基于单片机的模拟路灯控制电路

合集下载

基于单片机的太阳能路灯控制系统

基于单片机的太阳能路灯控制系统

基于单片机的太阳能路灯控制系统概述太阳能路灯是一种节能环保的新兴路灯,其优点在于不需要外接电源,只需利用太阳能进行充电,从而在夜间提供照明服务。

本文将介绍一种基于单片机的太阳能路灯控制系统,该系统能够自动调节亮度,提高能源利用率,同时延长路灯使用寿命。

设计方案该控制系统由三个主要部分组成:太阳能电池板、可充电蓄电池和单片机控制电路。

太阳能电池板将光能转化为电能,通过充电控制电路将电能储存到可充电蓄电池中。

如图所示:system_designsystem_design在夜间,单片机控制电路将控制电路工作在路灯的亮度调节模式下。

当路灯检测到环境亮度低于一定阈值时,系统将开启路灯以提供光照服务。

当环境亮度逐渐升高时,系统将自动调整亮度,以达到最佳能耗效率。

该系统还具有手动控制功能,这意味着用户可以在必要时手动开启或关闭路灯。

系统实现该系统采用了一块ATmega328P单片机,它是一款高性能、低功耗的8位微处理器。

该单片机具有丰富的程序存储器和数据存储器,可满足我们应用程序的要求。

为了测量环境亮度,我们使用一个光敏电阻,并将其连接到单片机的模拟输入引脚。

当电阻接收到的光线强度变化时,它的阻值将发生变化,并通过模拟信号输入到单片机中。

控制电路使用的是一个H桥直流电机驱动芯片,它可用于控制电机和灯的功率输出。

我们将其配置为驱动LED灯,以提供路灯的光照服务。

该系统还配备了一个电容充放电电路,用于确保可充电蓄电池的充电和放电过程。

该电路使用一个集成电路和几个外部元器件,通过PWM输出信号进行控制。

系统测试为了测试该系统的功能,我们将其放置在光线较强的环境下进行测试。

通过多次测试,可以得出该系统具有以下功能:•延长路灯使用寿命•自动调节亮度•实现手动控制•具有过充保护和过放保护功能•系统运行稳定,可靠性高基于单片机的太阳能路灯控制系统是一种高效的节能环保产品。

该系统采用了新兴的太阳能技术,为城市的照明服务提供了更可靠、更环保的方法。

基于单片机的模拟路灯控制系统模块设计

基于单片机的模拟路灯控制系统模块设计

基于单片机的模拟路灯控制系统模块设计文章介绍了一种以89C51单片机为核心构成的模拟路灯控制系统的控制电路,该电路采用传感器检测技术,使路灯可以根据交通和环境情况自动调节灯的状态。

并具有故障检测功能,故障发生时,某一支路发出报警信号,同时有显示部分显示故障灯所在支路的地址编码。

再加上液晶显示模块和信息输入模块,可以直观地显示出路灯的亮灭时间并可对其进行控制操作。

标签:路灯控制;LED驱动;MCU;传感器1 模拟路灯控制系统的方案设计与论证该系统创新点自动检测交通状况,并及时调节亮灯状态。

换句换说该系统具有测试点不同、运动状态不一样的情况下,灯的亮灭不一样,当某一运动的物体即将到达灯下时,该路灯提前点亮,当运动的物体驶过该路灯快要来到下一路灯下时,上一路灯熄灭,下一路灯点亮。

所以该系统首先具备检测运动物体的运动状态,还要求控制器能根据环境的变化而变化,形成智能化控制灯亮灭的目的。

通过分析,该系统设计了光控开关来实现这一功能。

1.1 探测运动物体该系统采用单片机控制路灯亮灭,当检测到物体运动时,将检测到的信号传回单片机,并有单片机根据信号对LED灯进行控制。

方案一:利用光敏电阻检测运动物体的信号。

根据光敏电阻对光线的灵敏度原理,光敏电阻收到的光亮度增加时,光敏电阻的阻值减小,使输出的电压增大为高电平,又因为串联分压,此时需加入电平转换电路,使输出的信号转换为低电平,输入单片机进行控制。

该方案设计的缺点是光敏电阻的测光范围宽,灵敏度较高,响应范围宽。

那么,该系统若要顺利进行,运动物体需要带有光源,另外光敏电阻还会受路灯等其他灯光的影响,故导致其不能正常工作。

为了节约成本,我们可以利用光敏电阻的特性,设计光电开关、故障检测等电路。

方案二:根据方案一的分析,光电开关工作原理是根据发射端发出的光束,经过物体反射,接受端据此判断是否有物体经过。

若没有光线被折射回来,输出高电平;反之,则输出低电平。

单片机再根据接收端电平的高低,做出相应控制。

基于单片机的路灯控制系统的设计

基于单片机的路灯控制系统的设计

基于单片机的路灯控制系统的设计路灯作为城市道路的重要设施,对于人们的日常出行和夜间安全起着至关重要的作用。

传统的路灯控制系统主要依赖于定时器和光敏电阻进行操作,无法满足实际需求。

基于单片机的路灯控制系统克服了传统系统的不足,具有灵活性和智能化的特点,能够自动感应环境亮度并根据需要进行控制。

本文将介绍基于单片机的路灯控制系统的设计。

硬件设计方面,系统主要由以下几个部分组成:单片机控制器、光敏电阻、继电器、LED灯等。

其中,单片机控制器是整个系统的核心,负责接收光敏电阻的信号并根据需求控制继电器的开关。

光敏电阻用于感应环境亮度,当周围光线不足时,光敏电阻的阻值增大,单片机控制器将通过GPIO口读取到的电压信号转换成数字信号进行处理。

继电器用于控制LED 灯的开关,当光线不足时,单片机控制器将发送控制信号给继电器,使其闭合,从而点亮LED灯。

软件设计方面,主要包括单片机控制程序的编写。

首先,需要进行初始化,设置单片机的时钟、IO口状态等。

随后,进入主循环,在主循环中,程序将不断地读取光敏电阻的电压值,并转换成数字信号进行处理。

根据环境亮度,程序将判断当前是否需要点亮LED灯,如果需要,则发送开启继电器的信号;反之,则发送关闭继电器的信号。

在程序的末尾,需要延时一段时间,以降低系统的功耗。

此外,为了提高系统的可靠性和稳定性,还可以考虑添加一些附加功能。

例如,可设置定时功能,让路灯在固定的时间段内工作;还可以添加过载保护功能,当灯泡功率过大时,系统自动进行断电保护。

综上所述,基于单片机的路灯控制系统是一种灵活性高、智能化的控制方式,能够根据环境亮度进行自动控制。

通过合理的硬件设计和软件设计,可以实现路灯的自动开关,提高能源利用效率,降低运行成本。

同时,可根据需求添加附加功能,进一步提升系统的可靠性和稳定性。

基于单片机的路灯控制系统未来有着广阔的应用前景,将会为城市的照明工程带来更加智能化的变革。

单片机控制的模拟路灯控制系统设计

单片机控制的模拟路灯控制系统设计

单片机控制的模拟路灯控制系统设计模拟路灯控制系统是一种基于单片机控制的系统,用于智能地控制路灯的亮灭。

通过使用单片机作为主控制器,可以实现对路灯的自动亮灭、亮度调节、时间设置等功能,提高路灯的节能性和智能化程度。

一、系统设计方案1.硬件设计(1)单片机选择:选择一款功能强大、易于编程的单片机作为主控制器,如STC89C52(2)光敏电阻:用于感知光线强度,控制路灯的亮灭。

(3)三色LED灯:用于模拟路灯的亮灭状态,分别表示红、黄、绿三种不同的亮度。

(4)显示屏:用于显示系统的运行状态和参数设置。

(5)时钟模块:用于系统的时间设置和计时功能。

2.软件设计(1)系统初始化:在系统启动时,进行各个模块的初始化操作,包括IO口设置、定时器设置、中断设置等。

(2)光敏电阻检测:通过ADC模块读取光敏电阻的电压值,转换成灯光亮度等级。

(3)路灯控制:根据光敏电阻的电压值,控制三色LED灯的亮灭状态。

根据亮灯等级的不同,选择相应的亮灯模式,如红灯、黄灯、绿灯。

(4)时间设置:通过时钟模块设置系统的时间,并可以设定定时开关灯功能。

(5)显示屏交互:通过显示屏显示系统的运行状态和参数设置,实现与用户的交互功能。

二、系统功能详解1.自动亮灭功能系统通过光敏电阻感知光线的强度,根据设置的亮灯等级,自动控制路灯的亮灭状态。

当光线强度低于一定阈值时,系统自动点亮路灯;当光线强度高于阈值时,系统自动熄灭路灯。

这样可以根据实际的光照情况,智能地控制路灯的亮度,节约能源。

2.亮度调节功能系统可以根据用户的需求,通过显示屏进行亮度调节的设置。

用户可以根据实际需求设定不同的亮度等级,系统将根据用户设置的亮度等级来控制路灯的亮度。

这样可以根据不同的环境要求,调节路灯的亮度,提高路灯的灯光利用率。

3.时间设置功能系统通过时钟模块提供时间设置功能,用户可以根据实际需求设置系统的时间,并可以设定定时开关灯功能。

用户可以设定指定时间点的开灯和关灯时间,系统将根据用户设定的时间进行控制。

基于51单片机的模拟路灯控制系统

基于51单片机的模拟路灯控制系统

中文摘要中文摘要本作品是具有自动化程度高、运行可靠、使用维护方便的照明控制系统,为城市路灯现代化提供了一些参考方案。

系统采用STC单片机为核心的最小系统板,设计了模拟路灯控制系统。

控制系统采用定时器设定时钟功能,设定、显示开关灯时间;用了基于555为核心的红外传感器检测物体的定位。

路灯单元控制系统采用恒流源供电,具有输出功率调整功能,并能定时调整功率。

阐述了基于单片机模拟路灯控制系统实现的设计思想、方法及过程。

该模拟控制系统,能有效的节约能源,减少照灯具的损耗。

城市亮化随之被政府所重视,既而大量的资金投入进行建设和改造中去,使得我们的城市夜晚变得灯火辉煌,绚丽多彩,但同时,诸多问题也随之而来:能耗的逐年攀升,产生的某些问题亦逐渐显露出来,如城市路灯的维护量增大,带来人员不足的问题,使得路灯故障时不能得到及时的修复以致造成人民生活的不便;维护费用也随之增加,社会成本过高,电费支出过多,财政承担相对困难,给政府带来了相对大的压力;光污染现象严重……这些问题的产生无疑给当地的路灯管理部门的各方面工作带来很大的压力,因此他们迫切的想解决此问题,故针对这种情况我们设计并制作了这一节能智能型的模拟路灯控制系统,其主要价值在于能更好的节能与监测,在很多方面给人们带来了方便,给维护人员降低了难度。

在白天模式的时候,还能根据环境明暗的变化控制路灯的开启和关闭路灯,在夜晚模式的情况下,根据交通路面情况自动开关灯。

当灯出现故障不亮时,能够检测并且通过声光系统报警,显示器上显示故障灯的编号。

自制的单元控制器中的LED灯恒流驱动电源,在多数情况下,具有系统稳定,功耗低等特点。

以STC89C51RC为核心,利用时钟控制LED灯的开关时间段,通过红外感应模块将物体运动的信号通过555的TTL高低电平输入单片机,并通过三红外线输入的情况判断物体运行方向,再控制LED灯的开关情况。

并完成四方面的功能:时间设定功能,环境明暗判断,独立控制功能,交通条件控制功能。

基于单片机的LED路灯控制系统设计

基于单片机的LED路灯控制系统设计

基于单片机的LED路灯控制系统设计引言:随着科技的飞速发展,节能环保成为了世界各国的共同目标。

而在城市照明领域,传统的荧光灯和高压钠灯逐渐被LED灯取代,以其高效节能、寿命长等优势成为了照明行业的主流。

本文将介绍一种基于单片机的LED路灯控制系统设计,旨在提高LED路灯的节能效果和照明质量。

一、系统设计概述本系统采用单片机作为控制核心,通过检测周围环境的亮度和路况,智能地控制LED路灯的亮度和开关状态,以达到最佳的节能效果和照明质量。

主要包括以下几个方面的设计内容:传感器模块、单片机控制模块、LED驱动模块、通信模块。

二、传感器模块设计1.光敏传感器:采用光敏电阻或光敏二极管作为感光元件,通过模拟电路将光信号转换为电信号,然后通过单片机的模拟输入引脚读取光强度数据。

2.路况传感器:采用压电材料或振动传感器,通过检测路面的振动和压力变化,判断是否有车辆经过。

同样通过模拟电路将信号转换为电信号,然后通过单片机的模拟输入引脚读取路况数据。

三、单片机控制模块设计1.单片机选型:选择一款适合的低功耗、高性能单片机,如STM32系列。

单片机通过模拟输入引脚读取传感器数据,并通过数字输出引脚控制LED的亮度和开关状态。

2.控制算法:利用单片机的计算能力,结合光强度和路况数据,设计合理的控制算法。

例如,当检测到光强度较低且无车辆经过时,路灯亮度调整到较低水平;当检测到光强度较低且有车辆经过时,路灯亮度调整到适中水平;当检测到光强度较高时,路灯关闭或亮度调整到最低水平。

3.系统界面设计:通过LCD显示屏和按键等外设,设计用户友好的系统界面,方便用户查看和设置LED路灯的工作状态和参数。

四、LED驱动模块设计将单片机的数字输出引脚连接到合适的LED驱动电路,以控制LED的亮度和开关状态。

可采用PWM调光技术控制LED的亮度,通过单片机输出不同的脉宽信号,控制LED的亮度级别。

同时,为了确保LED的正常工作,还需要设计合适的电源管理模块,提供稳定的电压和电流给LED。

基于单片机路灯控制器的设计与仿真

基于单片机路灯控制器的设计与仿真

基于单片机路灯控制器的设计与仿真本文介绍了基于单片机的路灯控制器的设计和仿真。

路灯控制器是一种智能化系统,用于自动控制路灯的开关和亮度。

本文首先对路灯控制器的设计进行了简要介绍,然后总结了其主要功能。

随着社会的进步和发展,路灯的使用越来越普遍。

传统的路灯控制方式需要人工操作,效率低下且不够灵活。

因此,设计一种基于单片机的路灯控制器是很有必要的。

基于单片机的路灯控制器主要包括以下部分:单片机微控制器 - 用于处理路灯控制信号和控制路灯的开关和亮度。

传感器 - 用于检测环境光线和车辆等信号,以确定路灯的亮度和开关时间。

电路和继电器 - 用于将单片机的输出信号转换为电压和电流,控制路灯的开关。

为了验证设计的正确性和可行性,我们进行了路灯控制器的仿真实验。

利用仿真软件,我们可以模拟不同环境条件下的路灯工作情况,以确保路灯控制器的性能良好。

基于单片机的路灯控制器具有以下主要功能:自动控制路灯的开关和亮度,根据环境光线和车辆等信号进行智能调整。

节能功能,可以根据路灯的使用情况自动开关,减少能源浪费。

监测功能,能够实时监测路灯的工作状态,并在出现故障时进行报警和维修提示。

总之,基于单片机的路灯控制器是一种智能化系统,可以提高路灯的使用效率和节能减排。

通过设计和仿真实验,我们可以验证该控制器的正确性和可行性,为现实生活中的路灯管理提供了一种更便捷和高效的解决方案。

引言总之,基于单片机的路灯控制器是一种智能化系统,可以提高路灯的使用效率和节能减排。

通过设计和仿真实验,我们可以验证该控制器的正确性和可行性,为现实生活中的路灯管理提供了一种更便捷和高效的解决方案。

引言本文介绍了基于单片机路灯控制器的设计与仿真。

我们将阐述该研究的背景和目的,解释为什么设计基于单片机的路灯控制器是有意义的,并展示该设计对节能和自动化的重要性。

本文介绍了基于单片机路灯控制器的设计与仿真。

我们将阐述该研究的背景和目的,解释为什么设计基于单片机的路灯控制器是有意义的,并展示该设计对节能和自动化的重要性。

基于单片机路灯控制器的设计与仿真(1)

基于单片机路灯控制器的设计与仿真(1)

基于单片机路灯控制器的设计与仿真1. 引言随着城市的不断发展,路灯的重要性也日益凸显。

传统的路灯控制方式存在很多问题,如能耗高、无法智能控制等。

为了解决这些问题,本文提出了一种基于单片机的路灯控制器设计方案,并通过仿真进行验证。

2. 设计目标基于单片机的路灯控制器设计方案的目标是提高路灯的能效和智能性。

具体要求如下:•实现智能控制:路灯能够根据环境光强自动调节亮度,实现节能的效果;•支持远程控制:路灯控制器能够与远程管理中心进行通信,实现远程控制和数据监测;•具备故障检测功能:能够检测路灯的故障状况并上报;•低成本设计:设计方案应尽量降低成本,以便在实际应用中广泛使用。

3. 系统架构基于单片机的路灯控制器系统由以下几个主要部分组成:1.环境光强传感器:用于感知周围环境光的强度,将数据传输给控制器;2.路灯控制器:负责处理传感器数据、控制路灯亮度,并与远程管理中心通信;3.远程管理中心:用于远程控制和监测路灯状态;4.路灯:由LED灯组成,控制器根据传感器数据调节灯的亮度。

系统架构图如下所示:+--------------+ +-----------------+| 环境光强传感器 | ---> | 路灯控制器 | ---> | 远程管理中心 |+--------------+ +-----------------+| < || > || > || > |v | v+-----------+| 路灯 |+-----------+4. 设计流程设计基于单片机的路灯控制器的流程可以分为以下几个步骤:1.环境光强传感器的选型:选择合适的环境光强传感器,能够准确感知环境光的强度。

2.单片机的选型:根据系统要求选择合适的单片机,并购买相应的开发板。

3.开发环境的搭建:安装单片机开发工具,并进行必要的配置。

4.软件设计:使用开发工具进行软件设计,包括传感器数据处理、路灯亮度控制、通信协议等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的模拟路灯控制电路设计任务与要求设计并制作一套模拟路灯控制系统。

控制系统结构如图1所示,路灯布置如图2所示。

UHMJ 1Ltir-iW7T11 ■■ I s'I*二、要求1.基本要求(1)支路控制器有时钟功能,能设定、显示开关灯时间,并控制整条支路按时开灯和关灯。

(2)支路控制器应能根据环境明暗变化,自动开灯和关灯。

(3)支路控制器应能根据交通情况自动调节亮灯状态:当可移动物体M (在物体前端标出定位点,由定位点确定物体位置)由左至右到达S点时(见图2),灯1亮;当物体M到达B点时,灯1灭,灯2亮;若物体M由右至左移动时,则亮灯次序与上相反。

(4)支路控制器能分别独立控制每只路灯的开灯和关灯时间。

(5)当路灯出现故障时(灯不亮),支路控制器应发出声光报警信号,并显示有故障路灯的地址编号。

2.发挥部分(1)自制单元控制器中的LED灯恒流驱动电源。

(2)单元控制器具有调光功能,路灯驱动电源输出功率能在规定时间按设定要求自动减小,该功率应能在20%- 100%范围内设定并调节,调节误差w 2%(3)其它(性价比等)三、说明1.光源采用1 W的LED灯,LED的类型不作限定。

2•自制的LED驱动电源不得使用产品模块。

3.自制的LED驱动电源输出端需留有电流、电压测量点。

4.系统中不得采用接触式传感器。

5.基本要求(3)需测定可移动物体M上定位点与过“亮灯状态变换点” (SB、S'等点)垂线间的距离,要求该距离w 2cm>根据题目要求,本控制系统电路由MCI为主控芯片,辅以测量光和红外的传感元件,可根据环境明暗变化,自动开灯和关灯,支路控制器能根据交通情况自动调节亮灯状态,独立控制每只路灯的开灯和关灯时间。

当路灯出现故障时(灯不亮),支路控制器发出声光报警信号,并显示有故障路灯的地址编号。

送入单片机进行数据处理,控制LED的明暗,并在在液晶屏上显示,此电路还具有许多扩展功能。

刖言伴随着科学技术的发展,人类社会的进步,越来越多的电子产品不断涌现,并且电子产品也不断向体积小,功能大,效率高,能耗低的方向发展,我们的设计作品充分体现了这些特点。

设计中我们运用了STC12C5A60S单片机,因为它内置AD转化,并且能够输出PWM&号,使外部电路简单;运用DS1302时钟芯片保证了时间的实时显示,还运用NE555 构成的多谐振荡器与红外发射二极管构成红外发射电路;显示电路我们采用1602液晶显示屏,是我们的设计更加人性化。

并且在我们设计制作中充分考虑了环保的问题,我们运用的辅助器件基本都是剩下的废料。

总体方案设计图i系统框图本方案具有两路信号输入检测与显示、报警等功能,此外通过主控单元电路的扩展,可添加多种附加功能。

二方案论证与设计根据系统框图,对单元电路控制进行设计,下面是我们对各部分单元电路的论证与设计2.1主控电路的选择与论证2.1.1采用89C51 系列的单片机作为CPU89C51单片机是8位单片机,4k字节Flash闪速存储器,128字节内部RAM,32 个I/O 口线,两个数据指针,两个16位定时/计数器,一个5向量中断结构,一个全双工串口通信口,片内振荡器及时钟电路。

其指令是采用的被称为“ CISC'的复杂指令集,工具有111条指令,与其他高位单片机相比而言,指令周期较长,运算速度太慢,而且由于其内部总线是8 位的,其内部功能模块也基本上都是8位的;89C51单片机本身的电源电压是5伏,89C51有两种低功耗方式:待机方式和掉电方式。

2.2.2采用LPC2138 单片机作为CPU该芯片其本身自带A/D转换功能,带大容量的32KRAM口512KFLASH 内部资源丰富且系统稳定,芯片价格昂贵。

2.2.3采用STC12C5A60S2 单片机作为CPU该芯片位增强型8051 内核,除具有51 系列单片机的性能外,还具有以下以下功能:1、高速:速度比普通8051快8~12 倍;2、增强掉电检测电路(P4.6),可在掉电时,及时将数据保存进EEPRO,M 正常工作时无需操作EEPRO;M3、工作频率:0~35MH,z 相当于8051:0~420MHz;4、8通道,10位高速ADC速度可达25万次/秒,2路PWM还可当2路D/A使用;5、4个16位定时器,兼容普通8051的定时器T0/T1,2路PCA实现2个定时器;6、系统工作稳定,方便高效的开发环境。

综合上述,由于STC12C5A60S众多的优良性质,尤其是内置A/D转化、高速度和多功能复位引脚的特性,这样可以减少扩展,提高性价比。

因此,本设计最终才用STC12C5A60S单片机作为主控CPU2.3显示设备的选择与论证2.3.1使用数码管显示可以使用一个3/8译码器作为位选芯片,一个74LS573作为段选芯片,预计要完成各功能电路的显示则至少需要两个四合一数码管,此方案连线太多,硬件设计不便,并且其功耗大。

2.3.2使用液晶显示液晶显示驱动简单,耗电量小,无辐射危险,平面直角显示以及影响稳定不闪烁灯优势,显示直观、抗干扰能力强等诸多优点,两方案比较,选择2.4单元控制器模块选型2.4.1热释电型红外传感器热释电型红外光敏元器件的特点是:灵敏度较低、响应速度较慢、响应的红外线波长较长,价格便宜。

为了提高灵敏度,通常都加上一个菲涅尔透镜,其原理是移动物体或人发射的红外线进入透镜,产生一个交替的“盲区”和“高灵敏区”,这样就会产生一系列的光脉冲进入传感器,从而产生电流变化,送给控制系统。

目前一般配上透镜可检测10m左右。

但考虑到实际路灯之间的距离,因此没有选择此方案。

2.4.2感应线圈感应线圈的原理是:根据金属物体通过磁场,使线圈电感量发生变化,同时状态信号传输给检测器,由其进行采集放大,送给单片机。

特点是:灵敏度高,响应速度快,在恶劣天气条件下仍具备有出色的性能。

但由于电路复杂,因此没有选用此方案。

2.4.3红外对管红外对管包括红外发射管和红外接收管。

发射管就是能够发射出红外线的二极管,接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。

红外接收二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。

然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。

红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。

所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高,所以我们也采用了一体化接收头。

原理是无移动物体通过时,红外接收管接受红外线呈高电平,当有移动物体通过时,遮挡了红外线使接收管电压变化,产生一个脉冲,送给单片机控制开关灯。

综合考虑,我们选择了红外对管。

2.5恒流源模块选型2.5.1采用LC 降压的方式优点:价格低。

缺点:效率极低,给1W的LED供电,需要消耗4-6W的电力。

功率因数极低,差不多0.2 左右。

严重缩短LED的寿命。

对电网的污染很大。

串联多颗时会有闪烁。

2.5.2通过如HV9910 开关电源芯片设计优点:普通常用缺点:效率低:在603左右,体积大,批量生产时LED的亮度一致性差,无法批量化,干扰大,电网污染大,串联LED灯,常会有闪烁,可以通过接红、白等颜色的灯观看到,模块中使用电解电容,电解电容的寿命大概是5000小时,而LED是100000小时,这样的模块很容易一年就会损坏。

2.5.3LM358 驱动LED优点:输出恒定电流:350mA+/- 53(1WLED)。

功率因数0.625-0.75 。

效率高达到93%(10W。

)反馈电路更好的稳定电流。

模块温升低。

缺点:需要双电源供电,电压范围较窄。

2.6时钟芯片的选型2.6.1 DS1302采用DS1302实时时钟/日历芯片,最大总行速度400bit/s,每次读写数据后,其内嵌的字地址寄存器会自动产生增量的地址寄存器、分频器、可编程时钟输出、定时器、400HZ的I2总线接口,DS1302与单片机之间简单的采用同步串行的方式进行通信,仅需用到三个口线,简单方便。

2.6.2DS12887使用DS12887 时钟芯片,它具有微功耗、外围电路简单、精度高、工作稳定可靠等优点,但是其占用的I/O 多,且体积大。

综合考虑,我们选择了方案一。

亠硬件电路设计 3.1 单片机模块单元电路的设计单片机单元模块电路单片机单元模块电路采用上电复位电路,上电复位就是接通电源后,单 片机自动实现复位操作。

上电复位电路由 C13 S3 R24构成,上电瞬间9 脚获得高电平,随着电容C13的充电,9脚的高电平逐渐下降。

9脚的高电 平只要能保持猪狗的时间(2个机器周期),单片机就能进行复位操作。

丫1、C1、和C18构成内部时钟振荡电路,C1和C18的作用主要是稳定频 率和快速起振容值为5~30Pf,典型值为30pF 。

为方便与计算机通信晶振的频率选用11.0592MHz3.2 实时时钟控制电路的设计KEY1 1 +5VC13 + J R24 AD1 2 AD2 3 PWM1 4 PWM2 5 KEY2 6 KEY3 7 KEY4 89P3.0 10 P3.1 11INT0_12INT1 13ZQ 14CLK 15C16 30PXTAL2RST 16nI/O 172 — XTAL2I8 | ZZIY2 XTAL1911.0592MHZ20 C17 30P , 1XTAL1P1.0/T2 P1.1/T2EX P0.0/AD0一P1.2 P0.1/AD1 - P1.3 P0.2/AD2 - P1.4 P0.3/AD3 - P1.5 P0.4/AD4P1.6 P0.5/AD5P1.7 P0.6/AD6 - RSTP0.7/AD7 - P3.0/RXD"EA/VPP - P3.1/TXDALE P3.2/INT0P3.3/INT1P2.7/A15 - P3.4/T0P2.6/A14 -P3.5/T1P2.5/A13 - P3.6/WRP2.4/A12 - P3.7/RD P2.3/A11 XTAL2 P2.2/A10 - XTAL1 P2.1/A9 - VSSP2.0/A8 -38VC P0.137VCP0.2 36 P0.335 P0.4 34 P0.5 33 P0.6 32 P0.7 3130"29 C120.1uF_______ RS 27PSE R/W26PSE EN 25 Bell 24 ZK 23 S22 AS' +5V10uF S3200 下25STC12C5A60S2 U6 40P0.0Hip实时时钟电路实时时钟采用DS1302,它是一种高性能、低功耗、带 RAM 的实时时钟电 路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功 能,工作电压为2.5V 〜5.5V 。

相关文档
最新文档