工业催化剂作用原理—固体酸碱催化剂
固体酸碱催化剂及其催化作用全解

固体酸碱催化剂及其催化作用全解固体酸碱催化剂是一类广泛应用于化学反应中的物质。
它们以固态形式存在,并具备酸性或碱性性质,能够与反应底物发生相互作用,从而促进化学反应的进行。
固体酸碱催化剂具有许多优点,如高活性、稳定性好、易于回收利用等,因此在催化化学领域中占有重要地位。
固体酸催化剂主要包括金属氧化物、沸石、层状材料以及离子交换树脂等几种类型。
金属氧化物催化剂中,氧化铋、二氧化硅、二氧化钛等都是常见的固体酸催化剂。
它们具有高酸性、高稳定性和可控性,常用于酯化、酸酐酯化、醇酸缩合等反应中。
沸石是一类由硅氧四面体和金属氧四面体交替组成的晶体结构,具有反应局部的高酸性和较大的孔径,常用于醇醚化、碳氢化合物裂解等反应中。
固体碱催化剂主要包括氧化铝和硅铝酸盐(分子筛)。
氧化铝是一种强碱,具有高度的活性和选择性,常用于醇转酯反应、酯加成反应、酸酐加成反应等。
而硅铝酸盐是一类具有指定孔道结构的化合物,其酸性主要来自于酸位和酟位,常用于烷基化反应、异构化反应等。
酸催化作用主要是通过提供质子(H+)来促进反应的进行。
在酸催化中,催化剂与底物之间发生相互作用,质子转移后生成活化的中间体,从而降低了反应的能垒,加速了反应速率。
例如,在酯化反应中,固体酸催化剂能够降低羰基碳上的催化中间体的电性,促进从碳上的羟基到羰基的质子转移,加速生成酯。
碱催化作用主要是通过接受质子来促进反应的进行。
在碱催化中,催化剂与底物发生相互作用,接受质子生成活化的中间体,从而降低了反应的能垒,加速了反应速率。
例如,在醇转酯反应中,固体碱催化剂能够提供氧化铝或硅铝酸盐表面上的OH-离子,将醇分子上的质子去除,加速生成酯。
总结起来,固体酸碱催化剂通过引入酸性或碱性位点,提供质子或接受质子来促进化学反应的进行。
这种催化作用可以加速反应速率、提高产率和选择性,因此在有机合成、石化加工和环境保护等方面具有广泛应用前景。
有机合成中的固体酸催化剂及其催化作用机理

有机合成中的固体酸催化剂及其催化作用机理甘贻迪 2008302037安徽理工大学化学工程学院应化二班摘要:在有机合成中硫酸等液态催化剂存在不能循环使用,后处理工序复杂,环境污染大等缺点。
因而具有高活性、高选择性、绿色环保等优点的固体酸催化剂在有机合成中越来越受到人们的亲睐,成为有机合成中能够代替硫酸的良好催化剂[1]。
本文将对固体酸催化剂作性质种类作简单介绍,并介绍其在酯的合成、酮的合成、O-酰化反应等具体应用的原理。
关键词:固体酸催化剂、有机合成、酯、醛(酮)、喹啉1固体酸催化剂简述1.1固体酸催化剂的定义及特点一般而言,固体酸可以理解为凡能使碱性指示剂改变颜色的固体,或者凡能化学吸附碱性物质的固体[1] ,它们是酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位。
固体酸催化剂多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。
它与液体酸催化剂相比,固体酸催化剂具有容易处理和储存、对设备无腐蚀作用、易实现生产过程的连续化、稳定性高、可消除废酸的污染等优点。
因此固体酸催化剂在实验室和工业上都得到了越来越广泛的应用。
特别是随着人们环境保护意识的加强以及环境保护要求的严格,有关固体酸催化剂的研究更是得到了长足的发展。
当然,固体酸催化剂除了具有许多优势的同时,也还存在一些急需解决的不足地方,诸如固体酸的活性还远不及硫酸等液体酸、固体酸的酸强度高低不一、不能适应不同反应需要、固体酸价格较贵、单位酸量相对较少,故其用量较大,生产成本较高等1.2固体酸催化剂可以分类:按作用机理分为:B酸和L酸和超强酸Bromated酸:能够给出质子的物质称为Bromated酸。
Lewis酸:能够接受电子对的物质称为Lewis酸1。
固体超强酸:固态表面酸强度大于100%硫酸的固体酸。
由于100%硫酸的酸强度Hammett酸函数Ho=-11.9,所以Ho<-11.9的固体酸是固体超强酸5。
化工工业催化导论4酸碱催化剂及其催化作用

4-1 酸碱催化剂及其催化作用
3. 酸、碱中心的形成与结构 固体酸的制备技术
可溶性金属盐 H2SO4
沉淀
浸渍
500-600℃ 煅烧
SO42-/MXOY
沉淀剂
4-1 酸碱催化剂及其催化作用
3. 酸、碱中心的形成与结构 常见固体酸碱催化剂酸碱中心形成 (1) 浸渍法可以得到B酸位 (2) 卤化物可以提供L酸位 (3) 离子交换树脂可以提供B酸碱 (4) 单氧化物酸碱中心形成
3. 酸、碱中心的形成与结构 常见固体酸碱催化剂酸碱中心形成
OH- OH- OH- OH- OH-
O2- O2- O2- O2- O2- O2O2- O2- O2- O2- O2- O2- O2-
O2-
O2-
O2-
O2-
O2- O2- O2- O2- O2- O2-
O2- O2- O2- O2- O2- O2- O2-
(℃)
4-1 酸碱催化剂及其催化作用
2. 固体表面的酸碱性质及其测定
4-1 酸碱催化剂及其催化作用
2. 固体表面的酸碱性质及其测定 (3) 酸-碱对协同位
某些反应,已知虽由催化剂表面上的酸位所催化, 但碱位或多或少地起一定的协同作用。有这种酸- 碱对协同位的催化剂,有时显示更好的活性,甚至 其酸-碱强度比较单个酸位或碱位的强度更低。例 如ZrO2是一种弱酸和弱碱,但分裂C-H的键的活性, 较更强酸性的SiO2-Al2O3高,也较更强碱性的MgO 高。这种酸位和碱位协同作用,对于某些特定的反 应是很有利的,因而具有更高的选择性。这类催化 剂叫酸碱双功能催化剂。
4-1 酸碱催化剂及其催化作用
5. 固体超强酸和超强碱及其催化作用 固体超强酸和超强碱
固体酸的强度若超过100%硫酸的强度,则称之 为超强酸。因为100%硫酸的酸强度用Hammett酸 强度函数表示时为H0 = -11.9,故固体酸强度H0 < -11.9者谓之固体超强酸或超酸。常见的固体超强 酸有ClSO3H、SbF6-SiO2·ZrO2、SO42-·Fe2O3。
酸碱催化的应用及原理

酸碱催化的应用及原理一、酸碱催化的概念酸碱催化是一种化学反应过程中,通过酸或碱作为催化剂来加速反应速度的现象。
酸碱催化能够提高反应的选择性和效率,并且在许多领域有广泛的应用。
二、酸碱催化的原理酸碱催化的原理是基于酸碱催化剂对反应物的活化能降低以及中间物的生成和/或分解的动力学促进。
在酸催化中,酸可通过提供质子来加速反应。
酸能够与基质形成共轭碱,从而生成更加稳定的中间体。
这些中间体可以通过重新排列和/或分解来生成最终产物。
在碱催化中,碱可通过提供氢离子来加速反应。
碱的存在可以改变反应物和过渡态的电荷分布,从而降低反应的活化能。
碱还可以参与有机物的质子化或去质子化反应,从而生成更加稳定的中间体。
三、酸碱催化的应用1. 工业催化酸碱催化在工业生产中有着广泛的应用。
例如,在石油化工中,酸性和碱性催化剂常用于催化裂化和氢化反应。
催化裂化是将重油和高分子烃分解为轻质烃化合物的过程,而氢化反应则是将不饱和烃化合物加氢饱和。
酸碱催化剂的应用可以提高反应速率和产物选择性,提高工业生产的效率。
2. 生物催化酸碱催化也在生物学领域中得到广泛应用。
在生物体内,酸碱催化剂扮演着调节代谢途径和催化酶反应的角色。
例如,酸性催化剂可催化酶对底物的加氢、脱酸或脱碱等反应。
而碱性催化剂则可催化酶对底物的去氢、脱水或氧化等反应。
正是因为酸碱催化剂的存在,生物体内的化学反应能够在较温和的条件下进行,并且具有高效率和高选择性。
3. 有机合成在有机合成领域,酸碱催化是一种常用的反应促进手段。
酸催化可以促使酯的水解、醇的醚化等反应,而碱催化则可以促使酯的缩合、脱酸等反应。
酸碱催化剂可以改变反应物的活性和过渡态的能垒,从而实现高效的有机合成。
4. 燃烧反应酸碱催化剂也在燃烧反应中有重要应用。
在燃烧过程中,酸碱催化剂可以降低燃烧反应的温度,提高反应速率,并且减少产生有害物质的生成。
例如,某些酸碱催化剂可以催化汽油的完全燃烧,从而减少有害气体的排放。
酸碱催化剂及催化作用)

以四个O2- 作近邻的A型羟基,电性最 负,是碱中心;
没有O2- 作近邻的C型羟基,则由于电 性最正,是酸中心。
氧化铝表面上由吸附水而产生的质子 H+ 的 B 酸 很 弱 , 但 表 面 L 酸 很 强 , 所 以 Al2O3表面酸主要是L酸。
(一)氧化铝的结构及其催化性质
氧化铝是常用的催化剂载体、脱水催化剂和吸附剂,因制备氧化铝的原料和条件不 同,可得到不同类型的氧化铝,但有催化活性的只有γ- Al2O3和η- Al2O3。对γ- Al2O3表 面结构的深入研究发现,其表面即有L酸中心、B酸中心,又有碱中心。IR光谱表明γAl2O3表面有5种羟基吸收峰,γ- Al2O3上羟基的结构模型如图所示
无黄ຫໍສະໝຸດ -5.6蒽醌无
* 相当于硫酸溶液中硫酸的质量分数
黄
-8.2
(H2SO4)*/% 8×10-8 5×10-5 3×10-4 5×10-3 2×10-2 0.1
-
48 71 90
一般测定固体酸催化剂酸强度的步骤为:先将催化剂干燥,然后置于非
极性溶剂中,加入几滴指示剂,振荡一段时间,若起作用,则比较快地看到 指示剂变色,用各种指示剂重复几次,就可得到变色和不变色指示剂的pKa 区域,可见它能够很方便的测定出相对的酸强度。
固体酸
碱性气体
质量法
酸量
SiO2-Al2O3, SiO2-ZrO2, SiO2-MgO
酸量和酸强度 Al2O3, SiO2-Al2O3,
酸强度和吸附熵 Y型分子筛(H-Y)
吡啶、 喹啉 NH3、正丁胺 NH3
质量量热法
酸量和酸强度 SiO2-Al2O3, 高岭土
工业催化原理固体酸碱催化剂PPT课件

PO43–, ClO4–
第8页/共20页
Pd2+, Pt2+, Cd2+, (BH3), M0
Bases: H–, R–, CN–, I–, CO, SCN–, R3P, C6H6, R2S,
Cu Pd Ag Cd Ir Pt Au Hg Tl
典型的软酸三角形
第9页/共20页
硬酸:碱金属,碱土金属,轻和高价的金属离子 软酸:重过渡金属离子,低价或零价金属 硬碱:半径小,不易被极化 软碱:半径大,易被极化 Cu(I), Cu(II),氧化态增高,硬度加大 Fe(II), Fe(III), Fe(VI) K2FeO4, PtF62-, NaCo(CO)4, Pt[P(CH3)3]4 AlF63-, HgI42-
In dilute solution (稀溶液),
H pH B
B H 1
0
第16页/共20页
pKa H0lgCCBBH
pKa对于给定指示剂为—constant。
H0
f
CB CB
H
C B 反映BH+和B量的相对大小,也反映了转化能力 C BH (即强度) 。
对于L酸,
Define: H0= -lg(aA·γB/γAB)
Ni2+, Cu2+ Zn2+, Au+, Tl+, Hg+, 2+,
Mg2+, Ca2+, Cr2+, Pb2+, SO2, BBr3
Cr3+, Al3+, SO3,
BF3 Bases: NO2–,
Bases: F–, OH–, SO32–, Br–, N3–, H2O, NH3 , CO32–, N2, C6H5N , NO3–, O2–, SO42–, SCN–,
第四章_固体酸碱催化剂及其催化作用

第四章_固体酸碱催化剂及其催化作用固体酸碱催化剂是一类在化学反应中作为催化剂的物质,具有固体形态的特点。
与传统的液体酸碱催化剂相比,固体酸碱催化剂具有较高的催化活性、良好的稳定性和可回收性,因此在许多化学反应中得到了广泛的应用。
固体酸催化剂是指具有酸性的固体物质,能够与碱性物质或带有亲电性的基团发生酸碱反应。
常见的固体酸催化剂包括过渡金属氧化物、沸石、硫酸等。
其中,过渡金属氧化物催化剂具有较强的酸性,能够提供足够的酸位和酸位强度,因此具有较高的催化活性。
固体碱催化剂是指具有碱性的固体物质,能够与酸性物质或带有亲核性的基团发生酸碱反应。
常见的固体碱催化剂包括氧化铝、氧化镁、氧化钙等。
其中,氧化铝催化剂由于其高度分散性和酸碱中心的存在,具有较强的碱性,能够在一定温度下催化醇的脱水反应、酯化反应等。
固体酸碱催化剂在化学反应中发挥着重要的作用。
首先,其具有高催化活性,能够降低反应的活化能,促进反应的进行。
其次,固体酸碱催化剂具有较好的稳定性,不易受到反应条件的影响,可以进行长时间的催化反应。
同时,固体酸碱催化剂也具有良好的选择性,能够选择性地催化目标产物的生成,减少副产物的生成。
固体酸碱催化剂的应用范围非常广泛。
在石油化工领域,固体酸碱催化剂常用于石脑油的催化裂化反应、异构化反应等。
在有机合成领域,固体酸碱催化剂可用于醇的脱水反应、酯化反应、氧化还原反应等。
在环保领域,固体酸碱催化剂可用于废水处理、大气污染物的清除等。
总结起来,固体酸碱催化剂是一类具有较高催化活性、良好稳定性和可回收性的固体物质,广泛应用于各种化学反应中。
它们具有很大的应用潜力,可以帮助我们实现高效、低成本的化学合成过程,为实现可持续发展提供支持。
催化化学--3 固体酸碱催化作用

3.4 固体酸碱中心的结构和性质
3.4.1 单一金属氧化物表面酸碱性
以氧化铝为例。Al2O3有多种变体, 作为催化剂主要是 Al2O3, 而-Al2O3等无催化作用。从电负性看, Al2O3表面的羟 基是两性的,如在高温脱水, 表面上就出现强酸中心, 经研究 证明这些酸中心是L酸。 如重新放臵于空气, 这些酸中心就 会消失。对这种现象, Hindin等提出如下模型:
SiO4结构中的硅(4价)有较大的电负性, 可吸引铝原子周
围电子, 这就进一步增大了铝的吸电子性. 使铝原子有 可能通过水裂解放出一个质子而获得羟基.
12
3.4.2 二元金属氧化物表面的酸碱性 当氧化硅-氧化铝表面通过高温加热脱水, 水分子将从 B-部位离开, 这时裸露在外的铝离子将具有接受电子 对的性质,如下图式所示, 形成了L-酸部位. 根据处理 条件的不同, 脱水表面可以是B-酸, 也可以是L-酸, 或者是两种酸都有.
混合氧化物表面上形成酸中心的 Tanable 模型
有所增大,也能成为烯烃异构反应的有效催化剂,工业
上经常采用这种方法来改进 Al2O3 的催化性能。
10
3.4.2 二元金属氧化物表面的酸碱性 无论是氧化铝还是氧化硅,或者这二种干燥氧化 物的机械混合物,都不是活性的裂解催化剂。 但是
它们的胶体混合物,即使主要是氧化硅却都具有相当
活性。这就是说,当氧化铝被引入到氧化硅中时,即 使浓度很小就能形成对裂解反应有催化作用的表面。 或者说,已在表面上形成B-酸或者L-酸。 这是由于 在铝的三水合物和氧化硅的表面烃基之间发生了消除
Peri认为,氧化铝表面脱水过程如下图所示:
OHOHOHOHOHOHOH-
O2O2-
O2O2-
O2O2-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
催化反应发生在液膜上,催化原理与均相酸催化 反应相同。
氧化铝
✓ 氧化铝是石油化工中常用的酸性载体或催化剂。 既有酸中心,又有碱中心,主要表现为L酸。
二氧化硅
SiO2表面活性基团为Si-OH和Si-OR两种,对催化剂制备 而言Si-OH尤为重要。
H0
pKa l
[BH] og
[B]
若[B[H B]]=1,HO pKa,到达固体酸强度H0的等当点(理论交 变色 色点 点) ) 若[B[H B]]>1,HO pKa,指示剂呈酸型色 若[B[H B]]<1,HO pKa,指示剂呈碱型色
H0越小,酸性越强
注意:
指示剂有 不同名称
二肉桂醛缩丙 酮(别名:1, 9二苯基壬四 烯酮;二苯基 壬四烯酮,二 肉桂叉丙酮, 双亚肉桂基丙 酮,学名=二 肉桂醛缩丙酮)
5.1 酸碱的定义和性质测定 5.2 固体酸碱的来源 5.3 固体酸碱与催化作用 5.4 分子筛催化剂
【酸碱电离理论】S.A Arrhenius(阿累尼乌斯)酸碱 ✓ 能在水溶液中给予出质子(H+)的物质称为酸。 ✓ 能在水溶液中给出羟基离子(OH-)的物质为碱称。 【酸碱质子理论】J.N.Bronsted对酸碱定义(B酸碱) ✓ 凡是能给出质子的物质称为B酸或质子酸 ✓ 凡是能接受质子的物质称为B碱或质子碱 【酸碱电子理论】G.N.Lewis定义(L酸碱) ✓ 所谓酸,乃是电子对的受体。如BF3 ✓ 所谓碱,则是电子对的供体。如NH3
固体表面酸性测定—红外光谱法
• 在200℃ 吸附吡啶后,由于吡啶分子被质子化,3640cm1吸收带消失,1540cm-1 吸收带出现,而小笼中的 3550cm-1 则基本上不受影响。这表明吡啶的吸附是有选 择性的。这是由于吡啶分子的动力直径较大,只能进入Y 型分子筛的大笼与OI-H作用,而不能进入较小的笼。因 此,这种吸附的选择性属于几何形状的选择性。从而可 用吡啶吸附的红外光谱,判断Y沸石大笼和小笼中的酸性 位。
固体表面酸性测定—红外光谱法
• 用NH3在固体表面上吸附和脱附时,应在 500 K以下进行,高温下NH3 在L酸上离解 为NH2和NH ,它们能取代原有的羟基,干 扰酸性测定。另外氨在某些金属氧化物上, 例如在MnO3 、WO3 、TiO2上,会生成氮 化物。
(2)吡啶做探针的红外光谱法
吡啶吸附在B酸中心上形成吡啶离子,其红外特征吸 收峰之一在 l540 -1550 cm-1 附近(l540 )
吡啶吸附在L酸中心上形成配位络合物,特征吸收峰 在1447—1460 cm -1(1450cm-1)处。
固体表面酸性测定—红外光谱法
被吸附吡啶的不同吸收带的归属
相互作用类型 物理吸附(室温
可抽除) 氢键(150oC 可
抽除)
L 酸部位
B 酸部位
PyP
PyH PyLI PyLII PyB
波数(cm-1)
固体表面酸性测定—红外光谱法
• HY分子筛在红外光谱中出现两个与酸性羟基有关 的3640 cm-1和3550 cm-1强吸收带和3740 cm-1 弱吸收带,如图所示,3640 cm-1 对应于大笼中 的酸性羟基OI-H,其酸性较强。3550 cm-1 对应 于小笼中的酸性羟基,其酸性较弱。3740 cm-1 对应于沸石骨架末端的Si-OH,其酸性更弱。
2.4.6-三 硝 基 苯 胺 -10.10 黄 无 色
-5.6<H0<-3.0
Hammett指示剂法测定方法 目测法 分光光度法 当目测法对指示剂颜色判断有困难或不准确时,
特别是使用pK≤-5.6的指示剂时,使用紫外可见 分光光度法会得到更准确的结果. 测定步骤见p52
Hammett指示剂法测定固体表面酸性
酸强度是指给出质子的能力(B酸强度)或者接受 电子对的能力(L酸强度)。酸强度表示酸与碱作用 的强弱,是一个相对量。
用碱性气体从固体酸脱附的活化能、脱附温度、 碱性指示剂与固体酸作用的颜色等都可以表示酸 的强度。
通常用酸强度函数Ho表示固体酸强度,Ho也称 为Hammett函数。酸浓度的负对数值:-lg[H]
采用Hammett指示剂法测定固体表面酸性,要注意所用 试剂的干燥程度和纯度,特别注意实验条件确保达到吸附 平衡,否则很难得到可靠的结果。
在实际测定过程中,为了加速平衡状态的到达,可采用超 声波振荡器加强搅拌。
用Hammett指示剂法测定微孔物质(例如分子筛)的表面 酸性时,必须考虑孔径大小对指示剂分子和有机碱分子扩 散的抑制作用。样品粒度不小于100目。
• 各种碱性物质的吸附热也可作为测量固体表面酸 中心强度的手段。吸附热对应于酸中心强度,酸 中心强度越大,吸附热越大。
例:
• 酸浓度(酸量):某一酸强度范围酸性部位(中心)的密度, 通常表示为单位重量或者单位表面积上酸位的毫摩尔数,即 mmol/wt或mmol/m2。因为对于不同的酸强度的酸度存在分 布,故测量酸强度的同时就测出了酸量。
1445
1490
1579
1450 1457 1540
1490 1490 1490
1595
1615 1625 1640
- - ~1575 1620
吡啶分子特征峰 不是酸中心峰
吡啶在SiO2 上的吸附只是物理吸附。150 ℃抽真空后,几乎 全部脱附,进一步表明纯SiO2 上没有化学吸附酸性中心
Al2O3表面只有L酸中心(1450 cm-1) ,看不到B 酸中心(1540)
另一个选择标准是探针分子在选定的温度和压力下有足够的稳定性, 并且探针分子在所研究样品的表面上不会分解,也不会生成稳定的表 面化合物。
固体表面酸性测定—红外光谱法
• 对于大多数探针分子,红外谱图的解释与固体表面酸位类型、强度的 表征是相当成功的。但是,对于固体表面酸性的表征,只有酸位的类 型和强度是不够的,还需要酸位数目按强度的分布这一特征物理量。 应当指出,在红外光谱酸位的定量方面研究甚少,进展不大。尽管从 理论上可根据Lambert—Beer定律以及摩尔消光系数求出表面酸位浓 度。但对同一类酸位,例如B酸,其消光系数对于不同的体系差别很大, 需要专门进行测定,且误差较大。另外,它受温度、样品微晶粒子大 小等因索影响很大。因此,直到今日尚不能用红外测定的酸位数目计 算酸式催化的转化频率。可以认为,对于表面酸性的红外表征,绝大 多数仍局限于定性研究。
固体表面酸性测定—红外光谱法
• 在表面酸性测定中探针分子的选用
首先要看实验室的物质条件和技术水平,尽量选操作简单且能提供多 种信息的探针分子。
其次要看研究的目的与对象。测定表面总酸性,宜选用NH3、 CO 等 动力直径较小的探针分子,避免微孔阻滞探针分子在内表面的吸附。 如果目的是区别B酸和L酸,采用吡啶或NH3操作比较简单,在给出B 酸和L酸谱带的同时,还可用质子化络合物在真空下的热稳定性,给 出该各酸强度的信息 。
固体表面酸性测定—红外光谱法
• 吡啶与酸性羟基作用质子化后形成的1540cm-1、1630cm1 吸收带,用于表征B酸位。将HY沸石在500℃ 以上进行 热处理,由于脱羟基过程中伴随的脱铝,使部分质子酸变 为L酸。吡啶吸附后的红外光谱中,出现新的1455cm-1吸 收带,这是L酸存在的特征。与此同时1540 cm-1 吸收带减 弱,说明质子酸减少。吡啶吸附于HY的红外光谱中,还 有1490cm-1强吸收带,这是B酸和L酸与吡啶作用后共同 的吸收带。
• NH3也是强碱性分子,其N上的孤对电子有 比较高的质子亲合势。另外NH3分子的动力 直径较小(0.165 nm)可用于定量测定微孔、 中孔和大孔的内表面酸性,不受孔大小的 限制,因而是常用于酸性测定的探针分子。
固体表面酸性测定—红外光谱法
• NH3易与质子酸作用形成质子化的NH4+离子,其 N-H弯曲振动在红外光谱中呈现1450cm-1 特征吸 收带。NH3以其孤对电子与L酸配位形成L:NH3, 其红外吸收带出现在1630 cm-1 附近。因为NH3 的这一特性,能够区分质子酸和路易斯酸,通常 使用1450cm-1 和1630 cm-1分别作为质子酸和路 易斯酸的表征。
酸中心上形成的,其红外光谱类似于金属离于同 NH3的配位络合物,吸附峰在3300 cm-1及1640 cm-1 处;
NH3吸附在B酸中心上,接受质子形成NH4+,吸 收峰在3120 cm-1,及1450 cm-1处。
NH3吸附在B酸中心上强度是L酸中心上强度的4 倍。
固体表面酸性测定—红外光谱法
SiO2在低温热处理时,B酸浓度高。在高温处理时,B酸 和L酸约各占一半。
硅酸铝
硅酸铝是SiO2和Al2O3的混合物,酸强度高于SiO2和 Al2O3。
硅酸铝酸中心来源
芳香醇酸函数HR
芳香醇与质子有以下反应关系
ROH H R H 2O
芳香醇函数
H
为:
R
H R
pKa
lg
R
ROH
优点:仅适用于B酸。
碱性气体吸附法
• 某碱性气体在酸中心上吸附时,吸附在强酸中心 上的比在弱酸中心稳定,通过不同温度下脱附的 吸附碱相对量可测定酸中心。
• 碱性分子(如氨、吡啶、正丁胺等)的程序升温脱 附(TPD)常用于表征固体表面的酸中心强度和 酸中心数。
从图吡啶吸附在SiO2 -Al2O3 表面上的红外光谱。在200 ℃ 抽真空后于1600~1450 cm-1 范围内出现1540cm-1(B 酸 ), 1450(L 酸)。
固体表面酸性测定—红外光谱法
3744,3635, 3545cm-1羟基峰;其 中3635cm-1为强B酸
吡啶在HY型分子筛上吸附的红外光谱 中心
• 酸强度测定
采用pKa不同的Hammett指示剂,通过指示剂颜色变化情况 进行酸强度的测定
例:能使二肉桂丙酮变红但不能使共叉乙酰苯变黄的催化 剂的酸性强度是 ?