一次函数压轴题专题突破13:一次函数与新定义7(含解析)

一次函数压轴题专题突破13:一次函数与新定义7(含解析)
一次函数压轴题专题突破13:一次函数与新定义7(含解析)

一次函数压轴题之新定义

1.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么

称点Q为点P的“伴随点”.

例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).

(1)点A(2,1)的“伴随点”A′的坐标为.

(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求

函数y=kx+3的解析式.

(3)在(2)的条件下,点C在函数y=kx+3的图象上,点D是点C关于原点的对称点,点D的“伴随点为D'.若点C在第一象限,且CD=DD',直接写出此时“伴随点”D′的坐标,

2.定义:对于给定的一次函数y=ax+b(a≠0),把形如y=的函数称为一次函数y=ax+b (a≠0)的衍生函数.已知矩形ABCD的顶点坐标分别为A(1,0),B(1,2),C(﹣3,2),D(﹣3,0).(1)已知函数y=2x+1.

①若点P(﹣1,m)在这个一次函数的衍生函数图象上,则m=.

②这个一次函数的衍生函数图象与矩形ABCD的边的交点坐标分别为.

(2)当函数y=kx﹣3(k>0)的衍生函数的图象与矩形ABCD有2个交点时,k的取值范围是.

3.在平面直角坐标系xOy中,对于半径为r(r>0)的⊙O和点P,给出如下定义:

若r≤PO≤r,则称P为⊙O的“近外点”.

(1)当⊙O的半径为2时,点A(4,0),B(﹣,0),C(0,3),D (1,﹣1)中,⊙O的“近外点”是;(2)若点E(3,4)是⊙O的“近外点”,求⊙O的半径r的取值范围;

(3)当⊙O的半径为2时,直线y=x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O 的“近外点”,直接写出b的取值范围.

4.材料阅读:对于一个圆和一个正方形给出如下定义:若圆上存在到此正方形四条边距离都相等的点,则称这个圆是该正方形的“等距圆”.

如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C 在点D的左侧.

(1)当r=2时,在P1(2,0),P2(﹣4,2),P3(2,2),P4(2﹣2,0)中可以成为正方形ABCD 的“等距圆”的圆心的是;

(2)若点P坐标为(﹣2,﹣1),则当⊙P的半径r=时,⊙P是正方形ABCD的“等距圆”.试判断此时⊙P与直线BD的位置关系?并说明理由.

(3)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(8,2),顶点E、H在y轴上,且点H在点E的上方.若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P的圆心P的坐标.

5.定义:若函数y1与y2同时满足下列两个条件:

①两个函数的自变量x,都满足a≤x≤b;

②在自变量范围内对于任意的x1都存在x2,使得x1所对应的函数值y1与x2所对应的函数值y2相等.我们就称y1与y2这两个函数为“兄弟函数”.

设函数y1=x2﹣2x﹣3,y2=kx﹣1

(1)当k=﹣1时,求出所有使得y1=y2成立的x值;

(2)当1≤x≤3时判断函数y1=与y2=﹣x+5是不是“兄弟函数”,并说明理由;

(3)已知:当﹣1≤x≤2时函数y1=x2﹣2x﹣3与y2=kx﹣1是“兄弟函数”,试求实数k的取值范围?

6.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;

若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.

例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).

(1)已知点A(﹣,0),B为y轴上的一个动点,

①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;

②直接写出点A与点B的“非常距离”的最小值;

(2)已知C是直线y=x+3上的一个动点,

①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;

②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.

7.我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.

如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1).

(1)判断直线y=x+与正方形OABC是否相交,并说明理由;

(2)设d是点O到直线y=﹣x+b的距离,若直线y=﹣x+b与正方形OABC相交,求d的取值范围.

1.【解答】解:(1)x=2>0,则y=1,故点A′为(2,1);(2)当m≥0时,点B′(m,m+1),即m+1=2,解得:m=1,

故点B(1,2),将点B的坐标代入函数y=kx+3并解得:k=﹣1,故函数的表达式为:y=﹣x+3…①;

当m<0时,则点B(﹣3,﹣2),

同理可得:函数的表达式为:y=x+3;

(3)①当点C在直线y=﹣x+3上时,

设点C(a,b),(a>0,b>0),则点D(﹣a,﹣b),

则点D′(﹣a,b),CD=DD',

则CD′=DD',即CD是一、三象限角平分线,

则直线CD的表达式为:y=x…②,

联立①②并解得:x=y=,

故点D′(﹣,);

②当点C在直线y=x+3上时,

同理可得:a=﹣(不符合题意,点C在第二象限,舍去)

综上,点D′(﹣,).

2.【解答】解:(1)①x=﹣1<0,则m=﹣2×(﹣1)+1=3,

故答案为3;

②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC上,当y=2时,2x+1=2,解得:x=,

当y=2时,﹣2x+1=2,解得:x=﹣,

故答案为(,2)或(﹣,2);

(2)函数可以表示为:y=|k|x﹣3,

如图所示当直线在位置①时,函数和矩形有1个交点,

当x=3时,y=|k|x﹣3=3|k|﹣3=0,k=±1,

k>0,取k=1

当直线在位置②时,函数和图象有3个交点,

同理k=3,

故在图①②之间的位置,直线与矩形有2个交点,即:1<k<3.

3.【解答】解:(1)∵⊙O的半径为2,

∴r=3,

∵A(4,0),

∴OA=4>3,

∴点A不是⊙O的“近外点”,

B (﹣,0),

∴OB=,而2<<3,

∴B是⊙O的“近外点”,

C(0,3),

∴OC=3,

∴点C是⊙O的“近外点”,

D (1,﹣1),

∴OD==<2,

∴点D不是⊙O的“近外点”,

故答案为:B,C;

(2)∵E(3,4),

∴OE==5,

∵点E是⊙O的“近外点”,

∴,

∴≤r≤5;

(3)如图,

∵直线MN的解析式为y=x+b,

∴OM>ON,

①点N在y轴坐标轴时,

当点M是⊙O的“近外点”,此时,点M(﹣2,0),

将M(﹣2,0)代入直线MN的解析式y=x+b中,解得,b=2,即:b的最小值为2,

过点O作OG⊥M'N'于G,

当点G是⊙O的“近外点”时,此时OG=3,

在Rt△ON'G中,∠ON'G=45°,

∴ON'==3,

b的最大值为3,

∴2≤b≤3,

②当点N在y轴负半轴时,同①的方法得出﹣3≤b≤﹣2.综上所述,b的取值范围是:2≤b≤3或﹣3≤b≤﹣2.

4.【解答】解:(1)连接AC、BD相交于点M,如右图1所示,

∵四边形ABCD是正方形,

∴点M是正方形ABCD的中心,到四边的距离相等,

∴⊙P一定过点M,

∵正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.

∴点M(0,2),

设⊙P的圆心坐标是(x,y),

∴(x﹣0)2+(y﹣2)2=(2 )2,

将P1(2,0),P2(﹣4,2),P3(2,2),P4(2﹣2,0)分别代入上面的方程,

只有P1(2,0),P3(2,2)成立,

故答案为:P1(2,0)或P3(2,2);

(2)由题意可得,

点M的坐标为(0,2),点P(﹣2,﹣1),

∴r==,

即当P点坐标为(﹣2,﹣1),则当⊙P的半径r是时,⊙P是正方形ABCD的“等距圆”;故答案为.

此时⊙P与直线AC的位置关系是相交,

理由:∵正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧,∴点B(﹣2,4),D(2,0),

设过点B(﹣2,4),点D(2,0)的直线的解析式为y=kx+b,

则,

解得,,

即直线AC的解析式为:y=﹣x+2①,

∴过点P(﹣2,﹣1)垂直于BD的直线解析式为y=x+1②,记垂足为G,

联立①②,解得,G的坐标为(,),

∴PG=

∴点P(﹣2,﹣1)到直线BD的距离为:<;

∴此时⊙P与直线AC的位置关系是相交;

(3)设点P的坐标为(x,y),连接HF、EG交于点N,则点N为正方形EFGH的中心,其坐标为(4,6)如图2所示,

∵点E(0,2),N(4,6),点C(﹣2,0),点B(﹣2,4),⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,

∴,

解得或

即⊙P的圆心P的坐标是(6﹣2,2)或(6+2,﹣2).

5.【解答】解:(1)当k=﹣1时,y2=﹣x﹣1,

根据题意得:x2﹣2x﹣3=﹣x﹣1,

解得:x=2或x=﹣1;

∴x的值为2或﹣1.

(2)不是

若=﹣x+5,

则x2﹣5x+3=0,

解得:x=,

∵3<<4

∴4<<,<<1,

两根均不在1≤x≤3,

∴函数y1=与y2=﹣x+5不是“兄弟函数”.

(3)∵函数y1=x2﹣2x﹣3与y2=kx﹣1是“兄弟函数”,∴x2﹣2x﹣3=kx﹣1,

整理得:x2﹣(2+k)x﹣2=0,

由题意:,

解得k=﹣1

∴实数k的取值范围:k=﹣1.

6.【解答】解:(1)①∵B为y轴上的一个动点,

∴设点B的坐标为(0,y).

∵|﹣﹣0|=≠2,

∴|0﹣y|=2,

解得,y=2或y=﹣2;

∴点B的坐标是(0,2)或(0,﹣2);

②点A与点B的“非常距离”的最小值为

(2)①如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,

∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),

∴设点C的坐标为(x0,x0+3),

∴﹣x0=x0+2,

此时,x0=﹣,

∴点C与点D的“非常距离”的最小值为:|x0|=,

此时C(﹣,);

②当点E在过原点且与直线y=x+3垂直的直线上时,点C与点E的“非常距离”最小,设E(x,y)(点E位于第二象限).则

解得,,

故E(﹣,).

﹣﹣x0=x0+3﹣,

解得,x0=﹣,

则点C的坐标为(﹣,),

最小值为1.

7.【解答】解:(1)相交.

∵直线y=x+与线段OC交于点(0,),同时直线y=x+与线段CB交于点(,1),∴直线y=x+与正方形OABC相交;

(2)当直线y=﹣x+b经过点B时,

即有1=﹣+b,

∴b=+1.

即y=﹣x+1+,

记直线y=﹣x+1+与x、y轴的交点分别为D、E,

则D(,0),E(0,1+),

解法1:在Rt△BAD中,tan∠BDA===,

∴∠EDO=60°,∠OED=30度,

过O作OF1⊥DE,垂足为F1,则OF1=d1,

在Rt△OF1E中,

∵∠OED=30°,

∴d1=;

法2:∴DE=(3+),

过O作OF1⊥DE,垂足为F1,则OF1=d1,

∴d1=×(1+)÷(3+)=,

∵直线y=﹣x+b与直线y=﹣x+1+平行,

法1:当直线y=﹣x+b与正方形OABC相交时,一定与线段OB相交,且交点不与点O、B重合.故直线y=﹣x+b也一定与线段OF1相交,记交点为F,则F不与点O、F1重合,且OF=d,

∴当直线y=﹣x+b与正方形相交时,

有0<d<;

法2:当直线y=﹣x+b与直线y=x(x>0)相交时,

有x=﹣x+b,即x=,

当0<b<1+时,0<x<1,0<y<1,

此时直线y=﹣x+b与线段OB相交,且交点不与点O、B重合;

当b>1+时,x>1,

此时直线y=﹣x+b与线段OB不相交.

而当b≤0时,直线y=﹣x+b不经过第一象限,即与正方形OABC不相交.

∴当0<b<1+时,d随b的增大而增大,则直线y=﹣x+b与正方形OABC相交,

此时有0<d<.

一次函数的定义练习题及答案

一次函数的定义 1、判断正误: (1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( ) (4)2y -x=0是正比例函数. ( ) 2、选择题 (1)下列说法不正确的是( ) A .一次函数不一定是正比例函数。 B .不是一次函数就不一定是正比例函数。 C .正比例函数是特殊的一次函数。 D .不是正比例函数就一定不是一次函数。 (2)下列函数中一次函数的个数为( ) ①y=2x ;②y=3+4x ;③y=21 ;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0; A .3个 B 4个 C 5个 D 6个 3、填空题 (1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。 (2)当m=__________时,函数y=3x 2m+1 +3 是一次函数。 (3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。 4、已知函数y= ()()112 -++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。 5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=2 21x +1;⑥y=0.5x 中,属一 次函数的有 ,属正比例函数的有 (只填序号) (2)当m= 时,y=() ()m x m x m +-+-112 2 是一次函数。 (3)请写出一个正比例函数,且x =2时,y= -6

请写出一个一次函数,且x=-6时,y=2 (4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x小时后水龙头滴了y毫升水.则y与x之间的函数关系式是 (5)设圆的面积为s,半径为R,那么下列说法正确的是() A S是R的一次函数 B S是R的正比例函数 R的正比例函数 D 以上说法都不正确 C S是2 6、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。 ①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系式为,它是函数②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A 站的距离s(千米)与时间t(小时)之间的函数关系式为,它是函数 7、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总 数y(棵)与年数x的函数关系式为它是函数 8、圆柱底面半径为5cm,则圆柱的体积V(cm3)与圆柱的高h(cm)之间的函数关系式为,它是函数 9、甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资。 10、.在拖拉机油箱中,盛满56千克油,拖拉机工作时,每小时平均耗油6千克,求邮箱 里剩下Q(千克)与拖拉机的工作时间t(小时)之间的函数解析式。 一次函数的图象

一次函数的定义附答案

17.3.1一次函数的定义 一.选择题(共8小题) 1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是() A.1 B.2 C.3 D.4 2.下列函数中,一次函数是() A.y=8x2B.y=x+1 C.;D. 3.在地表以下不太深的地方,温度y(℃)与所处的深度x(km)之间的关系可以近似用关系式y=35x+20表示,这个关系式符合的数学模型是() A.正比例函数B.反比例函数C.二次函数D.一次函数 4.下列关于x的函数中,是一次函数的是() A.y=3(x﹣1)2+1 B.y=x+C.y=﹣x D.y=(x+3)2﹣x2 5.若y=是一次函数,则m的值为() A.0 B.﹣1 C.0或﹣1 D.±1 6.如果y=(m﹣1)x2﹣m2+3是一次函数,那么m的值是() A.1 B.﹣1 C.+1 D.± 7.函数,一次函数和正比例函数之间的包含关系是() A. B.C.D. 8.下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是() A.1个B.2个C.3个D.4个 二.填空题(共7小题) 9.已知关于x的函数y=(m﹣5)x+m+1是一次函数,则m=_________,直线y=(m﹣5)x+m+1不经过第_________象限. 10.一般的,如果两个变量x与y之间的函数关系式可以表示为_________的形式,那么称y是x的一次函数.当_________时,y是x的正比例函数. 11.若y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,则a﹣b=_________.

12.若函数是正比例函数,则常数m的值是_________.13.已知函数y=(m﹣1)+1是一次函数,则m=_________. 14.已知函数y=3x+1,当自变量增加3时,相应的函数值增加_________. 15.当x=_________时,函数y=(m﹣2)x+(m﹣2)x+1是一次函数. 三.解答题(共6小题) 16.当m是何值时,函数y=(m+2)x+m+1是: (1)一次函数; (2)是正比例函数. 17.已知函数y=(2﹣m)x+2m﹣3.求当m为何值时. (1)此函数为一次函数? (2)此函数为正比例函数? 18.试将函数3x+2y=1改成y=kx+b的形式,并指出k和b的值. 19.已知一次函数y=(5m﹣3)x2﹣n+m+n, ①求m、n的值和取值范围; ②若函数经过原点,求m、n的值. 20.已知函数是一次函数,求k和b的取值范围. 21.已知y=(m+1)x2﹣|m|+n+4 (1)当m、n取何值时,y是x的一次函数? (2)当m、n取何值时,y是x的正比例函数?

最新史上最全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线 h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

最新一次函数经典题型+习题(精华-含答案)

精品文档 一次函数 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________; 若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第 ______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________; 到原点的距离是____________; 2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原 点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ? ???- ? ????? ,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°, 则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2323y k x x =-++-是一次函数; 2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 题型四、函数图像及其性质 ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。

新人教版九年级上二次函数知识点总结与练习

新人教版九年级上二次函数知识点总结与练习知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数. 其中a是二次项系数,b是一次项系数,c是常数项. 知识点二:二次函数的图象与性质 ? 2. 二次函数()2 =-+的图象与性质 y a x h k (1)二次函数基本形式2 =的图象与性质:a的绝对值越大,抛物线的开口越小 y ax (2)2 =+的图象与性质:上加下减 y ax c

(3)()2 y a x h =-的图象与性质:左加右减

(4)二次函数()2 y a x h k =-+的图象与性质 3. 二次函数c bx ax y ++=2的图像与性质 (1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. (2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值 2 44ac b a -.

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤: ① 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ② 可以由抛物线2 ax 经过适当的平移得到具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:a b ac a b x a c bx ax y 44222 2 -+ ?? ? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2- =. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =.

一次函数的定义专项练习30题

一次函数的定义专项练习30题 1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函 数的有() A.5个B.4个C.3个D.2个 2.下列函数中,y是x的一次函数的是() A.y=﹣3x2﹣1 B.y=x﹣1+2 C. y=2(x﹣1)2D. 3.下列问题中,变量y与x成一次函数关系的是() A.路程一定时,时间y和速度x的关系 B.长10米的铁丝折成长为y,宽为x的长方形 C.圆的面积y与它的半径x D.斜边长为5的直角三角形的直角边y和x 4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有()A.1个B.2个C.3个D.4个 5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个 6.下列说法正确的是() A.一次函数是正比例函数B.正比例函数是一次函数 C.正比例函数不是一次函数D.一次函数不可能是正比例函数 7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加() A.10 B.9C.3D.8 8.对于函数y=2x﹣1,当自变量增加m时,相应的函数值增加() A.2m B.2m﹣1 C.m D.2m+1 az 9.若+5是一次函数,则a=() A.±3 B.3C.﹣3 D. 10.若函数y=(m﹣1)x|m|+2是一次函数,则m的值为() A.m=±1 B.m=﹣1 C.m=1 D.m≠﹣1 11.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是() A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=0 12.下列说法正确的是()

一次函数的概念和性质

课题一次函数的概念及其性质 一、本次课授课目的及考点分析:授课目的: 1、掌握一次函数的定义、图象和主要性质; 2、了解一次函数与正比例函数的关系; 3、会根据已知条件求出一次函数的解析式.结合例题培养学生观察、归纳的思维和渗透数形结合思想. 教学重点: 会根据已知条件求出一次函数的解析式; 教学难点: 在y=kx+b中,k和b的数与形的联系; 二、本次课的内容:一次函数的概念、一次函数的图像、一次函数的性质 教学过程 一、错题回顾: 二、教授新课: (一)复习 1.写出正比例函数的解析式. 2.正比例函数的图象是什么形状?当k>0,k<0时,图形的位置怎样? (二)新课 这些函数的共同的特点都是含自变量的一次式. (1)一次函数的一般形式:一般地.如果y=kx+b①(k,b是常数,k≠0).那么y叫做x的一次函数. (2)一次函数与正比例函数的关系.当b=0时,①式为y=kx是正比例函数.所以,正比例函数是一次函数的特殊情况. (3)两个条件确定一次函数式.因为一次函数含有两个系数k,b.而要求两个系数k,b需要列出两

个独立且不矛盾的方程,也就是说要想求出一个一次函数式,需要两个条件. 例1已知x是自变量,a,b是常量,下面各式中,是x的一次函数的是[ ]. (A)(1) (B)(1),(5) (C)(1),(2),(4) (D)(1),(2),(4),(6) 这六个式子是 (1)y=3x+5;(2)3x+5;(3)y=3x2+5; 分析:(3)是二次函数,(5)是分式函数,这两个都不是一次函数.容易被认为不是一次函数的是(4)3a+5x,因为其中没有y,即不是y=3a+5x形式.其实3a+5x本身就是x的函数,y=3a+5x只是用字母y来表示3a+5x而已,所以本题应选(D). 例2已知y是x的一次函数,当x=3时,y=5;当x=2时,y=2;则x=-2时,y=______. 解:设此一次函数式为y=kx+b.由已知,可列出方程组 所求的一次函数为y=3x-4,所以x=-2时,y=3(-2)-4=-10. (4)一次函数图象与正比例函数的图象的关系. 我们从下面的列表,观察、归纳.

二次函数新定义问题

专题训练(四)与二次函数相关的新定义问题 ?类型之一应用型:阅读——理解——建模——应用 图4-ZT-1 1.2017·巴中如图4-ZT-1,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A,B,C,D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的函数表达式为y=x2-2x-3,则半圆圆心M点的坐标为________. 2.一个函数的图象关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y=x2+bx-4是“偶函数”,该函数的图象与x轴交于点A和点B,顶点为P,那么△ABP 的面积是________. 3.2017·余杭区一模如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图4-ZT-2所示,二次函数y1=x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”. (1)直接写出两条图中“关于y轴对称二次函数”图象所具有的特点. (2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”表达式为____________;二次函数y=a(x-h)2+k的“关于y轴对称二次函数”表达式为____________. (3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连结点A,B,O,C得到一个面积为24的菱形,求“关于y轴对称二次函数”的表达式. 图4-ZT-2

?类型之二探究型:阅读——理解——尝试——探究 4.若抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线. (1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的函数表达式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案; (2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的函数表达式.请你解答. 5.2017·衢州定义:如图4-ZT-3①,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B 两点,点P在该抛物线上(点P与A,B两点不重合),若△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点. (1)直接写出抛物线y=-x2+1的勾股点的坐标; (2)如图②,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式; (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标.

一次函数知识点总结与常见题型-一次函数知识点整理(最新最全)

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =2 1 -3x (5)y =x 2-1中,是一次函数的有 ( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 函数y =x 的取值范围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1)解析式:y =kx (k 是常数,k ≠0)

二次函数基本定义完整版

二次函数基本定义 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

基本定义一般地,把形如 (a、b、c是)的叫做二次函数,其中a称为,b为,c为。x 为,y为。等号右边自变量的最高次数是2。 顶点坐标 为 (仅限于与x轴有交点的抛物线), 与x轴的交点坐标是和 顶点式 y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)[4],对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2 的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。[2] 具体可分为下面几种情况:

当h>0时,y=a(x-h)2的图像可由抛物线y=ax2向右平行移动h 个单位得到; 当h<0时,y=a(x-h)2的图像可由抛物线y=ax2向左平行移动|h|个单位得到; 当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。[5] 交点式 [仅限于与x轴即y=0有交点时的 与X轴交点的情况: 当时,函数图像与x轴有两个交点,分别是(x1,0)和 (x2,0)。 当时,函数图像与x轴只有一个切点,即 。[2] 当 时,抛物线与x轴没有公共交点。x的取值范围是虚数 抛物线,即b2-4ac≥0]. 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设

(最新整理)一次函数的定义专项练习30题(有答案)

(完整)一次函数的定义专项练习30题(有答案) 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)一次函数的定义专项练习30题(有答案))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)一次函数的定义专项练习30题(有答案)的全部内容。

一次函数的定义专项练习30题 1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函数的有() A.5个B.4个C.3个D.2个 2.下列函数中,y是x的一次函数的是() A.y=﹣3x2﹣1B.y=x﹣1+2C.y=2(x﹣1)2D. 3.下列问题中,变量y与x成一次函数关系的是( ) A.路程一定时,时间y和速度x的关系 B.长10米的铁丝折成长为y,宽为x的长方形 C.圆的面积y与它的半径x D.斜边长为5的直角三角形的直角边y和x 4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有() A.1个B.2个C.3个D.4个 5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有() A.4个B.3个C.2个D.1个 6.下列说法正确的是() A.一次函数是正比例函数B.正比例函数是一次函数 C.正比例函数不是一次函数D.一次函数不可能是正比例函数 7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加( )

《一次函数1》教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《一次函数1》教案 知识技能目标 1.理解一次函数和正比例函数的概念; 2.根据实际问题列出简单的一次函数的表达式. 过程性目标 1.经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系; 2.探求一次函数解析式的求法,发展学生的数学应用能力. 教学过程 一、创设情境 问题1小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离. 分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是 s=570-95t. 说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量. 问题2小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式. 分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x. 问题3以上问题1和问题2表示的这两个函数有什么共同点? 二、探究归纳 上述两个问题中的函数解析式都是用自变量的一次整式表示的.函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数(linear function).一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0. 特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数(direct proportional fun ction).正比例函数也是一次函数,它是一次函数的特例. 三、实践应用 例1下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?

2020年中考数学新定义(二次函数)

第一部分案例分析 1.【最值问题】对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值,例如,如下图中的函数,它的最大值是,最小值是﹣1,它也是有界函数,其边界值是1. (1)分别判断函数和y=x+1(x>0)是不是有界函数?若是有界函数,求其边界值; (2)若函数y=﹣2x﹣1(a≤x≤b,a<b)的边界值是3,且这个函数的最大值也是3,求a的值及b的取值范围.

2.【直线与抛物线点交点问题】对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0、1两个不变值,其不变长度q等于1.(1)分别判断函数y=x+1,y=,y=x2﹣2有没有不变值?如果有,直接写出其不变长度; (2)函数y=2x2﹣bx ①若其不变长度为零,求b的值; ②若1≤b≤3,求其不变长度q的取值范围; (3)记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为多少?

3.【“关联抛物线”】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2互称为“友好”抛物线. (1)一条抛物线的“友好”抛物线有条. A.1 B.2 C.3D.无数 (2)如图2,已知抛物线L3:y=2x2﹣8x+4与y轴交于点C,点C关于该抛物线对称轴的对称点为D,请求出以点D为顶点的L3的“友好”抛物线L4的表达式; (3)若抛物线y=a1(x﹣m)2+n的“友好”抛物线的解析式为y=a2(x﹣h)2+k,请直接写出a1与a2的关系式为.

新定义函数-中考新题型

3

实数b的取值范围. 变式 如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3]. (1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标. (2)探究下列问题: ①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数. ②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?

例3.如图1,抛物线y =ax 2 +bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高. (1)抛物线2 12 y x = 对应的碟宽为 ;抛物线y =4x 2对应的碟宽为 ;抛物线y =ax 2(a >0)对应的碟宽为 ;抛物线y =a (x -2)2 +3(a >0)对应的碟宽为 ; (2)抛物线2 543 y ax ax =--(a >0)对应的碟宽为6,且在x 轴上,求a 的值; (3)将抛物线y =a n x 2+b n x +c n (a n >0)的对应准蝶形记为F n (n =1,2,3…),定义F 1, F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为1 2 ,且F n 的碟顶 是F n ﹣1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1. ①求抛物线y 2的表达式; ②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽有端点横坐标为2;若F 1,F 2,…,F n 的碟宽右端点在一条直线上,请直接写出该直线的表达式;若不是,请说明理由。

一次函数的定义和图像

一次函数的定义和图像 【知识要点】 一、平面直角坐标系 1.含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。对于平面内任意一点,过点分别向轴、轴作垂线,垂足在轴、轴上对应xxPPyy ,,a,b的数分别叫做点的横坐标、纵坐标,有序实数对叫做点的坐标。PPa、b ,,Pa,b2.坐标平面内的点的坐标的特性 在第一象限:_______________ 在第二象限:_______________ 在第三象 限:_______________ 在第四象限:_______________ 在x轴正半 轴:_______________ 在x轴负半轴:_______________ 在轴正半 轴:_______________ 在轴负半轴:_______________ yy x、y在轴交点处( ):_________________ 二、函数 1.变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 xx2.定义:一般的,在一个变化过程中,如果有两个变量和,如果在的允许范围内给定y xxx一个值,相应的就唯一确定了一个值,称是自变量,是因变量,是的函数。 yyy3.函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式。 4.函数的图像:一般来说,对于一个函数,如果把自变量与函数

的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象( 5.描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。三、一次函数 1 ,,,那么叫做的一次函数,其中1.定义:一般地,如果y,kx,bk,b是常数,k,0xxy 是自变量.特别的,当一次函数中的为时,则y,kx,,k为常数,k,0.这时 y,kx,bb0 叫做的正比例函数. xy 2.(1)要判断一个函数是否是一次函数,就是判断是否能化成的形式( y,kx,b ykx,b,0k,0 (2)当,时,仍是一次函数( k,0 (3)当时,它不是一次函数( (4)正比例函数是一次函数的特例,一次函数包括正比例函数( 3.一次函数和正比例函数图像: 正比例函数一次函数 图象都是一条直线 b必过点 (0,0)、(1,k) (0,b)和(-,0) k 走向 k>0时,直线经过一、三象限; k,0,b,0,直线经过第一、二、三象限k<0时,直线经过二、四象限 k,0,b,0,直线经过第一、三、四象限 k,0,b,0,直线经过第一、二、四象限

新人教版八年级下《一次函数》测试题及答案

2019—2020学年度第二学期八年级(下) 第十九章一次函数单元检测题 班级____姓名_____得分_____ 一、 选择题(本大题共12个小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是 满足题目要求的,请把其代号填在答题栏中相应题号的下面)。 1. 若点 A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( ). A .(0,2-) B .( 32,0) C .(8,20) D .(12,1 2 ) 2.变量x,y 有如下关系:①x+y=10②y=x 5-③y=|x-3④y 2 =8x.其中y 是x 的函数的是 A. ①②②③④ B. ①②③ C. ①② D. ① 3. 下列各曲线中不能表示y 是x 的函数是( ). A . B . C . D . 4. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ). A . 4 B . 5 C . 6 D . 7 5.已知正比例函数y=(k+5)x,且y 随x 的增大而减小,则k 的取值范围是 A.k >5 B.k <5 C.k >-5 D.k <-5 6.在平面直角坐标系xoy 中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是 A.一象限 B. 二象限 C. 四象限 D.不能确定 7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3 x y =必须( ). A .向上平移5个单位 B .向下平移5个单位 C .向上平移53个单位 D .向下平移5 3 个单位 8.经过一、二、四象限的函数是 A.y=7 B.y=-2x C.y=7-2x D.y=-2x-7 9.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是

2017中考有关《二次函数新定义》题型练习

2016年中考数学二次函数综合题练习 【二次函数中新定义问题】 1、在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义: 如果()() 0'0y x y y x ??=?-??≥<,那么称点Q 为点P 的“关联点”. 例如:点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6). (1)下面哪个点的“关联点”在函数3 y x = 的图象上? ( ) A 、(0,0) B 、(3,-1) A 、(-1,3) D 、(-3,1) (2)如果一次函数y = x + 3图象上点M 的“关联点”是N (m ,2),求点M 的坐标; (3)如果点P 在函数24y x =-+(-2<x ≤a )的图象上,其“关联点”Q 的纵坐标 y ′的取值范围是-4<y ′≤4,求实数a 的取值范围. x y O x y O

O x y D 1D 2B 3 A 3D 3C A B A 2B 2 A 1 B C 2 C 1 2、在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义: 若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点 都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形。 点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B , C 的最佳外延矩形.例如,图中的矩形1111D C B A ,2222D C B A , 333CD B A 都是点A ,B ,C 的外延矩形,矩形333CD B A 是点A ,B , C 的最佳外延矩形. (1)如图1,已知A (-2,0),B (4,3),C (0,t ). ①若2=t ,则点A ,B ,C 的最佳外延矩形的面积为 ; ②若点A ,B ,C 的最佳外延矩形的面积为24,则t 的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (x ,y )是抛物线542 ++-x x y =上一点, 求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标x 的取值范围; (3)如图3,已知点D (1,1).E (m ,n )是函数)0(4 >= x x y 的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.

相关文档
最新文档