神经网络算法详解
神经网络算法框架结构与效果分析

神经网络算法框架结构与效果分析简介神经网络算法是一种基于人工神经网络的机器学习算法,它模拟了大脑神经元之间的相互作用。
神经网络算法框架是构建神经网络模型的基础结构,它定义了神经网络的各个层级和神经元之间的连接方式,通过反向传播算法来优化网络的权重和偏差,从而达到训练模型的目的。
一、神经网络算法框架结构神经网络算法框架通常由以下几个基本组件组成:1. 输入层: 输入层是神经网络的第一层,用于接收原始数据或特征向量。
每个神经元表示一个特征,并将特征值传递给下一层。
2. 隐藏层: 隐藏层是位于输入层和输出层之间的一层或多层,负责处理输入数据并进行特征提取和抽象。
隐藏层的选择和数量会影响神经网络的性能。
3. 输出层: 输出层是神经网络的最后一层,负责输出最终的分类结果或回归结果。
输出层的神经元数量通常与问题的类别数或输出结果的维度相匹配。
4. 权重和偏置: 权重和偏置是神经网络的参数,用于调整每个神经元的输出值。
权重表示连接强度,偏置表示每个神经元的激活阈值。
5. 激活函数: 激活函数用于引入非线性性质,并将神经元的输出值映射到特定的范围内。
常用的激活函数包括Sigmoid、ReLU和Tanh等。
6. 损失函数: 损失函数衡量神经网络预测结果与真实结果之间的差异,是模型训练的目标函数。
常见的损失函数有均方差、交叉熵和对数损失等。
7. 优化算法: 优化算法用于更新网络的权重和偏置,以最小化损失函数。
常见的优化算法有梯度下降、Adam和RMSProp等。
二、神经网络算法框架效果分析1. 网络结构对性能的影响神经网络的性能受到网络结构的影响,包括隐藏层的数量、神经元数量和层级之间的连接方式等。
根据问题的复杂度,选择合适的网络结构非常重要。
较浅的网络结构适用于简单的分类问题,而深层网络结构则适用于更复杂的任务,如图像识别和自然语言处理等。
2. 激活函数的选择激活函数是神经网络的非线性映射,可以增强网络的表达能力。
神经网络的模型和算法

神经网络的模型和算法人工智能领域中最流行的技术之一是神经网络。
神经网络是模拟神经系统对信息进行处理的一种模型。
它由多个相互连接的单元组成,形成图形结构,类似于人类神经系统。
神经网络经常被用于图像识别、语音识别和自然语言处理等应用领域。
本文将讨论神经网络的模型和算法。
神经网络的模型神经网络可以描述为由多个神经元单元组成的图形结构。
图形结构是由神经元单元之间的连接和对输入的响应特征定义的。
神经元单元可以被描述为一组输入和输出之间的特定函数。
神经网络的模型分为前向神经网络和反向神经网络。
前向神经网络根据输入数据的特征通过多个隐藏层传递信息,最终得到一个输出值。
反向神经网络则是通过输入和输出之间的关系来学习网络的参数。
反向传播算法被广泛地应用于训练多层前馈神经网络。
神经网络的算法神经网络的算法与其模型密切相关,下面将介绍几种常用的神经网络算法。
BP算法BP算法是一种反向传播算法,通过反向传播误差更新神经网络的权重和阈值,使得网络输出与期望输出之间的误差最小化。
BP算法分别计算输出层和隐含层的误差,然后反向传播误差,更新网络的权重和阈值。
Hopfield网络算法Hopfield网络算法是一种无监督学习模型,采用回馈结构,可以存储和检索模式。
Hopfield网络将重要的信息编码为状态向量,并选择一些不合法的状态,以期获得一些不同的结果。
Hopfield网络具有较好的容错性和大规模模式的处理能力。
自组织映射算法Kohonen SOM算法是一种无监督学习算法,可以进行数据降维和聚类分析。
该算法是基于映射的,将高维输入数据映射到低维输出层。
自组织映射算法将数据点映射到CRT图中的点,以发现数据库中存在的潜在结构。
总结神经网络作为人工智能工具之一,正在被应用于许多领域。
神经网络的模型和算法是其成功实现的关键。
本文介绍了几种常用的神经网络模型和算法,希望对读者理解神经网络提供一定的帮助。
机器学习中的神经网络算法

机器学习中的神经网络算法机器学习是人工智能领域的核心技术之一。
其基本思想是借助计算机算法自动分析和学习数据,发现数据中蕴含的规律和特征,最终对未知数据做出准确的预测和分类。
神经网络算法是机器学习中最为重要和流行的方法之一。
在本文中,我们将重点介绍神经网络算法的原理、模型和应用。
一、神经网络算法原理神经网络的核心思想是模拟人脑的神经系统,用多层神经元网络来学习和处理信息。
神经元是神经网络的基本单位,它接收来自其他神经元的信号,并根据一定的权重和阈值进行加权和运算,最终输出一个结果。
多个神经元互相连接形成的网络称为神经网络,其中输入层接收外界信息,输出层输出分类结果,中间的隐藏层进行信息处理和特征提取。
神经网络的训练过程就是通过不断调整神经元之间连接的权重和阈值,使网络对输入数据的输出结果不断趋近于实际结果。
二、神经网络算法模型神经网络算法可以分为多种模型,如感知器、多层感知器、卷积神经网络、循环神经网络等。
其中多层感知器是最常用的模型。
多层感知器是一个由输入层、隐藏层和输出层组成的前向网络,它的主要特点是可以处理非线性问题。
在模型训练过程中,我们通过反向传播算法来调整权重和阈值,使得神经网络对数据的分类结果更加准确。
三、神经网络算法应用神经网络算法被广泛应用于模式识别、图像分析、自然语言处理、语音识别、数据挖掘和预测等领域。
下面我们以图像分类为例,介绍神经网络算法的应用流程。
首先,我们需要准备一组带有标签的图片数据集,将其划分为训练集、验证集和测试集。
然后,通过预处理对图片进行归一化、去噪等操作,保证输入数据的准确性。
接着,我们设计神经网络的结构,包括输入层、隐藏层和输出层的神经元数量、激活函数、损失函数等参数。
通过训练集对网络进行训练,并在验证集上进行优化,调整超参数和防止过拟合。
最后,在测试集上进行测试,评估神经网络的准确率和性能,对其预测能力进行验证。
总之,神经网络算法是目前机器学习领域最流行和经典的方法之一,其在图像、语音、自然语言等领域都有广泛的应用。
神经网络中的最优传输算法详解

神经网络中的最优传输算法详解神经网络是一种模拟人脑神经系统的计算模型,它通过模拟神经元之间的连接和信息传递来实现各种复杂的任务。
在神经网络中,信息传输的效率对于网络的性能至关重要。
为了提高信息传输的效率,研究者们提出了最优传输算法。
最优传输算法是一种优化问题的求解方法,它的目标是在给定的约束条件下,找到使得信息传输效率最高的传输方案。
在神经网络中,最优传输算法可以用来优化神经元之间的连接权重,以提高网络的学习能力和性能。
最优传输算法的核心思想是通过调整连接权重,使得信息在神经网络中的传输路径更加直接和高效。
具体而言,最优传输算法通过计算信息传输的路径长度和传输速度的关系,来确定最佳的连接权重。
在神经网络中,每个神经元都有一个阈值,当输入信号超过阈值时,神经元会激活并将信号传递给下一层神经元。
最优传输算法通过调整连接权重,使得输入信号能够更快地超过阈值,从而加快信息传输的速度。
最优传输算法的具体实现方法有很多种,其中一种常用的方法是梯度下降算法。
梯度下降算法通过计算目标函数的梯度,来确定连接权重的调整方向和步长。
具体而言,梯度下降算法通过迭代的方式,不断调整连接权重,直到找到使得目标函数最小化的最优解。
除了梯度下降算法,还有一些其他的最优传输算法,如牛顿法、共轭梯度法等。
这些算法在不同的问题和场景中有着不同的适用性和效果。
研究者们通过比较不同的最优传输算法,来选择最适合特定问题的算法。
最优传输算法在神经网络中的应用非常广泛。
它可以用来优化神经网络的结构和参数,以提高网络的学习能力和性能。
最优传输算法还可以用来解决神经网络中的一些实际问题,如图像识别、语音识别等。
尽管最优传输算法在神经网络中有着广泛的应用,但是它仍然存在一些挑战和限制。
首先,最优传输算法的计算复杂度较高,需要大量的计算资源和时间。
其次,最优传输算法的性能受到初始参数和目标函数选择的影响。
因此,在实际应用中,研究者们需要仔细选择最优传输算法,并进行参数调优和模型优化。
神经网络算法的代码实现详解

神经网络算法的代码实现详解神经网络算法是一种模拟人脑神经系统的计算模型,它通过构建多层神经元网络来实现对数据的学习与预测。
本文将对神经网络算法的代码实现进行详细解析,通过Python语言实现。
1.数据准备首先,我们需要准备训练数据和测试数据。
训练数据是用来训练神经网络的样本,通常包含一组输入数据和对应的输出数据。
测试数据则是用来测试训练后的神经网络模型的准确性。
2.构建神经网络结构接下来,我们需要构建神经网络的结构。
神经网络通常由多层神经元组成,每层神经元与上一层的神经元全连接。
我们可以使用Python的Numpy库来创建神经网络的结构,其中的矩阵运算能够高效地实现神经网络算法。
3.定义激活函数神经网络中,每个神经元都需要一个激活函数来对输入数据进行处理,并输出非线性的结果。
常用的激活函数有sigmoid函数、ReLU 函数等。
我们可以在构建神经网络结构时定义激活函数。
4.前向传播前向传播是指从输入层开始,逐层计算神经元的输出,直到输出层为止。
这一过程可以通过矩阵运算实现,其中每一层的输出都是上一层输出与权重矩阵的乘积再经过激活函数处理得到。
最终,输出层的输出即为神经网络的预测结果。
5.反向传播反向传播是指根据预测结果,逐层更新权重矩阵,以使得预测结果与实际结果尽可能接近。
反向传播算法通过计算误差项,逆向更新权重矩阵。
误差项的计算根据损失函数的不同而有所差异,常用的损失函数有均方误差、交叉熵等。
6.更新权重矩阵根据反向传播算法计算得到的误差项,我们可以更新每一层的权重矩阵。
更新的方法一般是使用梯度下降算法,通过计算每个权重的梯度值以及学习率,来逐步调整权重的取值。
7.训练神经网络模型在完成以上步骤后,我们可以开始训练神经网络模型。
训练过程即是重复进行前向传播和反向传播,以不断更新权重矩阵。
通过多次迭代,使得神经网络模型的预测结果逼近真实结果。
8.测试神经网络模型在训练完成后,我们需要使用测试数据对神经网络模型进行测试,以评估其性能。
神经网络算法原理

神经网络算法原理神经网络算法是一种模拟人脑神经元网络的计算模型,它可以用来识别模式、分类数据、进行预测等。
神经网络算法的原理主要包括神经元、权重、激活函数和反向传播等几个方面。
首先,神经元是神经网络的基本单元,它接收输入信号并产生输出。
神经元的输入经过加权求和后,通过激活函数进行非线性变换,最终输出到下一层神经元。
神经网络中的每个神经元都有一个权重,它决定了输入信号的重要性,通过不断调整权重,神经网络可以学习到输入和输出之间的映射关系。
其次,激活函数是神经元的输出函数,它将加权求和的结果映射到一个非线性的范围内。
常用的激活函数包括Sigmoid函数、ReLU函数、Tanh函数等,它们能够引入非线性因素,提高神经网络的表达能力。
另外,反向传播是神经网络学习的关键算法,它通过计算损失函数对权重的偏导数,然后利用梯度下降的方法不断调整权重,使得损失函数最小化。
通过反向传播算法,神经网络可以不断地优化权重,提高模型的准确性和泛化能力。
总的来说,神经网络算法原理包括神经元、权重、激活函数和反向传播等几个方面,它们共同作用于神经网络的学习和预测过程中。
神经网络算法通过不断地调整权重和优化模型参数,能够逐渐学习到输入和输出之间的映射关系,实现对复杂数据的分类和预测。
在实际应用中,神经网络算法已经被广泛应用于图像识别、语音识别、自然语言处理等领域,取得了许多成功的案例。
随着计算机硬件的不断进步和神经网络算法的不断优化,相信神经网络算法将在未来发挥越来越重要的作用,为人工智能的发展提供强大的支持。
总的来说,神经网络算法原理是一种模拟人脑神经元网络的计算模型,它通过神经元、权重、激活函数和反向传播等几个方面的原理,实现对复杂数据的分类和预测。
神经网络算法已经在许多领域取得了成功的应用,并且在人工智能发展中发挥着越来越重要的作用。
深度神经网络算法原理

深度神经网络算法原理
深度神经网络(Deep Neural Networks,简称DNN)是一种基
于人工神经网络的机器学习算法。
该算法的原理是通过构建具有多个隐藏层的神经网络模型,从而实现对复杂任务的高效学习和预测。
深度神经网络的原理可以概括为以下几个步骤:
1. 初始化神经网络:首先,会初始化神经网络的参数,包括权重和偏置。
这些参数是随机初始化的,以便网络可以从头开始学习。
2. 前向传播:在这一步骤中,输入数据会通过网络的每一层,并产生输出。
每一层的输出将作为下一层的输入,并在每一层中进行加权和激活函数操作。
3. 计算损失函数:通过比较网络的输出和实际标签,可以计算出一个损失函数。
损失函数表示了网络预测的准确程度,我们的目标是最小化损失函数。
4. 反向传播:这是深度神经网络的关键步骤。
通过使用梯度下降算法,网络会根据损失函数的导数来更新网络中的权重和偏置。
梯度下降算法通过沿着损失函数的最陡坡度方向更新参数,逐渐降低损失函数的值。
5. 重复训练:通过反复进行前向传播和反向传播步骤,直到达到一定的停止准则(如达到一定的训练轮数或达到所需的精
度),或者网络的性能满足要求。
总之,深度神经网络通过多个隐藏层的组合,可以对复杂的任务进行建模和学习。
它通过不断调整网络参数,使得网络能够逐渐提高预测准确度,并在训练数据集之外进行泛化。
这使得深度神经网络成为了许多机器学习和人工智能领域的核心算法。
神经网络算法原理

神经网络算法原理
神经网络算法是一种基于人工神经网络的模型训练和预测的算法。
该算法的原理是模拟人脑中的神经元之间的连接和信息传递过程,通过不同层次的神经元之间的连接权重来实现模式识别和学习能力。
神经网络算法的核心是多层的神经元网络,其中包括输入层、隐藏层和输出层。
每个神经元都有一个激活函数,负责将输入信号进行处理并输出给下一层的神经元。
算法的训练过程可以分为前向传播和反向传播两个阶段。
在前向传播过程中,输入数据被输入到网络中,并通过各层的神经元计算和激活函数的运算,最终得到输出结果。
在反向传播过程中,通过计算输出结果与实际结果之间的误差,将误差逆向传播给各层神经元,并根据误差调整每个连接的权重,以提高模型的准确性。
神经网络算法的训练依赖于大量的标记数据,即包含输入和对应输出的数据集。
通过多次迭代训练,模型可以逐渐调整连接权重,使得模型对输入数据的预测结果与实际输出尽可能接近。
这样,当输入新的未知数据时,神经网络模型能够预测出相应的输出结果。
神经网络算法的优点之一是其强大的模式识别能力和自动学习能力。
它能够从大量的样本中识别出重要的特征和模式,并据此进行预测。
此外,神经网络算法还可以处理非线性问题,因为它的每个神经元都可以通过激活函数进行非线性变换。
然而,神经网络算法也存在一些问题,比如计算复杂度较高、需要大量的训练样本和求解优化问题等。
此外,在训练过程中,网络模型可能会出现过拟合或欠拟合的问题,需要进行适当的调优和正则化处理。
总的来说,神经网络算法是一种强大的模型训练和预测方法,可用于解决各种复杂的问题,但需要合适的数据集和参数调整来取得良好的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络算法详解第0节、引例本文以Fisher的Iris数据集作为神经网络程序的测试数据集。
Iris数据集可以在/wiki/Iris_flower_data_set 找到。
这里简要介绍一下Iris数据集:有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。
不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。
我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。
一种解决方法是用已有的数据训练一个神经网络用作分类器。
如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。
第一节、神经网络基本原理1. 人工神经元( Artificial Neuron )模型人工神经元是神经网络的基本元素,其原理可以用下图表示:图1. 人工神经元模型图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。
则神经元i的输出与输入的关系表示为:图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。
若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:若用X表示输入向量,用W表示权重向量,即:X = [ x0 , x1 , x2 , ....... , xn ]则神经元的输出可以表示为向量相乘的形式:若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。
图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。
2. 常用激活函数激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。
(1) 线性函数 ( Liner Function )(2) 斜面函数 ( Ramp Function )(3) 阈值函数 ( Threshold Function )以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。
(4) S形函数 ( Sigmoid Function )该函数的导函数:(5) 双极S形函数该函数的导函数:S形函数与双极S形函数的图像如下:图3. S形函数与双极S形函数图像双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S 形函数值域是(0,1)。
由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。
(BP算法要求激活函数可导)3. 神经网络模型神经网络是由大量的神经元互联而构成的网络。
根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:(1) 前馈神经网络(Feedforward Neural Networks )前馈网络也称前向网络。
这种网络只在训练过程会有反馈信号,而在分类过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号,因此被称为前馈网络。
感知机( perceptron)与BP神经网络就属于前馈网络。
图4 中是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为隐含层,第三层称为输出层(输入单元不是神经元,因此图中有2层神经元)。
图4. 前馈神经网络对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,F1~F3表示神经网络3层的激活函数。
那么神经网络的第一层神经元的输出为:O1 = F1( XW1 )第二层的输出为:O2 = F2 ( F1( XW1 ) W2 )输出层的输出为:O3 = F3( F2 ( F1( XW1 ) W2 ) W3 )若激活函数F1~F3都选用线性函数,那么神经网络的输出O3将是输入X的线性函数。
因此,若要做高次函数的逼近就应该选用适当的非线性函数作为激活函数。
(2) 反馈神经网络(Feedback Neural Networks )反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。
典型的反馈型神经网络有:Elman网络和Hopfield网络。
图5. 反馈神经网络(3) 自组织网络 ( SOM ,Self-Organizing Neural Networks )自组织神经网络是一种无导师学习网络。
它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。
图6. 自组织网络4. 神经网络工作方式神经网络运作过程分为学习和工作两种状态。
(1)神经网络的学习状态网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。
学习算法分为有导师学习( Supervised Learning )与无导师学习( Unsupervised Learning )两类。
有导师学习算法将一组训练集( training set )送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。
有导师学习算法的主要步骤包括:1)从样本集合中取一个样本(Ai,Bi);2)计算网络的实际输出O;3)求D=Bi-O;4)根据D调整权矩阵W;5)对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。
BP算法就是一种出色的有导师学习算法。
无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。
Hebb学习律是一种经典的无导师学习算法。
(2) 神经网络的工作状态神经元间的连接权不变,神经网络作为分类器、预测器等使用。
下面简要介绍一下Hebb学习率与Delta学习规则。
(3) 无导师学习算法:Hebb学习率Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接权会被加强,否则被减弱。
为了理解Hebb算法,有必要简单介绍一下条件反射实验。
巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。
以后如果响铃但是不给食物,狗也会流口水。
图7. 巴甫洛夫的条件反射实验受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。
比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。
相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。
Hebb学习律可表示为:其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。
若yi与yj同时被激活,即yi与yj同时为正,那么Wij将增大。
若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。
(4) 有导师学习算法:Delta学习规则Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输出与期望输出差别来调整连接权,其数学表示如下:其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i 的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj 为0或-1(根据激活函数而定)。
a是表示学习速度的常数。
假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。
Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输入为正的连接的权重,增大所有输入为负的连接的权重。
反之,若神经元实际输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的连接的权重。
这个增大或减小的幅度就根据上面的式子来计算。
(5)有导师学习算法:BP算法采用BP学习算法的前馈型神经网络通常被称为BP网络。
图8. 三层BP神经网络结构BP网络具有很强的非线性映射能力,一个3层BP神经网络能够实现对任意非线性函数进行逼近(根据Kolrnogorov定理)。
一个典型的3层BP神经网络模型如图7所示。
BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。
第二节、神经网络实现1. 数据预处理在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。
下面简要介绍归一化处理的原理与方法。
(1) 什么是归一化?数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。
(2) 为什么要归一化处理?<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。
<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。
<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。
例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。
<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。
例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。
(3) 归一化算法一种简单而快速的归一化算法是线性转换算法。
线性转换算法常见有两种形式:<1>y = ( x - min )/( max - min )其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。
上式将数据归一化到[ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。
<2>y = 2 * ( x - min ) / ( max - min ) - 1这条公式将数据归一化到[ -1 , 1 ] 区间。
当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。
(4) Matlab数据归一化处理函数Matlab中归一化处理数据可以采用premnmx ,postmnmx ,tramnmx 这3个函数。
<1> premnmx语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)参数:pn:p矩阵按行归一化后的矩阵minp,maxp:p矩阵每一行的最小值,最大值tn:t矩阵按行归一化后的矩阵mint,maxt:t矩阵每一行的最小值,最大值作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。