19 第七章2-单正态总体的假设检验

合集下载

正态总体方差的假设检验

正态总体方差的假设检验
方差计算公式为:$sigma^2 = frac{1}{N}sum_{i=1}^{N}(x_i mu)^2$,其中$N$是样本数量, $x_i$是每个样本值,$mu$是样本均 值。
方差的计算方法
简单方差
适用于数据量较小,且数据间相互独立的情况。
加权方差
适用于数据量较大,且数据间存在相关关系的 情况,需要考虑到每个数据点的重要程度。
配对样本方差检验
总结词
配对样本方差检验用于比较两个相关样本的方差是否相同。
详细描述
在配对样本方差检验中,我们首先需要设定一个零假设,即两个相关样本的方差无显著差异。然后, 通过计算检验统计量(如Wilcoxon秩和统计量或Stevens' Z统计量),我们可以评估零假设是否被拒 绝。如果零假设被拒绝,则可以得出两个相关样本方差不相同的结论。
方差齐性检验的目的是为了后续 的方差分析提供前提条件,确保 各组数据具有可比性。
方差分析
方差分析(ANOVA)是
1
用来比较多个正态总体均
值的差异是否显著的统计
方法。
4
方差分析的结果通常以p值 表示,若p值小于显著性水 平(如0.05),则认为各组 均值存在显著差异。
2
方差分析的前提条件是各
组数据具有方差齐性和正
正态总体方差假设检验的未来发展
改进假设检验方法
结合其他统计方法
结合其他统计方法,如贝叶斯推断、机器学习等, 可以更全面地分析数据和推断总体特征。
针对正态总体方差假设检验的局限性,未来 研究可以探索更灵活、适应性更强的检验方 法。
拓展应用领域
正态总体方差假设检验的应用领域可以进一 步拓展,特别是在大数据和复杂数据分析方 面。
数学表达式

正态总体的假设检验

正态总体的假设检验
(Xi μ)2
n
(Xi μ)2
P { i1
σ
2 0
χ
2 1
α 2
(
n)}
P{
i 1
σ
2 0
χ
2
α
(
n)}
α
2
所以拒绝域为: W
{
χ2
χ
2 1
α 2
(
n)
,χ
2
χ
2
α
(n)
}
2
2. μ未知时,总体方差σ2的假设检验 χ2 检验法
类型 原假设 备择假设
H0
H1
检验统计量
双边 检验
σ2
σ
2 0
σ2
得s=0.007欧姆.设总体服从正态分布,参数均未知,
问在显著性水平α=0.05下,能否认为这批导线的
标准差显著地偏大?
解: s2 0.0072 0.0052
原假设 H 0 : σ 2 0.0052,备择假设 H1 : σ 2 0.0052
检验统计量: χ 2 (n 1)S 2
σ2
拒绝域:
第二节 正态总体的假设检验
一、单一正态总体均值μ的假设检验
二、单一正态总体方差σ2的假设检验 三、两个正态总体均值的假设检验 四、两个正态总体方差的假设检验
一、单一正态总体均值μ的假设检验
设总体X~N (, 2). X1 , X2 , … , Xn是取自X的样本,
样本均值 X样,本方差S2
1.已知
T t(α n 1)
例1. 设某次考试的考生的成绩服从正态分布,从中随
机地抽取36位考生的成绩,算得平均成绩为66.5分,标 准差为15分,问在显著性水平0.05下,是否可以认为在 这次考试中全体考生的平均成绩为70分?

单个正态总体的假设检验

单个正态总体的假设检验

计算统计量 Z 的观察值
z0
x 0

n
.
(8.3)
如果:( a ) | z0 |> zα/2,则在显著性水平 α 下,拒绝原假设 H0
(接受备择假设H1),所以| z 0|> zα/2 便是 H0 的拒绝域。
( b ) | z0 | z /2 ,则在显著性水平 α 下,接受原假设 H0,认
=0.05 下 否 定 H0 , 即 不 能 认 为 这 批 产 品 的 平 均 抗 断 强 度 是
32.50kg·cm-2。
把上面的检验过程加以概括,得到了关于方差已知的正态总体期
望值 μ 的检验步骤:
( a )提出待检验的假设 H0 :μ = μ0; H1:μ ≠ μ0。
( b )构造统计量 Z ,并计算其观察值 z0 :
1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?
这里假设测量值 X 服从 X ~ N ( μ , σ2) 分布。

①问题是要检验
提出假设 H0 :μ = μ0=1227; H1:μ ≠ μ0。
由于
σ2
未知( 即仪器的精度不知道 ),我们选取统计量 T
当 H0 为真时,T ~ t ( n -1) ,T 的观察值为
X
X 0

N ( , ) ,
n
Z
n
X 0

n
N (0,1) ,
(8.2)
作为此假设检验的统计量,显然当假设 H0 为真(即μ = μ0正确)
时, Z ~ N ( 0 , 1),所以对于给定的显著性水平 α ,可求出 zα/2,
使
P{| Z | z 2 } .
见图8-3,即

假设检验

假设检验

本的取值,按一定原则进行检验,然后作出接受或拒绝所作假设
的决定. 参数假设检验:对总体分布中参数做假设。 分类: 分布假设检验:对总体分布做假设。
假设检验的过程
提出假设
我认为人口的平 均年龄是50岁
作出决策 拒绝假设
别无选择!
总体

抽取随机样本
均值 x = 20
一、引例
X 68 可以确定一个常数c 使得 P c 3.6 / 6
取 0.05,则
c z z0.025 1.96
2
X 68 1.96 由 3 .6 6
X 69.18或 X 66.824
即区间( ,66.824 )与( 69.18 , + )为检验的拒绝域
2 设 X 1 , , X n是取自正态总体 N , 的一个样本, 其中 , 2 都是未知参数。


具体步骤:
(1)先考虑假设检验问题
H 0 : 0
H1 : 0
(2)选择检验统计量,在此处,由于, 2 未知,所以用总
1 n ( X i X ) 2 来代替,则采用 体方差 2 的无偏估计 S n 1 i 1
这是小概率事件 ,一般在一次试验中是不会发生的, 现一 次试验竟然发生, 故认为原假设不成立, 即该批产品次品 率 p 0.04 , 则该批产品不能出厂.
1 P (1) C12 p1 (1 p)11 0.306 0.3 12
这不是小概率事件,没理由拒绝原假设,而接受原假设, 即该批产品可以出厂. 注1 直接算 1 / 12 0.083 0.04

0.01 0.05,0.1 ,

第七章假设检验

第七章假设检验
5-2
引言
结论:企图肯定什么事情很难, 结论:企图肯定什么事情很难,而否定就容 易得多。 还记得上次那个例子吗? 易得多。 (还记得上次那个例子吗?两个人 住一起,其中有一个人病了, 住一起,其中有一个人病了,另一个人天天 给他熬药还端到他床前,三个月过去了, 给他熬药还端到他床前,三个月过去了,突 然有一天那个人忙得很, 然有一天那个人忙得很,把药熬好了就对卧 病在床的人说,你自己去喝吧, 病在床的人说,你自己去喝吧,卧病的人心 里想: 这个人怎么这么坏呢? 里想:“这个人怎么这么坏呢?”,他倒忘 了这个人对他的好, 了这个人对他的好,记住一个人的好总比记 住一个人的坏好,有时候想想, 住一个人的坏好,有时候想想,老师就像端 药的人,学生就是喝药的人,良药苦口, 药的人,学生就是喝药的人,良药苦口,我 也许一直是你们背后说你们的那个烂人, 也许一直是你们背后说你们的那个烂人,老 师也是弱势群体啊!!) 师也是弱势群体啊!!)
α
H 0 : µ ≤ 2% ↔ H 1 : µ > 2%
5-10
二、两种类型的错误
两类错误发生的概率 α与β之间是此消彼长的关系 接受
H0
拒绝
H0
H0
真实
判断正确 (1-α) ) 取伪错误( 取伪错误(第二类 错误或β 错误或 错误)
弃真错误( 弃真错误(第一 类错误或α 类错误或 错误 ) 判断正确 (1-β) )
第七章 假设检验
第一节 假设检验概述 第二节 总体参数检验 第三节 卡方检验
参数估计是利用样本信息推断未知的总体参数, 参数估计是利用样本信息推断未知的总体参数, 而假设检验是先对总体参数提出一个假设, 而假设检验是先对总体参数提出一个假设,然后利 用样本信息判断这一假设是否成立。 用样本信息判断这一假设是否成立。

7-2 正态总体均值与方差的假设检验

7-2 正态总体均值与方差的假设检验
因为 X ~ N ( , 2 ), 0.15,
要检验假设 H 0 : 10.5, H1 : 10.5,
n 15,
x 10.48,

2
0.05,
x 0 10.48 10.5 0.516, 则 / n 0.15 / 15
查表得 u0.05 1.645,
H1 : 0 10
x 9.2
s 1.6
x 0 9.2 10 于是 T 3.54 2.01 t0.025 49 s n 1.6 50
故在 0.05 的水平下,丰产林的树高与10米的差异 有统计意义。(拒绝原假设)
例7 某车间生产某种化学纤维的强度服从正态分布,且原来
单边检验
2
得H0 的拒绝域为:
2 n 1 S 2 0
12 n

2 n 1 S 2 0
2 n
作业
• 习题七:3,5,9,12.
• 复习第七章(可做习题七之1~13题) • 复习5~7章,准备课堂测验
例5 P160 8 从某批矿砂中,抽取容量为 5 的一个样本,测得其 含镍量为(单位:%) 3.25 3.27 3.24 3.26 3.24 设测量值服从正态分布,问在 这批矿砂的含镍量为 3.25 ?
例1 某切割机在正常工作时, 切割每段金属棒的平 均长度为10.5cm, 标准差是0.15cm, 今从一批产品中 随机的抽取15段进行测量, 其结果如下(单位:cm) 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度X服从正态分布, 且标准差没有 变化, 试问该机工作是否正常? ( 0.1) 解

第七章 假设检验

第七章 假设检验

参数估计
7-3
假设检验
经济、管理类 基础课程
统计学
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 能对实际问题作假设检验 4. 利用P - 值进行假设检验
7-4
经济、管理类 基础课程
统计学
一. 二. 三. 四. 五.
第一节 假设检验的一般问题
假设检验的概念 假设检验的步骤 假设检验中的小概率原理 假设检验中的两类错误 双侧检验和单侧检验
7 - 20
经济、管理类 基础课程
统计学
假设检验中的两类错误
(决策风险)
7 - 21
经济、管理类 基础课程
统计学
假设检验中的两类错误
1. 第一类错误(弃真错误)

原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为 被称为显著性水平 原假设为假时接受原假设 第二类错误的概率为(Beta)
拒绝域 /2
接受域 H0值 样本统计量
临界值
7 - 32
临界值
经济、管理类 基础课程
双侧检验
(显著性水平与拒绝域 )
置信水平 拒绝域 1- /2 接受域
统计学
抽样分布
拒绝域
/2
临界值
7 - 33
H0值
临界值
样本统计量
经济、管理类 基础课程
双侧检验
(显著性水平与拒绝域 )
置信水平 拒绝域 1- 接受域 H0值 样本统计量 /2

7 - 37
属于研究中的假设 建立的原假设与备择假设应为 H0: 2% H1: 2%
经济、管理类 基础课程
单侧检验
(原假设与备择假设的确定)

第七章 假设检验

第七章 假设检验
因为,把好人关在牢里的概率很小
4、不原意相信“牢外面的人一定是好人”
未发现犯罪不意味着就是好人
注:有证据可以放心定性坏人,断定好人要慎重
4 December 2010
宁波工程学院
理学院
第七章 假设检验
第15页 15页
三、选择显著性水平
假设检验中关键的小概率事件发生的概率α 称为该检验的显著性水平,简称水平。 注:按照小概率事件原理进行统计推断自然 可能犯错误。错误拒绝原假设 H 0 的概率为 α 。正确拒绝原假设 H 0 的可信度为1-α
宁波工程学院
理学院
第七章 假设检验
第7页
问题分析(续)
(5) 对于随机试验中参数的假设检验问题称为 参数假设检验问题 否则称为非参数假设检验问题。例如:后 面的聪明检验。 (6) 由样本去推断总体,判断差异是由总体 由样本去推断总体,判断差异是 变异引起,还是由于随机误差引起。这就 变异引起,还是由于随机误差引起。这就 是假设检验要解决的问题 (7) 参数估计和假设检验是二种不同的统计推断
4 December 2010
宁波工程学院
理学院
第七章 假设检验
第23页 23页
显著性水平a 和拒绝域(左侧检验 )
H0成立时的抽样分布 拒绝H0 置信水平
α
1-α
0
临界值
4 December 2010
观察到的样本统计量
宁波工程学院 理学院
第七章 假设检验
第24页 24页
显著性水平a和拒绝域(右侧检验 )
4 December 2010
宁波工程学院
理学院
第七章 假设检验
第8页
通俗的例子(1)
实例:箱子中有黑球和白球,总数100个,但 不知黑球白球各多少个。现提出假设H0:“箱 子中有99个白球或白球占绝大部分”,暂时设 H0正确,那么从箱子中任取一球,得黑球的概 率为0.01或很小,是一小概率事件。 检验:今取一球,居然取到黑球,自然会使人 对H0的正确性产生怀疑,从而否定H0。也就是 说箱中不止1个黑球。 问题:如果取到的是白球,说明什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U
X 0

n
N (0,1)
(3)对于给定的显著性水平α=0.05 ,查标准正态分布表 u u0.025 1.96 W1 (, u ) (u , )
2
(4)计算统计量观察值
x 0 1637 1600 u 1.258 n 150 26
2
2
(5)结论 u 1.258 u 1.96
当μ= μ0时,统计量U服从标准正态分布N(0,1)。对 于给定的显著性水平α,有
(1) H0:μ= μ0,H1:μ≠μ0;检验规则为 当 当
U | X 0 |

n
u 时,拒绝H0
2
U
| X 0 |

μ≤μ0,H1:μ>μ0;检验规则为 X 0 当 U u 时,拒绝H0 n X 0 当 U u 时,接受H0 n
选取统计量
2
(n 1) S 2
2
当H0为真时,服从自由度为n-1的χ2分布。对于给
定的显著性水平α,有
(1) H0:σ2=σ02,H1:σ2≠σ02 ;检验规则为
2 2 或 当 (n 1) (n 1) 时,拒绝H0
2
2
1
2
2

2 2 (n 1) 2 (n 1) 时,接受H0 1 2 2
7.2 正态总体下参数的假设检验
一、单个正态总体下参数的假设检验 对于一个正态总体均值的检验,常见的有 以下三种类型:
(1) H0:μ= μ0,H1:μ≠μ0;
(2) H0:μ≤ μ0,H1:μ>μ0;
双边假设检验
(3) H0:μ≥ μ0,H1:μ<μ0;
单边假设检验
1、总体方差σ2已知,正态总体的均值检验 X 0 U 构造检验统计量 n
X 0 对于给定的显著性水平α=0.05 , S n t (n 1) t0.025 (8) 2.3060
2
2 S 12.5 x 21 (4)由题意,计算得到样本均值和样本方差分别为 x 0 21 18 2.55 计算统计量观察值 t S n 12.5 9 (5)由于 t 2.55 t (n 1) 2.3060 所以拒绝原假设H0,而接受H1,
(3) H0:μ≥ μ0,H1:μ<μ0;检验规则为 当 T 当 T
X 0 S n t (n 1) 时,拒绝H0
X 0 S n
t (n 1) 时,接受H0
例7.6 某地区青少年犯罪年龄构成服从正态分布,现随机抽取9 名罪犯,其年龄如下: 22,17,19,25,25,18,16,23,24 试以95%的概率判断犯罪青少年的平均年龄是否为18岁。 解 (1)提出原假设: H0:μ=18,H1:μ≠18; (2)选取统计量 T (3)查t分布表得
(3) H0:μ≥μ0,H1:μ<μ0;检验规则为 当 U 当 U
X 0

n
u 时,拒绝H0
X 0

n
u 时,接受H0
例7.4 设某产品的某项质量指标服从正态分布,已知它的标准差 σ=150,现从一批产品中随机地抽取26个,测得该项指标的平均 值为1637。问能否认为这批产品的该项指标值为1600(α=0.05) ? 解 (1)提出原假设: H0:μ=1600,H1:μ≠1600; (2)选取统计量
即认为这批罐头细菌含量大于62.0,质量不符合标准。
3、正态总体方差的检验
常见的正态总体方差的假设检验有以下三种类 型: (1) H0:σ2=σ02,H1:σ2≠σ02 ; (2) H0:σ2≤σ02,H1:σ2>σ02; (3) H0:σ2≥σ02,H1:σ2<σ02。 单边假设检验 双边假设检验
(1) H0:μ= μ0,H1:μ≠μ0;检验规则为
当 T 当 T
| X 0 | S n t (n 1) 时,拒绝H0
2
| X 0 | S n
t (n 1) 时,接受H0
2
(2) H0:μ≤ μ0,H1:μ>μ0;检验规则为 X 0 当 T t (n 1) 时,拒绝H0 S n X 0 当 T t (n 1) 时,接受H0 S n
(3)查χ2分布表得
2 2 (n 1) 0.01 (19) 36.191

(4)由题意,S=0.015,计算统计量观察值

2
(n 1) S 2
2
(20 1) 0.0152 42.75 2 0.01
2 (5)由于 2 42.75 (n 1) 36.191所以拒绝原假设H0,而接受H1,
即认为这批玻璃花瓶折射率的标准差显著地超过了标准,该超市 应该拒绝接受这批花瓶。
(2) H0:σ2≤σ02,H1:σ2>σ02;检验规则为
当 当
2 2 (n 1)
时,拒绝H0 时,接受H0
2 2 (n 1)
(3) H0:σ2≥σ02,H1:σ2<σ02;检验规则为 当 当

2
2 1
(n 1) 时,拒绝H0
2 12 (n 1) 时,接受H0
即能以95%的把握推断该地区青少年犯罪的平均年龄不是18岁。
2
例7.7 食品罐头的细菌含量按规定标准不能大于62.0,现从一批罐 头中抽取9个,检验其细菌含量,经计算得样本均值为62.5,样本 标准差为0.3。问这批罐头的质量是否完全符合标准(α=0.05 )? (设罐头的细菌含量服从正态分布 ) 解 (1)由题意建立假设: H0:μ≤62.0,H1:μ>62.0; (2)选取统计量T
(5)由于 u 2 u 1.65 所以拒绝原假设H0,而接受H1, 即说明用新方法所需时间比用老方法所需时间短。
2、总体方差σ2未知,正态总体的均值检验
由于总体方差σ2未知,故选取统计量
X 0 T S n
当μ= μ0时,统计量T服从自由度为n-1的t分布。对
于给定的显著性水平α,有
2
接受原假设H0
即不能否定这批产品该项指标为1600。
例7.5 完成生产线上某件工作的平均时间不少于15.5分钟,标准 差为3分钟。对随机抽取的9名职工讲授一种新方法,训练期结束 后,9名职工完成此项工作的平均时间为13.5分钟。这个结果是 否说明用新方法所需时间比用老方法所需时间短?设α=0.05,并 假定完成这件工作的时间服从正态分布。 解(单边检验问题)(1)提出原假设H0:μ≥15.5,H1μ<15.5;
例7.8一家超市从生产玻璃器皿的厂家订购了一批玻璃花瓶,要 求其折射率的标准差不能超过0.01。货到后,随机抽出一个容量 为20的花瓶的样本进行检查,发现样本折射率的标准差为0.015。 试问在α=0.01的条件下,该超市应该是接受还是拒绝这批玻璃花 瓶? 解 (1)由题意建立假设: H0:σ2≤0.012,H1:σ2>0.012 2 ( n 1 ) S 对于给定的显著性水平α=0.01 , (2)选取统计量 2 2
X 0 对于给定的显著性水平α=0.05 , S n (3)查t分布表得 t (n 1) t0.05 (8) 1.8595
(4)由题意, x 62 .5 S 0.3 计算统计量观察值 x 0 62.5 62.0 t 5 S n 0.3 9 (5)由于
t 5 t (n 1) 1.8595 所以拒绝原假设H0,而接受H1,
X 0 (2)选取统计量 U n
(3)查标准正态分布表
对于给定的显著性水平α=0.05 ,
W1 (, 1.645)
u u0.05 1.645,
(4)计算统计量观察值 x 0 13.5 15.5 u 2 n 3 9
已知n=9,σ=3,
x 13.5
相关文档
最新文档