BP神经网络详解与实例

合集下载

BP神经网络步骤及应用实例

BP神经网络步骤及应用实例

1、数据归一化‎2、数据分类,主要包括打‎乱数据顺序‎,抽取正常训‎练用数据、变量数据、测试数据3、建立神经网‎络,包括设置多‎少层网络(一般3层以‎内既可以,每层的节点‎数(具体节点数‎,尚无科学的‎模型和公式‎方法确定,可采用试凑‎法,但输出层的‎节点数应和‎需要输出的‎量个数相等‎),设置隐含层‎的传输函数‎等。

关于网络具‎体建立使用‎方法,在后几节的‎例子中将会‎说到。

4、指定训练参‎数进行训练‎,这步非常重‎要,在例子中,将详细进行‎说明5、完成训练后‎,就可以调用‎训练结果,输入测试数‎据,进行测试6、数据进行反‎归一化7、误差分析、结果预测或‎分类,作图等数据归一化‎问题归一化的意‎义:首先说一下‎,在工程应用‎领域中,应用BP网‎络的好坏最‎关键的仍然‎是输入特征‎选择和训练‎样本集的准‎备,若样本集代‎表性差、矛盾样本多‎、数据归一化‎存在问题,那么,使用多复杂‎的综合算法‎、多精致的网‎络结构,建立起来的‎模型预测效‎果不会多好‎。

若想取得实‎际有价值的‎应用效果,从最基础的‎数据整理工‎作做起吧,会少走弯路‎的。

归一化是为‎了加快训练‎网络的收敛‎性,具体做法是‎:1 把数变为(0,1)之间的小数‎主要是为了‎数据处理方‎便提出来的‎,把数据映射‎到0~1范围之内‎处理,更加便捷快‎速,应该归到数‎字信号处理‎范畴之内。

2 把有量纲表‎达式变为无‎量纲表达式‎归一化是一‎种简化计算‎的方式,即将有量纲‎的表达式,经过变换,化为无量纲‎的表达式,成为纯量比如,复数阻抗可‎以归一化书‎写:Z = R + jωL = R(1 + jωL/R) ,复数部分变‎成了纯数量‎了,没有量纲。

另外,微波之中也‎就是电路分‎析、信号系统、电磁波传输‎等,有很多运算‎都可以如此‎处理,既保证了运‎算的便捷,又能凸现出‎物理量的本‎质含义。

神经网络归‎一化方法:由于采集的‎各数据单位‎不一致,因而须对数‎据进行[-1,1]归一化处理‎,归一化方法‎主要有如下‎几种,供大家参考‎:1、线性函数转‎换,表达式如下‎:复制内容到‎剪贴板代码‎:y=(x-MinVa‎l ue)/(MaxVa‎l ue-MinVa‎l ue)说明:x、y分别为转‎换前、后的值,MaxVa‎l ue、MinVa‎l ue分别‎为样本的最‎大值和最小‎值。

bp神经网络实例分析

bp神经网络实例分析

数据集划分
01
02
03
训练集
用于训练神经网络,占总 数据的70%-90%。
验证集
用于调整超参数和选择最 佳模型,占估模型的性能,占 总数据的10%-30%。
03
BP神经网络模型构建
神经元模型
神经元模型
神经元是神经网络的基本单元, 它模拟了生物神经元的基本功能,
误差计算
根据实际输出与期望输出计算误差。
权值调整
根据误差反向传播算法调整各层的权值和阈值。
迭代训练
重复前向传播和权值调整过程,直到达到预设的迭代次 数或误差要求。
02
BP神经网络实例选择与数据准备
实例选择
选择一个具有代表性的问题
为了展示BP神经网络的应用,选择一个具有代表性的问题,例如 分类、回归或聚类等。
成。
节点数量
02
每一层的节点数量需要根据具体问题来确定,过多的节点可能
导致过拟合,而节点过少则可能无法充分提取数据特征。
连接权重
03
连接权重是神经网络中非常重要的参数,它决定了神经元之间
的连接强度和信息传递方式。
激活函数选择
激活函数的作用
激活函数用于引入非线性特性,使得神经网络能够更好地处理复 杂的非线性问题。
误差反向传播
当实际输出与期望输出不符时,进入 误差反向传播阶段,误差信号从输出 层开始逐层向输入层传播,并根据误 差调整各层的权值和阈值。
训练过程
数据准备
准备训练数据和测试数据,并对数据进行预 处理,如归一化等。
网络初始化
为各层神经元设置初始权值和阈值。
前向传播
输入样本数据,通过正向传播计算每一层的输出 值。
3

BP神经网络实例分析

BP神经网络实例分析

j1
a1(i)f(u1(i))=
1 1exp(u1(i))
i 1,2
同理,输出神经元
3
u2 (1) w2 (1, j)a1 ( j) j 1
1 a2 (1) 1 exp( u2 (1))
(3) 训练输出单元的权值
PS:利用输出层各神经元的误差项 2(1)和隐含层 各神经元的输出来修正权值。
PS:利用隐含层各神经元的误差项 各神经元的输入来修正权值。
1(p1)(i)
和输入层
1 (p 1 )(i)f'[u 1(i)]2 (p 1 )(1 )W 2 (p 1 )(1 ,i)
a 1(iቤተ መጻሕፍቲ ባይዱ1 [a 1(i)]2 (p 1 )(1 )W 2 (p 1 )(1 ,i)
W 1 ( p 1 ) ( i ,j ) W 1 ( p ) ( i ,j ) 1 ( p 1 ) ( i ) a 0 ( p 1 ) ( j )
取激励函数
f
(x)
1 1ex
则 f'(x)(1 ee xx)2f(x)1 [f(x)]
2 ( 1 ) (t( 1 ) a 2 ( 1 )f') (u 2 ( 1 ))
( t ( 1 ) a 2 ( 1 ) e ) u x 2 ( 1 ) / p 1 ) ( e ( u x 2 ( 1 )2 p )) (
二、具体训练步骤如下:
令p=0,p为样本编号 (1) 网络初始化
给各连接权值分别赋一个区间(0,1)内的随机数,设定
误差函数E,给定计算精度值 和最大学习次数M。
W 1 w w 1 1((1 2,,1 1 ))
w 1(1,2) w 1(2,2)
w 1(1,3) w 1(2,3)

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。

BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。

BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。

具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。

3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。

6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。

BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。

下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。

我们训练集中包含一些房屋信息和对应的价格。

1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。

3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

BP神经网络模型应用实例

BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。

在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。

多层感知机神经网络的研究始于50年代,但一直进展不大。

直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。

BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。

对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。

节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。

该算法的学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。

每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。

如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。

BP神经网络详解与实例_2样版

BP神经网络详解与实例_2样版

kjkjkhjk
10
脑神经信息活动的特征
(1)巨量并行性。
(2)信息处理和存储单元结合在一起。
(3)自组织自学习功能。
kjkjkhjk
11
神经网络基本模型
电脉冲 输 入 树 突 细胞体 信息处理 形成 轴突 传输 突 触 输 出
图 12.2 生物神经元功能模型
kjkjkhjk
12

神经元的数学模型
kjkjkhjk 4
ANN研究的目的和意义
(1)通过揭示物理平面与认知平面之间的映射,了 解它们相互联系和相互作用的机理,从而揭示思 维的本质,探索智能的本源。 (2)争取构造出尽可能与人脑具有相似功能的计算
机,即ANN计算机。
(3)研究仿照脑神经系统的人工神经网络,将在模
式识别、组合优化和决策判断等方面取得传统计
kjkjkhjk 16
2、神经网络的数学模型

众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的B-P网络
kjkjkhjk
17
clk
c
k j
k cq
W11
c1 Wp1 … W1j cj Wpj Wij Wi1
… …
W1q cq
输出层LC
Wiq Wpq
W V1p bp Vhp V np
15
kjkjkhjk


e x ex f ( x) x , x e e
1 f ( x) 1.
注:若将阈值看作是一个权系数,-1是一个固定的 输入,另有m-1个正常的输入,则(1)式也可表 示为:
y f ( wi xi )
i 1
m
(1)
• 参数识别:假设函数形式已知,则可以从已有的 输入输出数据确定出权系数及阈值。

bp神经网络算法步骤结合实例

bp神经网络算法步骤结合实例

bp神经网络算法步骤结合实例
BP神经网络算法步骤包括以下几个步骤:
1.输入层:将输入数据输入到神经网络中。

2.隐层:在输入层和输出层之间,通过一系列权值和偏置将输入数据进行处理,得到输出
数据。

3.输出层:将隐层的输出数据输出到输出层。

4.反向传播:通过反向传播算法来计算误差,并使用梯度下降法对权值和偏置进行调整,
以最小化误差。

5.训练:通过不断地进行输入、隐层处理、输出和反向传播的过程,来训练神经网络,使
其达到最优状态。

实例:
假设我们有一个BP神经网络,它的输入层有两个输入节点,隐层有三个节点,输出层有一个节点。

经过训练,我们得到了权值矩阵和偏置向量。

当我们给它输入一组数据时,它的工作流程如下:
1.输入层:将输入数据输入到神经网络中。

2.隐层:将输入数据与权值矩阵相乘,再加上偏置向量,得到输出数据。

3.输出层:将隐层的输出数据输出到输出层。

4.反向传播:使用反向传播算法计算误差,并使用梯度下降法调整权值和偏置向量,以最
小化误差。

5.训练:通过不断地输入、处理、输出和反向传播的过程,来训练神经网络,使其达到最
优状态。

这就是BP神经网络算法的基本流程。

在实际应用中,还需要考虑许多细节问题,如权值和偏置的初始值、学习率、激活函数等。

但是,上述流程是BP神经网络算法的基本框架。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型,它是一个互联的非线性动力学网络.他解决问题
的方法是一种反复运算的动态过程,这是符号逻辑处理 方法所不具备的性质. 1987年首届国际ANN大会在圣地 亚哥召开,国际ANN联合会成立,创办了多种ANN国际
人工神经网络研究的局限性
(1)ANN研究受到脑科学研究成果的限制。 (2)ANN缺少一个完整、成熟的理论体系。
图6 简单网络
假设有P个训练样本,即有P个输入输出对 (Ip, Tp),p=1,…,P, 其中

输入向量为 :
I p (i p1 ,...,i pm )
pn
T
目标输出向量为(实际上的):
Tp
(t p1 ,...,t
)
T
网络输出向量为 (理论上的)
Op (o p1 ,...,o pn )T
y f ( wi xi )
i 1
• θ 为阈值,f(X)是激发函数;它可以是线性 函数,也可以是非线性函数.
m
例如,若记
z
w x
i 1 i
m
i

取激发函数为符号函数
1, sgn( x) 0,

1, y f ( z) 0,
x 0, x 0.
ANN研究的目的和意义
(1)通过揭示物理平面与认知平面之间的映射,了 解它们相互联系和相互作用的机理,从而揭示思 维的本质,探索智能的本源。 (2)争取构造出尽可能与人脑具有相似功能的计算
机,即ANN计算机。
(3)研究仿照脑神经系统的人工神经网络,将在模
式识别、组合优化和决策判断等方面取得传统计
算机所难以达到的效果。
人工神经网络 (Artificial Neural Netwroks -----ANN) -----HZAU 数模基地



利用机器模仿人类的智能是长期以来人们认识自 然、改造自然和认识自身的理想。

研究ANN目的: (1)探索和模拟人的感觉、思维和行为的规律,
设计具有人类智能的计算机系统。

y f ( wi xi )
i 1
m
(1)
• 参数识别:假设函数形式已知,则可以从已有的 输入输出数据确定出权系数及阈值。
2、神经网络的数学模型

众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的B-P网络
clk
c
k j
k cq
W11
c1 Wp1 … W1j cj Wpj Wij Wi1
b1 Vn1 V11 Vh1

V1i bi Vni Vhi
隐含层LB
V
输入层LA
a1

k 1
ah
k ah

an
a
a
k n
基本BP网络的拓扑结构
四、反向传播算法(B-P算法) Back propagation algorithm
算法的目的:根据实际的输入与输出数据,计算模型的参 数(权系数)
1.简单网络的B-P算法

再如,如下的情形已经不能用分类直线的办法:
• 新思路:将问题看作一个系统,飞蠓的数据作为 输入,飞蠓的类型作为输出,研究输入与输出的 关系。
clk
c
k j
k cq
W11
c1 Wp1 … W1j cj Wpj Wij Wi1
… …
W1q cq
输出层LC
Wiq Wpq
W V1p bp Vhp V np
研究ANN方法
(1)生理结构的模拟:
用仿生学观点,探索人脑的生理结构, 把对人脑的微观结构及其智能行为的研究结合 起来即人工神经网络(Artificial Neural Netwroks,简称ANN)方法。
(2)宏观功能的模拟:
从人的思维活动和智能行为的心理学特 性出发,利用计算机系统来对人脑智能进行宏 观功能的模拟,即符号处理方法。
问题, 表现出极大的灵活性和自适应性。
人工神经网络 (Artificial Neuron Nets=ANN)

• 1981年生物学家格若根(W. Grogan)和维什(W.Wirth)发现了两 类蚊子(或飞蠓midges).他们测量了这两类蚊子每个个体的翼长和触角 长,数据如下: • • • • • • • • • 翼长 1.78 1.96 1.86 1.72 2.00 2.00 1.96 1.74 触角长 类别 1.14 Apf 1.18 Apf 1.20 Apf 1.24 Af 1.26 Apf 1.28 Apf 1.30 Apf 1.36 Af

分类结果:(1.24,1.80),(1.28,1.84)属于Af类; (1.40,2.04)属于 Apf类.
图2 分类直线图
•缺陷:根据什么原则确定分类直线?
• 若取A=(1.46,2.10), B=(1.1,1.6)不变,则分类直线 变为 y=1.39x+0.071 分类结果变为: (1.24,1.80), (1.40,2.04) 属于Apf类; (1.28,1.84)属于Af类 • 哪一分类直线才是正确的呢? • 因此如何来确定这个判别直线是一个值得研究的 问题.一般地讲,应该充分利用已知的数据信息 来确定判别直线.
a k (i ) 表第k层第i个元的输出
假设:
(3)设层与层间的神经元都有信息交换(否则,可设它们 之间的权重为零);但同一层的神经元之间无信息传 输. (4) 设信息传输的方向是从输入层到输出层方向;因此称为 前向网络.没有反向传播信息. (5) a0 ( j ) 表示输入的第j个分量.
在上述假定下网络的输入输出关系可以表示为:
神经网络研究的发展
(1)第一次热潮(40-60年代未)
1943年,美国心理学家W.McCulloch和数学家 W.Pitts在提出了一个简单的神经元模型,即MP模型。 1958年,F.Rosenblatt等研制出了感知机 (Perceptron)。 (2)低潮(70-80年代初): (3)第二次热潮 1982年,美国物理学家J.J.Hopfield提出Hopfield
(5)
o pi a( wij i pj ) b
j 1
m
(6)
2.多层前馈网络
假设:
图7 多层前馈网络
(l)输入层不计在层数之内,它有N0个神经元.设网络 共有L层;输出层为第L层;第 k层有Nk个神经元. (2) 设 u k (i ) 表示第k层第i神经元所接收的信息 wk(i,j) 表示从第k-1层第j个元到第k层第i个元的权重,
记wij为从输入向量的第j (j=1,…,m) 个分量到输出向量 的第i (i=1,…,n)个分量的权重。通常理论值与实际值有一误 差,网络学习则是指不断地把与比较,并根据极小原则修 改参数wij,使误差平方和达最小:
min (t
i 1 n
o pi ) 2 pi
(p=1,…,P)
(2)
• Delta学习规则: 记 wij 表示递推一次的修改量,则有
N0 u1 (i) w1 (i, j )a 0 ( j ) 1 (i), j 1 1 i N1 , a1 (i) f (u1 (i)), N1 u 2 (i) w2 (i, j )a1 ( j ) 2 (i ), j 1 a (i) f (u (i)), 1 i N2 , 2 2 .......... .......... .......... ......... N L 1 u L (i) wL (i, j )a L 1 ( j ) L 1 (i), j 1 a L (i) f (u L (i)), 1 i NL,
wij wij wij
wij
(3)
(t
p 1
P
pi
o pi )i pj

p 1
P
pi
i pj
(4)
pi
称为学习的速率
t pi o pi
注:由(1) 式,第i个神经元的输出可表示为
o pi f ( wij i pj )
j 1
m
ipm= -1 , wim= (第i个神经元的阈值) 特别当f是线性函数时
(7)
• 其中表示第k层第i个元的阈值.
定理2 对于具有多个隐层的前馈神经网络;设激发函数为S 函数;且指标函数取 P (8) E Ep
解法一: • 把翼长作纵坐标,触角长作横坐标;那么每个 蚊子的翼长和触角决定了坐标平面的一个点.其 中 6个蚊子属于 APf类;用黑点“·”表示;9个 蚊子属 Af类;用小圆圈“。”表示. • 得到的结果见图1

图1飞蠓的触角长和翼长

思路:作一直线将两类飞蠓分开
• 例如;取A=(1.44,2.10)和 B=(1.10,1.16), 过A B两点作一条直线: • y= 1.47x - 0.017 • 其中X表示触角长;y表示翼长. • 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
脑神经信息活动的特征
(1)巨量并行性。
(2)信息处理和存储单元结合在一起。
(3)自组织自学习功能。
神经网络基本模型
电脉冲 输 入 树 突 细胞体 信息处理 形成 轴突 传输 突 触 输 出
图 12.2 生物神经元功能模型

神经元的数学模型Βιβλιοθήκη 图4神经元的数学模型
其中x=(x1,…xm)T 输入向量,y为输出, wi是权系数;输入与输出具有如下关系:

大脑可视作为1000多亿神经元组成的神经网络

图3 神经元的解剖图
相关文档
最新文档