第1章1-2节-逻辑符号,集合及其运算(精)

合集下载

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
当A与B无公共元素时,A与B
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页

第一章 集合与常用逻辑用语

第一章 集合与常用逻辑用语

第一章集合与常用逻辑用语第一章集合与常用逻辑用语§1.1集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A的任意一个元素都是集合B的元素(若则),则称集合A为集合B的子集,记为AB或BA;如果AB,并且AB,这时集合A称为集合B的真子集,记为AB或BA.4.集合的相等:如果集合A、B同时满足AB、BA,则A=B.5.补集:设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为.6.全集:如果集合S包含所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A且属于B的元素构成的集合,称为A与B的交集,记作AB.8.并集:一般地,由所有属于集合A或者属于B的元素构成的集合,称为A与B的并集,记作AB.9.空集:不含任何元素的集合称为空集,记作.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N,正整数集记作N+或N,整数集记作Z,有理数集记作Q,实数集记作R.二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B=易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n个元素的集合的所有子集个数为:,所有真子集个数为:-1三、经典例题导讲[例1] 已知集合M={y|y=x2+1,x∈R},N={y|y =x+1,x∈R},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1,或y=2}D.{y|y≥1}错解:求M∩N及解方程组得或∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是实数对(x,y),因此M、N是数集而不是点集,M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集.正解:M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R}.∴M∩N={y|y≥1}∩{y|(y∈R)}={y|y≥1},∴应选D.注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x ∈R},这三个集合是不同的.[例2] 已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,求实数a组成的集合C.错解:由x2-3x+2=0得x=1或2.当x=1时,a=2,当x=2时,a=1.错因:上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A.当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴BA又A={x|x2-3x+2=0}={1,2}∴B=或∴C={0,1,2}[例3]已知mA,nB, 且集合A=,B=,又C=,则有:()A.m+nA B. m+nB C.m+nC D.m+n不属于A,B,C中任意一个错解:∵mA,∴m=2a,a,同理n=2a+1,aZ,∴m+n=4a+1,故选C错因是上述解法缩小了m+n的取值范围.正解:∵mA,∴设m=2a1,a1Z, 又∵n,∴n=2a2+1,a2 Z ,∴m+n=2(a1+a2)+1,而a1+a2 Z , ∴m+nB, 故选B.[例4]已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,求实数p的取值范围.错解:由x2-3x-10≤0得-2≤x≤5.欲使BA,只须∴p的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设.正解:①当B≠时,即p+1≤2p-1p≥2.由BA得:-2≤p+1且2p-1≤5.由-3≤p≤3.∴2≤p≤3②当B=时,即p+1&gt;2p-1p<2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A是实数集,满足若a∈A,则A,且1?A.⑴若2∈A,则A中至少还有几个元素?求出这几个元素.⑵A能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.⑷求证:集合A中至少含有三个不同的元素.解:⑴2∈A ? -1∈A ? ∈A ? 2∈A∴A中至少还有两个元素:-1和⑵如果A为单元素集合,则a=即=0该方程无实数解,故在实数范围内,A不可能是单元素集⑶a∈A ? ∈A ? ∈A?A,即1-∈A⑷由⑶知a∈A时,∈A,1-∈A.现在证明a,1-, 三数互不相等.①若a=,即a2-a+1=0,方程无解,∴a≠②若a=1-,即a2-a+1=0,方程无解∴a≠1-③若1-=,即a2-a+1=0,方程无解∴1-≠.综上所述,集合A中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨. [例7] 设集合A={|=,∈N+},集合B={|=,∈N+},试证:AB.证明:任设∈A,则==(+2)2-4(+2)+5(∈N+),∵n∈N*,∴n+2∈N*∴a∈B故①显然,1,而由B={|=,∈N+}={|=,∈N+}知1∈B,于是A≠B②由①、②得AB.点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的非空真子集的个数为()A.16B.14C.15 D.322.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,-2 } B.{-2,-}C.{±2,±} D.{,-}3.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.QC.D.不知道4. 若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有()A.P∩Q=B.P Q C.P=QD.P Q5.若集合M={},N={|≤},则MN=()A.B.C.D.6.已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩R+=,则实数m的取值范围是_________.7.(06高考全国II卷)设,函数若的解集为A,,求实数的取值范围.8.已知集合A=和B=满足A∩B=,A∩B=,I=R,求实数a,b的值.§1.2.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、“非”分别用符号“”“”“”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p或q;p且q;非p5.四种命题的构成:原命题:若p则q;逆命题:若q则p;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p则q”“若q 则p ”.7.反证法:欲证“若p则q”,从“非q”出发,导出矛盾,从而知“若p则非q”为假,即“若p则q”为真.8.充分条件与必要条件:①pq:p是q的充分条件;q是p的必要条件;②pq:p是q的充要条件.9.常用的全称量词:“对所有的”、“对任意一个”“对一切”“对每一个”“任给”等;并用符号“”表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、“有的”、“对某个”;并用符号“”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的. (4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明的充要条件是;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一.注:常见关键词的否定:关键词是都是(全是)()至少有一个至多有一个任意存在否定不是不都是(全是)()一个也没有至少有两个存在任意。

《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)

《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)

设集合 A={1,3,5,7},B={x|2≤x≤5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
解析:选 B.因为 A={1,3,5,7},B={x|2≤x≤5},所以 A∩B ={3,5}.
栏目 导引
第一章 集合与常用逻辑用语
已知集合 M={x|-1<x<3},N={x|-2<x<1},则 M∩N= ________. 解析:在数轴上表示出集合,如图所示,
并集与交集 掌握并集与交集的相关 逻辑推理、数学运算、
的性质
性质,并会应用
数学抽象
第一章 集合与常用逻辑用语
问题导学 预习教材 P10-P12,并思考以下问题: 1.两个集合的并集与交集的含义是什么? 2.如何用 Venn 图表示集合的并集和交集? 3.并集和交集有哪些性质?
栏目 导引
1.并集
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
2.已知集合 A={x|-3≤x<4},B={x|-2≤x≤5},则 A∩B=
() A.{x|-3≤x≤5} C.{x|-2≤x≤5}
B.{x|-2≤x<4} D.{x|-3≤x<4}
解析:选 B.因为集合 A={x|-3≤x<4},集合 B={x|-2≤x≤5}, 所以 A∩B={x|-2≤x<4}.
1.若集合 A={x|-2<x<1},B={x|0<x<2},则集合 A∩B=( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 解析:选 D.如图,

高考数学总复习 第一章 第一节集合的概念与运算课件 理

高考数学总复习 第一章 第一节集合的概念与运算课件 理
答案(dáàn):B A,D C,A C,B C,A D,B D
第十七页,共35页。
考点(kǎo 集合(jíhé)的基本关系及空集的妙用 diǎn)三
【例3】 设集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m -1},若B⊆A,求实数(shìshù)m的取值范围.
思路点拨:考查集合间的包含、相等关系,关键搞清A,B两 集合谁是谁的子集.若B⊆A,说明B是A的子集,即集合B中元素 都在集合A中,注意B是∅的情况;同样若A⊆B,说明A是B的子集, 此时注意B是不是∅;若A=B,说明两集合元素完全相同.
A.A=B B.B=C C.C=E D.B=E
思路点拨:要注意分辨各集合的代表元素是什么,如果性质 相同,但代表元素不同,则它们所表示的集合也是不一样的.因此 对于集合问题(wèntí),要首先确定它属于哪类集合(数集、点集或某 类图形).
第十五页,共35页。
解析:集合 A 是用列举法表示,它只含有一个元 素,即函数 y=x2+2,集合 B,C,E 中的元素都是数, 即这三个集合都是数集,集合 B 表示的是函数 y=x2 +2 的值域2,+∞,集合 C 表示的是函数 y=x2+2 的 定 义 域 R, 集 合 E 是不 等 式 x - 2≥0 的 解集 2,+∞,集合 D 的元素则是平面上的点,此集合是 函数 y=x2+2 的图象上所有点所组成的集合.故只有 B=E.故选 D.
第七页,共35页。
2.并集. (1)定义: 由所有属于集合A或集合B的元素组成的集合,称 为(chēnɡ w集éi)合__(_j_íh_é_)_A_与__集__合__(_j_íh的é)并B集,记作___A__∪__B_____(读作 “A并B”).即 A∪B={ x|x∈A,或x∈B}. (2)性质:

第01讲第一章集合与简易逻辑集合的概念与运算课件新人教A版课件

第01讲第一章集合与简易逻辑集合的概念与运算课件新人教A版课件
w xckt@
新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞
w xckt@
6.描述法及两种表述形式:把集合中的元素的公
共属性描述出来,写在大括号内表示集合的方 法. ①数式形式 如由不等式x-3>2的所有解组成的集合,
可表示为 {x│x-3>2};
w xckt@
例6 已知A={x∈R|x2+ax+1=0},B={1,2},且 A B,求实数a的取值范围.
解:由已知,得:A ,或{1},或{2}.
若A , a 2 4 0, 2 a 2.
若A

{1},
12
a
2
a 1 40
10.全集定义:如果集合S含有我们所要研究的各 个集合的全部元素,这个集合就可以看作一个全 集,记作U.
1/2/2020
湖北省随州市第二中学 操厚亮
8
新疆 王新敞
奎屯
二名、称 知识点归纳交集新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞 w xckt@
已知: (1)(CUA)∩(CUB)={4,6,8}; (2)(CUA)∩B={1,9};(3)A∩B={2}.求A、B.
解:∵(CUA)∩(CUB)={4,6,8}
∴ CU(A∪B)= {4,6,8}
∴A∪B={1,2,3,5,7,9}
UB
1,9
2
A
3,5,7
4,6,8
∴B= [(CUA)∩B]∪(A∩B)={1,2,9}
当集合A不包含于集合B,或集合B不包含集合A,则 记作A B(B A)
8.真子集的定义:如果A B,并且 A ≠B,则 集合A是集合B的真子集.

集合的基本运算(第一课时课件)-高一数学备课精选课件(人教A版2019必修第一册)

集合的基本运算(第一课时课件)-高一数学备课精选课件(人教A版2019必修第一册)
C={x│x是等腰直角三角形}
集合C的元素既属于A,又属于B,则称C为A与B的交集.
3 交集
交 由两个集合A、B的公共部分组成的集合,叫这两个

的 集合的交集,记作A∩B

文字语言
念 即 A∩B={ x| x∈A 且 x∈B }
读作 A交B
符号语言
图 示
Venn图
A
B
A∩B
图形语言
练一练 已知A={2,4,6,8,10},B={3,5,8,12}, C={6,8}. 求:(1)A∩B ; (2)A∩(B∩C)
2. (1)已知A={x| x2-6x+8=0},B={x |x2-mx+4=0}, 且A∩B=B,



素 养


则实数m的取值范围是
.
(2)已知A={x|x2-6x+8<0}, B={x|(x-2a)(x-a-2)<0},且A∩B=B,
则实数a的取值范围是
.
数 据 分
(1)A={2, 4};由A∩B=B知B⊆A.
④A∪B=A
B⊆A .
练一练
已知A={ x | x2 > 1 },B={ x | x < a},若A∪B =A,
则实数a的取值范围是 a≤-1
.
3 交集
观察下列集合,A、B与C之间有什么关系? (1)A={ 4,3,5 }、 B={ 2,4,6 }与 C={ 4 }. (2)A={x│x是等腰三角形}、B={x│x是直角三角形}与
第一章 集合与常用逻辑用语
1.3.1 并集和交集
高中数学/人教A版/必修一
1.3.1 并集和交集
思维篇 素养篇

高考数学一轮复习第一章集合与常用逻辑用语1.1集合与集合的运算公开课课件省市一等奖完整版

高考数学一轮复习第一章集合与常用逻辑用语1.1集合与集合的运算公开课课件省市一等奖完整版

方法 3 与集合有关的新概念问题的解题策略
与集合有关的新概念问题属于信息迁移类问题,它是化归思想的具体运 用,这类试题的特点是:通过给出新的数学概念或新的运算方法,在新的 情境下完成某种推理证明,这是集合命题的一个新方向.常见的有定义 新概念、新公式、新运算和新法则等类型. 解此类题的一般思路: 1.理解问题中的新概念、新公式、新运算、新法则的含义. 2.利用学过的数学知识进行逻辑推理. 3.对选项进行筛选、验证、定论. 例4 (2016浙江名校协作体测试,8)在n元数集S={a1,a2,…,an}中,设x(S)=
A∩A=A A∪A=A ∁U⌀=U
3.两个常用结论 A∩B=A⇔A⊆B;A∪B=B⇔A⊆B. 4.设有限集合A,card(A)=n(n∈N*),则 (1)A的子集个数是⑧ 2n ; (2)A的真子集个数是⑨ 2n-1 ; (3)A的非空子集个数是⑩ 2n-1 ; (4)A的非空真子集个数是 2n-2 .
⑥ A⫋B(或B⫌A)
集合相等
集合A与集合B中元素相同,那么 A=B 就说集合A与集合B相等
Venn图表示
考点二 集合的运算
1.集合间的运算
名称
自然语言描述
ห้องสมุดไป่ตู้
符号语言表示
并集
对于两个给定集合A、B,由所有 属于集合A或属于集合B的元素 组成的集合
A∪B={x|x∈A,或x∈B}
交集 补集
对于两个给定集合A、B,由所有 属于集合A且属于集合B的元素 组成的集合
集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同 的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素
集合与其中元素的排列顺序无关,如{a,b,c}与{b,c,a}是相同的集合.这个特性通 常被用来判断两个集合的关系

旧教材适用2023高考数学一轮总复习第一章集合与常用逻辑用语第1讲集合及其运算课件

旧教材适用2023高考数学一轮总复习第一章集合与常用逻辑用语第1讲集合及其运算课件

(2)已知 a,b∈R,若a,ba,1={a2,a+b,0},则 a+b 为(
)
A.1 B.0 C.-1 D.±1
答案 C 解析 由已知得 a≠0,则ba=0,所以 b=0,于是 a2=1,即 a=1 或 a =-1,又根据集合中元素的互异性可知 a=1 应舍去,因此 a=-1,故 a +b=-1.故选 C.
1.若有限集 A 中有 n 个元素,则集合 A 的子集个数为 2n,真子集的个 数为 2n-1,非空真子集的个数为 2n-2.
2.A∪∅=A,A∪A=A,A⊆ (A∪B),B⊆ (A∪B). 3.A∩∅=∅,A∩A=A,A∩B⊆ A,A∩B⊆ B. 4.A∩B=A∪B⇔A=B.
5.A⊆ B⇔A∩B=A⇔A∪B=B⇔(∁UA)⊇ (∁UB)⇔A∩(∁UB)=∅. 6.A∩(∁UA)=∅,A∪(∁UA)=U,∁U(∁UA)=A. 7.(∁UA)∩(∁UB)=∁U(A∪B),(∁UA)∪(∁UB)=∁U(A∩B).
2
PART TWO
核心考向突破
考向一 集合的基本概念 例 1 (1)已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元 素的个数是( ) A.1 B.3 C.5 D.9
答案 C
解析 当 x=0 时,若 y=0,则 x-y=0;若 y=1,则 x-y=-1;若 y =2,则 x-y=-2.同理可得,当 x=1 时,x-y=1,0,-1;当 x=2 时,x -y=2,1,0.综上,根据集合中元素的互异性,可知 B 中元素有-2,-1, 0,1,2,共 5 个.
6.(2021·福建泉州质量检测(三))已知集合 A={(x,y)|x+y=8,x,y∈ N*},B={(x,y)|y>x+1},则 A∩B 中元素的个数为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上图为三阶洛书
组合数学中有许多象幻方这样精巧的结构。 1977年美国旅行者1号、2号宇宙飞船就带 上了幻方以作为人类智慧的信号。
2200BC
4 3 8
9 5 1
2 7 6
神 农 幻 方
1 12 8 13
15世纪 15 14 6 10 3 7 11
4 9 5
4 阶 幻 方
2 16
实例四:Tiling(阿基米德手稿)问题
27
联结词

否定联结词 否定式p: 非p (p的否定) p 为真当且仅当p为假

合取联结词 合取式pq:p并且q (p与q) pq为真当且仅当p与q同时为真 析取联结词 析取式pq: p或q pq为假当且仅当p与q同时为假
28

联结词(续)
• 排斥或联结词 排斥或p q: p并且非q, 或者q并且非p p q为真当且仅当p与q中一个为真,另一个为假 •蕴涵联结词 蕴涵式pq:如果p,则q pq为假当且仅当 p 为真 q 为假
• 等价联结词 等价式pq:p当且仅当q pq为真当且仅当p与q同时为真或同时为假
29
实例
设p:2是偶数, q:1+1=3, 则 p的真值为 1 ¬ p的真值为 0 q的真值为 0 ¬ q的真值为 1
pq的真值为 0
p¬ q的真值为 1
pq的真值为 0
pq的真值为 1 p¬ q的真值为 1 p q的真值为 1
实例三:哥尼斯堡七桥问题

近代图论的历史可追溯到18世纪的七桥问题— 穿过Königsberg城的七座桥,要求每座桥通过 一次且仅通过一次。
Euler1736年证明了不可能存在这样的路线。

Euler 定理

如果一个图包含一条经过每条边恰好一次的闭途径, 则称这个图为欧拉图。 对任意的非空连通图,若它是欧拉的, 当且仅当它没 有奇度点。

当今数学家借助计算机得出的答案是17152 种拼法,这在当时是相当困难的。
Periodic Tilings
Non-Periodic Tilings
Symmetric Tilings
Penrose Tilings
Symmetric Tilings
实例五:栈排序问题(Knuth, 1960’s)

无尺度网络的一个例子

因特网是一个无尺度 网络,左图的星爆形 结构描绘了从某一测 试站点到其他约十万 个站点的最短连结路 径。图中以相同的颜 色来表示相类似的站 点。
第1章 数学语言与证明方法
本章主要内容

1.1 常用数学符号 ——集合符号、运算符号、逻辑符号

1.2 集合及其运算 1.3 证明方法概述
实例五:无尺度网络问题

20世纪20年代,由Karinthy提出。 1950年, Pool 和 Kochen提出这样一个问题:“两 个毫无关系的人,要让他们互相认识,至少要经过 多少人?”

美国哈佛大学社会心理学家S. Milgram在1967年做 过一项有趣的实验,据说他从内布拉斯加州的奥马 哈随机选了300人,然后请他们每个人尝试寄一封 信到波士顿的一位证券业务员。寄信的规则很简单, 就是任何收信者只能把信寄给自己熟识的人。
离散数学
主讲教师:李向军 南昌大学信息工程学院计算机系
2010年9月
1
教材与教学参考书
教材:
离散数学(第2版) 屈婉玲、耿素云、张立昂 主编 清华大学出版社, 2008.2
教学参考书:
离散数学习题解答与学习指导(第2版)
屈婉玲、耿素云、张立昂 主编
清华大学出版社,2008.2
离散数学是现代数学的一个重要分支。是计算机科学

答案:“猜对的人戴着黑帽子”是真的,所以猜对的人肯定的 说:“我戴的是黑帽子”。
集合论:是研究集合一般性质的数学分支,它的 创始人是康托尔( G, Cantor,1845-1918)。在
现代数学中,每个对象(如数,函数等)本质上都是集合,
都可以用某种集合来定义,数学的各个分支,本质上都 是在研究某一种对象集合的性质。集合论的特点是研究 对象的广泛性,它也是计算机科学与工程的基础理论和 表达工具,而且在程序设计,数据结构,形式语言,关 系数据库,操作系统等都有重要应用。 本课程在第四,五章中介绍集合论中的关系和函数部 分的内容。
图论:是一个古老的数学分支,它起源于游戏难题的
研究。图论的内容十分丰富,应用得相当广泛,许多学
科,诸如运筹学、信息论、控制论、网络理论、博弈论、 化学、生物学、物理学、社会科学、语言学、计算机科 学等,都以图作为工具来解决实际问题和理论问题。随 着计算机科学的发展,图论在以上各学科中的作用越来 越大,同时图论本身也得到了充分的发展。 本课程在第六,七两章中介绍与计算机科学关系密 切的图论的内容。
和一阶谓词逻辑的内容。
实例一:聪明助手问题
著名物理学家爱因斯坦出过如下一道题: 一个土耳其商人,想找一个十分聪明的助手协助他经商,有两 个人前来应聘。这个商人为了试一试哪一个聪明些,就把两个人 带进一间漆黑的屋子里,他打开电灯后说:“这张桌子上有五顶 帽子,两顶是红色的,三顶是黑色的。现在,我把灯关掉,而且 把帽子摆的位置弄乱,然后我们三个人每人摸一顶帽子戴在头上 ,在我开灯后,请你们尽快地说出自己头上戴的帽子是什么颜色 的。”说完之后,商人将电灯关掉,然后三人都摸了一顶帽子戴 在头上,同时商人将余下的两顶帽子藏了起来接着把电灯打开, 这时那两个应试者看到商人头上戴的是一顶红帽子,过了一会儿 ,其中一个人便喊到:“我戴的是黑帽子。” 请问这个人猜得对吗?是怎么推导出来的?
实例二:理发师悖论(Paradox)
在某个城市中有一位理发师,他的广告词是这样写的:“本人 的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸 的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找 他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是, 有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓 起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮 脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果 他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己 刮脸。 这与由著名数学家伯特兰· 罗素(Russel,1872—1970)提出 的罗素悖论问题相似: 把所有集合分为2类,第一类中的集合以其自身为元素,第 二类中的集合不以自身为元素,假令第一类集合所组成的集合为 P,第二类所组成的集合为Q,于是有P={A∣A∈A},Q={A∣AA}, 问,Q∈P 还是 Q∈Q?
相关重要结论



“6度分离” —对每个人来说,平均大约只需 要通过6个人就能将信寄到目的地。 研究无尺度网络及其结构,对于防备黑客攻 击、防治流行病、和开发新药等,都具有重 要的意义。 在1999年,Barab´asi et al.发现在因特网上, 任意两个网页间的链接最多为19次。(Nature 401, 1999)
32
重言式,矛盾式与可满足式
重言式(永真式):无成假赋值的命题公式 矛盾式(永假式):无成真赋值的命题公式 可满足式:不是矛盾式的命题公式 例如, A= (pq)(rp)是可满足式, 但不是重言式, B= (pq)(pq)(pq)(pq)是重言式, C= p(pq)(pq)是矛盾式.

Königsberg桥对应的图
组合计数理论:是一个研究离散结构的存在、计数、
分析和优化等问题的数学分支。上世纪60年代以来,随着 计算机的诞生,组合计数理论得到了迅速发展, “为上世 纪计算机革命奠定了基础”,计算机之所以被称之为电脑, 就是因为计算机被人编写了程序,而程序就是算法。算法 运行效率和存储需求分析需要大量的组合计数思想,正是 因为有了组合算法,才使人感到计算机好像是有思维的。 本课程在第八,九和十三章中介绍组合计数理论中的组 合计数基础、容斥原理和递推方程与生成函数等内容。
实例三:幻方问题
我国古代的河洛图(幻方)问题

传说在公元前23世纪大禹 治水的时候,在黄河支流 洛水中,浮现出一个 大乌 龟,甲上背有9种花点的 图案,人们将图案中的花 点数了一下,竞惊奇地发 现9种花点数正巧是1—9 这9个数,各数位置的排 列也相当奇妙,横的3行、 纵的3列以及两对角线上 各自的数字之和都为15。

命题变项:取值为0或1的变元, 也用p,q,r等表示. 命题公式:用联结词和圆括号把命题和命题变项按照一定 规则连接起来的符号串, 常用A,B,C等表示. 例如, A=(pq)(rp)
公式的赋值:对公式中每一个命题变项给定一个值(0或1). 公式的成真赋值:使公式为真的赋值. 公式的成假赋值:使公式为假的赋值. 例如, p=1,q=1,r=1是A的成真赋值, p=0,q=1,r=0是A的成假赋值.
中基础理论的核心课程,为计算机科学提供了有力的理论
基础和工具。离散数学的基本思想、概念和方法广泛地渗 透到计算机科学与技术发展的各个领域,而且其基本理论 和研究成果更是全面而系统地影响和推动着其发展。 离散数学的内容十分丰富,最重要,最核心的是:数理 逻辑、集合论、图论、组合计数理论和代数系统。 本课程将围绕这五个部分相关知识展开介绍。
p¬q的真值为 0
¬ pq的真值为 0 ¬ p¬ q的真值为 1 ¬ p q的真值为 0
30
p ¬ q的真值为 0
¬ p ¬ q的真值为 1
实例(续)
pq的真值为 0 ¬ pq的真值为 1
p¬ q的真值为 1
¬ p¬ q的真值为 1
又设 r:今天是星期一, s:明天是星期二, t:明天是星期三 rs的真值为 1

模式: 对任意一个排列π , 最小的元素用1代 替,次小的元素用2代替……以此类推, 这样得到的排列叫π的模式。 例如 914的模式为:312 37925 的模式为: 24513
相关文档
最新文档