1可积类(1)有界闭区域D 上的连续函数必可积.(2)若(,)f x y 在有界闭区域D 上有界,且仅在D 内有限条光滑曲线上不连续,则(,)f x y 在D 上可积.1.4[]2二重积分的性质性质4.1(线性性) (,)σ(,)σDDkf x y d k f x y d =⎰⎰⎰⎰.性质4.2(线性性)[](,)(,)σ=(,)σ(,)σDDDf x yg x y d f x y d g x y d ±±⎰⎰⎰⎰⎰⎰.性质4.3(分段可加性)1212(,)σ=(,)σ+(,)σD D D D f x y d f x y d f x y d +⎰⎰⎰⎰⎰⎰.性质4.4(保不等式性) 设(,),(,)(,)x y D f x y g x y ∀∈<, 则 (,)σ(,)σDDf x y dg x y d <⎰⎰⎰⎰.性质4.5 设(,)m f x y M ≤≤,则(,)σDm f x y d M σσ≤≤⎰⎰其中σ表示D 的面积.性质4.6 (二重积分的中值定理)设函数(,)f x y 在闭区域D 上连续,D S 是D 的面积,则∃(ζ,η)∈D 使得(,)Df x y ⎰⎰σd =(,)f ξηDS.其中中值定理的几何意义:以D 为底,z=(,)f x y ((,)f x y ≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于(,)f x y 在区域D 某点的函数值(,)f ξη.2.二重积分的计算方法定理1 设在矩形区域[][],,D a b c d =⨯上可积,且对每个[],x a b ∈积分存在,则累次积分(,)b d acdx f x y dy ⎰⎰也存在,且(,)σ=(,)b d acDf x y d dx f x y dy ⎰⎰⎰⎰.另外,同理(,)σ=(,)db caDf x y d dy f x y dx ⎰⎰⎰⎰.2.1[]4直角坐标系下的二重积分的计算此方法的关键就是化二重积分为累次积分,对于一般区域,通常可以分为以下两种区域进行计算:①X 型区域:平面点集12{(,)|()(),},D x y y x y y x a x b =≤≤≤≤ 则化二重积分为累次积分21()()(,)σ(,)bx a x Dy f x y d dx f x y dy y =⎰⎰⎰⎰. ②Y 型区域:平面点集{12(,)|()(),}D x y x y x x y c y d =≤≤≤≤则化二重积分为累次积分21()()(,)σ=(,)dy c y Dx f x y d dy f x y dx x ⎰⎰⎰⎰. 例1 设D 是由直线0,1x y ==及x y =围成的区域,试计算22()y DI x e d σ-=⎰⎰.解 利用Y 型区域积分:231123001()3yy y I dy x e dx y e dy --==⎰⎰⎰.由分部积分法得 1163I e=-. 例2 计算二重积分Dd σ⎰⎰,其中D 为由直线2,2y x x y ==及3x y +=所围的三角形区域.解 利用X 型区域,则相应的221()2(01),()3(12),2x y x x x y x x x y =≤≤=-<≤=所以 1223012212x x x x DD D d d d dx dy dx dy σσσ-=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1201(2)(3)22x xx dx x dx =-+--⎰⎰ =32. 2.2[]5 二重积分的变量变换定理2 设(,)f x y 在有界闭区域D 上可积,变换T: (,),(,)x u v y u v ==将uv 平面由按段光滑闭曲线所围成的闭区域∆一对一的映成xy 平面上的闭区域D ,函数(,),(,)x u v y u v 在∆内分别具有一阶连续偏导数且它们的行列式 (,)0(,)(,)x y J u v u v ∂=≠∈∆∂, 则 (,)((,),(,))|(,)|D f x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰. 2.2.1普通情况下的变换例3 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围成的区域D 的面积S (0,0m n αβ<<<<).解 D 的面积DS dxdy =⎰⎰为了简化积分区域,做变换2,,u ux y v v==则[][],,m n αβ∆=⨯.由于4(,)(,)(,)x y uJ u v u v v ∂==∈∆∂,所以 22334433()()6n m Du dv n m S dxdy dudv u du v v βαβααβ∆--====⎰⎰⎰⎰⎰⎰. 2.2.2极坐标计算二重积分当积分区域是圆域或圆域的一部分时,或者背积函数的形式为22()f x y +时,采用极坐标变换T :cos ,sin (0,02)x r y r r θθθπ==≤<+∞≤≤, 则 (,)(,)(,)x y J r r u v θ∂==∂.定理3 设(,)f x y 满足定理1的条件,且在极坐标变换下xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立(,)(cos ,sin )Df x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.二重积分在极坐标下化为累次积分有以情况:1.θ型区域:若原点o D ∈,且xy 平面上射线θ=常数与D 的边界至多交与两点,则必可表示为12()(),r r r θθαθβ≤≤≤≤, 于是有 2()1()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰.R 型区域:若平面上的圆r =常数与D 的边界至多交与两点,则∆必可表示为1212()(),r r r r r θθθ≤≤≤≤,于是有 2211()()(,)(cos ,sin )r r Dr f x y dxdy rdr f r r d r θθθθθ=⎰⎰⎰⎰.2.若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆必可表示成为0(),02r r θθπ≤≤≤≤,于是有 2()0(,)(cos ,sin )r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰.3.若原点O 在D 的边界上,则∆为0(),r r θαθβ≤≤≤≤, 于是有 ()0(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰.例4 计算I=D其中D 为圆域.122≤+y x解 由于原点为D 的内点故有210Dd πθ=⎰⎰[].212010202πθθππ=--=⎰⎰d d r例5 求球体2222x y z R ++≤被圆柱体22x y Rx +=所割下部分的体积(称为维维安尼体(Viviani )).解 由所求立体的对称性,只要求出第一卦限的部分体积后乘以4即可.在第一卦限内的体积是一个曲顶柱体,其底为xy 平面内由0y ≥和22x y Rx +=所确定的区域,曲顶的方程为z =所以4DV σ=.其中D={}22(,)|0,x y y x y Rx ≥+≤,用极坐标变换后有cos33322004424(1sin )()3323R V d R d R ππθπθθθ==-=-⎰⎰⎰.3[]4.广义二重积分若在无界区域D 上(),0,≥y x f 则()σd y x f D⎰⎰,收敛⇔在D 的任何有界子区域上f 可积,且积分值有上界.例6 证明反常积分σd e Dy x⎰⎰+-)(22收敛,其中[)[);,0,0+∞⨯+∞=D 并由此计算概率积分.02dx e x ⎰+∞-证明 设(),,)(22y xe y xf +-= 则显然()y x f ,在[)[)+∞⨯+∞=,0,0D 上非负.设,0,0,:222≥≥≤+y x R y x D R 则).1(4r 2222020)(R Rr Dy x e e d d e--+--==⎰⎰⎰⎰πθσπ显然对D的任何有限子集'D ,只要R 充分大,总可使得,'R D D ⊂ 于是有.4'22'22)()(πσσ≤≤⎰⎰⎰⎰+-+-d e d e Dy xDy x即广义积分σd e Dy x⎰⎰+-)(22收敛.记,2dx e I x ⎰+∞-=则.))(()(022222dxdy e dy e dx e I Dy xy x ⎰⎰⎰⎰+-+∞-+∞-== 其中[)[),,0,0:+∞⨯+∞D 做极坐标代换,0,20,sin ,cos +∞<≤≤≤⎩⎨⎧==r r y r x πθθθ 则,4r 02022πθπ==⎰⎰∞+-dr e d I r .202π==⎰∞+-dx e I x 4.二重积分的应用二重积分在几何、物理等许多学科中有着广泛的应用,这里重点介绍它在几何方面的应用. 4.1体积根据二重积分的几何意义,⎰⎰Dd y x f σ),(表示以),(y x f 为曲顶,以),(y x f 在xOy坐标平面的投影区域D 为底的曲顶柱体的体积.因此,利用二重积分可以计算空间曲面所围立体的体积. 例7[]6 求椭球面1222222=++cz b y a x 所围之椭球的体积.解 由于椭球体在空间直角坐标系八个卦限上的体积是对称的.令D 表示椭球面在xOy 坐标面第一象限的投影区域,则D ,0,0,1),(2222⎭⎬⎫⎩⎨⎧≥≥≤+=y x b y a x y x体积.),(8⎰⎰=Ddxdy y x z V 作广义极坐标变换θθsin ,cos br y ar x ==,则此变换的雅可比行列式abr J =,与D 相对应的积分区域{},20,10),(*πθθ≤≤≤≤=r r D 此时,1),(2r c y x z z -==从而 abrdr r c d drd J br ar z V D ⎰⎰⎰⎰-==2*1218)sin ,cos (8πθθθθ.34128102abc dr r r abc ππ⎰=-⋅= 例8[]6 求球面+2x 2224a z y =+与圆柱面)0(222>=+a ax y x 所围立体的体积.图1解 由对称性(图1(a )给出的是第一卦限部分).44222⎰⎰--=Ddxdy y x a V其中D 为半圆周22x ax y -=及x 轴所围成的闭区域(图1(b )).在极坐标系中,与闭区域D 相应的区域*D {},20,cos 20),(πθθθ≤≤≤≤=a r r 于是⎰⎰⎰⎰-=-=Da rdr r a d rdrd r a V 20cos 2022224444πθθθ=.)322(332)sin 1(33220333⎰-=-ππθθa d a4.2曲面的面积设曲面S 的方程为),,(y x f z = 它在xOy 面上的投影区域为,xy D 求曲面S 的面积.A若函数),(y x f z =在域xy D 上有一阶连续偏导数,可以证明,曲面S 的面积.),(),(122dxdy y x f y x f A xyD y x ⎰⎰'+'+=(1)例9 计算抛物面22y x z +=在平面1=z 下方的面积.解 1=z 下方的抛物面在xOy 面的投影区域xy D {}.1),(22≤+=y x y x又,2x z x =',2y z y =' 221y x z z '+'+=,44122y x ++ 代入公式(1)并用极坐标计算,可得抛物面的面积 ⎰⎰⎰⎰+=++=xyxyD D rdrd r dxdy y x A *22241441θ=).155(6)41(201212-=+⎰⎰πθπrdr r d如果曲面方程为),(z y g x =或),(z x h y =,则可以把曲面投影到yOz 或xOz 平面上,其投影区域记为yz D 或xz D ,类似地有.),(),(122dydz z y g z y g A yzD zy ⎰⎰'+'+= 或.),(),(122dxdz x z h x z h A xzD z x⎰⎰'+'+= 4.3其它例10[]4 平均利润 某公司销售商品Ⅰx 个单位,商品Ⅱy 个单位的利润),(y x P .5000)100()200(22+----=y x现已知一周内商品Ⅰ的销售数量在150~200个单位之间变化,一周内商品Ⅱ的销售数量在80~100个单位之间变化.求销售这两种商品一周的平均利润.解 由于y x ,的变化范围{},10080,200150),(≤≤≤≤=y x y x D 所以D 的面积.10002050=⨯=σ 由二重积分的中值定理,该公司销售这两种商品一周的平均利润为[]σσσd y x d y x P DD⎰⎰⎰⎰+----=5000)100()200(10001),(122 []dy y x dx 5000)100()200(100012210080200150+----=⎰⎰ dx y y y x 100803220015050003)100()200(10001⎥⎦⎤⎢⎣⎡+----=⎰ 20015020015023292000)200(2030001⎰⎥⎦⎤⎢⎣⎡+--=x x dx 4033300012100000≈=(元). 参考文献:[1] 赵树原,胡显佑,陆启良.微积分学习与考试指导[M] .北京:中国人民大学出版社, 1999. [2] 华东师范大学数学系.数学分析(第三版)[M]. 北京:高等教育出版社,2004. [3] 刘玉琏,傅沛仁等.数学分析讲义(第四版)[M]. 北京:高等教育出版社,2003. [4] 周应编著. 数学分析习题及解答[M]. 武汉:武汉大学出版社,2001. [5] 胡适耕,张显文编著. 数学分析原理与方法[M].北京:科学出版社,2008. [6] 吴良森等编著. 数学分析习题精解[M].北京:科学出版社,2002.。
应用二重积分解决定积分问题

应用二重积分解决定积分问题作者:寇冰煜张燕滕兴虎毛磊来源:《科技创新导报》 2011年第21期寇冰煜张燕滕兴虎毛磊(解放军理工大学理学院数理系应用数学教研室江苏南京 211101)摘要:在二重积分的计算中我们通常都是利用定积分的思想去解决问题,本文中笔者逆向思维,将结合具体实例介绍利用二重积分的计算去解决定积分中的问题。
关键词:二重积分的计算定积分的计算定积分的不等式中图分类号:O155 文献标识码:A 文章编号:1674-098X(2011)07(c)-0000-00二重积分的定义即对一个和式取极限,其思想“分割,近似,求和,取极限”沿用了定积分的定义中对和式去极限的思想,在二重积分的计算中将其化为累次积分进行计算的过程,本质上就是两个定积分的计算乘积的过程等等,这些我们都是采用定积分的思想去解决二重积分的问题。
但是,本文作者则将二重积分做为工具去解决定积分中的计算和不等式问题。
1 利用二重积分解决定积分中的计算问题在二重积分的计算中,我们通常采用的方法是化二重积分为累计积分进行计算,这一计算过程本质上是定积分的计算。
但是,反过来我们可以利用二重积分去解决一些不易找到原函数的定积分的计算,下面我们就结合具体实例来看看二重积分在这些方面的应用。
1.1利用二重积分计算瑕积分本文通过实例展现了二重积分在计算中的应用魅力,不仅可以帮助学生进一步加深对重积分概念的理解,同时有助于培养学生的逻辑思维和抽象思维能力,从而提高学生分析问题和解决问题的能力。
参考文献[1] 同济大学应用数学系. 高等数学[M]. 北京: 高等教育出版社.[2] 张景中. 数学与哲学[M]. 北京: 中国少年出版社, 2006, 08: 25-37.[3] 邓乐斌. 初等积分中的常见问题[M]. 北京:科学出版社,2009.。
二重积分详细解答

f ( x, y)dy
= ∫∫ f ( x, y)dσ + ∫∫ f ( x, y)dσ
y
1
则
0 ≤ x ≤ 1, D: 1 0 ≤ y ≤ 2x − x2 .
D1
1 ≤ x ≤ 2, D2 : 0 ≤ y ≤ 2 − x.
o
D2
1
y = 2− x
2 x
设
D = D + D2 1
元素法
1 任意分割区域 D,化整为零 化整为零 2 以平代曲
z
∆ V i ≈ f ( x i , y i )∆ σ i
3 积零为整 V ≈ ∑ f ( x i , y i )∆σ i
i =1 n
4 取极限 令分法无限变细
0 y
∆σ i
.
V = lim ∑ f ( x i , y i )∆ σ i
i =1
D
特殊地
∫∫ f ( x, y)dσ ≤ ∫∫ f ( x, y) dσ .
D D
性质6 性质6 设M、m分别 f ( x, y)在 是 闭区 D 上 最 域 的 大
值和最小值, 的面积, 值和最小值,σ 为 D 的面积,则
mσ ≤ ∫∫ f ( x, y)dσ ≤ Mσ
D
(二重积分估值不等式) 二重积分估值不等式)
性质1 性质1 为常数时, 当 k 为常数时,
∫∫ kf ( x, y)dσ =k∫∫ f ( x, y)dσ .
D D
性质2 性质2
∫∫[ f ( x, y) ± g( x, y)]dσ
D
= ∫∫ f ( x, y)dσ ± ∫∫ g( x, y)dσ .
D D
性质3 性质3
二重积分的解法技巧及应用研究

二重积分的解法技巧及应用研究摘要二重积分是多元函数积分学中的一部分,而二重积分的概念和解法技巧是多元函数微积分学的重要部分,二重积分是联系其他多元函数积分学内容的中心环节,故而它也是核心。
二重积分在多元函数积分学中有重要的作用,深入理解二重积分的概念,熟练掌握二重积分的计算方法,是学好多元函数积分学的关键。
本文主要研究的是二重积分的解法技巧,对于二重积分的解法主要利用在直角坐标系下求解,极坐标的方法,积分次序的交换与坐标系的转换的方法,选择适当的积分次序求二重积分,用适当方法计算二重积分(奇偶性,周期性等)的计算技巧。
本文首先主要介绍二重积分的概念以及性质;其次介绍二重积分的解法技巧;最后主要根据二重积分的概念和性质,给出实例分析二重积分在物理、经济以及工程上的一些应用问题。
二重积分是《数学分析》中的重要内容,它涉及到多个学科领域,并且起着至关重要的作用,在计算过程中通常寻求更好的解题技巧,从而在实际应用中获得更高的效率。
关键词:二重积分;性质;解法技巧;应用研究Double integral solution techniques and application researchAbstractThe double integral is part of a multivariate function in integral calculus. The concept of double integrals and the techniques of solutions are an important part of multi-variate calculus.The double integral is the center link with other multivariate function integration of content.Therefore ,it is also the core. The double integral is important in multivariate integral calculus. Understanding the concept of double integral and mastering the double integral calculation method are the key to learn the multivariate function in integral calculus.This paper mainly studies the solutions for double integral and application research.Dou- ble integral to the solution of the main use is solved in the Cartesian coordinate system, polar coordinates method, method of integral order exchange and coordinate system, selecting the integral order appropriate for calculation of double integral, double integral with the appropri- ate method (parity, periodic etc.) on the computational techniques.Firstly,this paper introduces the concept and properties of double integral solution skill; Secondly,it introduces the introdu- ction of double integral; finally, according to the concept and nature of the double integral, it gives examples to analyze some application problems in physics, economics and engineering of the double integral.The double integral is the important content of "mathematical analysis", which involves many fields and plays a vital role. we often seek better problem-solving skills in the process of calculation, so as to gain higher efficiency in practical application.Keywords:double integral; properties; solution techniques; application research目录引言 (1)第1章二重积分的概念与性质........................................... - 2 -1.1二重积分的概念...................................................... - 2 -1.2二重积分的性质...................................................... - 6 -第2章二重积分的解法技巧.............................................. - 7 -2.1计算二重积分的方法步骤.............................................. - 7 -2.2直角坐标中下二重积分的计算 .......................................... - 7 -2.3特殊类型的二重积分解题技巧.......................................... - 8 -2.4极坐标系下计算二重积分............................................. - 11 -2.5用变量替换计算二重积分............................................. - 12 -2.6无界区域上的二重积分............................................... - 13 -第3章二重积分的应用研究............................................ - 14 -3.1物理上应用研究..................................................... - 14 -3.2经济上的应用....................................................... - 16 -3.3工程力学上的应用 ................................................... - 18 -结论与展望 ............................................................ - 22 -致谢 ................................................................ - 23 -参考文献 .............................................................. - 24 -附录 .................................................................. - 25 -附录A外文文献及翻译 ................................................. - 25 -附录B 主要参考文献的题录及摘要 ....................................... - 33 -插图清单图1-1 直线网图 (3)图1-2 曲顶柱体图 (5)图1-3 曲顶柱体分割图 (5)引言目前,关于二重积分方面的讨论非常活跃,随着二重积分的不断发展与创新,为使二重积分在各个学科领域中得到更广泛的应用,还得继续探讨与研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用二重积分解决定积分问题
摘要:在二重积分的计算中我们通常都是利用定积分的思想去解决问题,本文中笔者逆向思维,将结合具体实例介绍利用二重积分的计算去解决定积分中的问题。
关键词:二重积分的计算定积分的计算定积分的不等式
二重积分的定义即对一个和式取极限,其思想“分割,近似,求和,取极限”沿用了定积分的定义中对和式去极限的思想,在二重积分的计算中将其化为累次积分进行计算的过程,本质上就是两个定积分的计算乘积的过程等等,这些我们都是采用定积分的思想去解决二重积分的问题。
但是,本文作者则将二重积分做为工具去解决定积分中的计算和不等式问题。
1 利用二重积分解决定积分中的计算问题
在二重积分的计算中,我们通常采用的方法是化二重积分为累计积分进行计算,这一计算过程本质上是定积分的计算。
但是,反过来我们可以利用二重积分去解决一些不易找到原函数的定积分的计算,下面我们就结合具体实例来看看二重积分在这些方面的应用。
1.1利用二重积分计算瑕积分
本文通过实例展现了二重积分在计算中的应用魅力,不仅可以帮助学生进一步加深对重积分概念的理解,同时有助于培养学生的逻辑思维和抽象思维能力,从而提高学生分析问题和解决问题的能力。
参考文献
[1] 同济大学应用数学系. 高等数学[M]. 北京: 高等教育出版社.
[2] 张景中. 数学与哲学[M]. 北京: 中国少年出版社, 2006, 08: 25-37.
[3] 邓乐斌. 初等积分中的常见问题[M]. 北京:科学出版社,2009.。