变速器设计外文翻译

合集下载

变速器设计,中英文带翻译

变速器设计,中英文带翻译

原文:Transmission designAs we all know automobile engine to a certain speed can be achieved under the best conditions, when compared issued by the power, fuel economy is relatively good. Therefore, we hope that the engine is always in the best of conditions to work under. However, the use of motor vehicles need to have different speeds, thus creating a conflict. Transmission through this conflict to resolve.Automotive Transmission role sum up in one sentence, called variable speed twisting, twisting or slow down the growth rate by increasing torsional. Why can slow down by twisting, and the growth rate but also by twisting? For the same engine power output, power can be expressed as N = WT, where w is the angular velocity of rotation. When N fixed, w and T is inversely proportional to the. Therefore, the growth rate will reduce twisting, twisting slowdown will increase. Automotive Transmission speed gear based on the principle of variable twisted into various stalls of different transmission ratio corresponding to adapt to different operational conditions.General to set up a manual gearbox input shaft, intermediate shaft and output shaft, also known as the three-axis, as well as Daodang axis. Three-axis is the main transmission structure, input shaft speed is the speed of the engine, the output shaft speed is the intermediate shaft and output shaft gear meshing between different from the speed. Different gears are different transmission ratio, and will have a different speed. For example Zhengzhou richan ZN6481W2G manual transmission car-SUV, its transmission ratio are: 1 File 3.704:1; stalls 2.202:1; stalls 1.414:1; stalls 1:1 5 stalls (speeding file) 0.802: 1.When drivers choose a launch vehicle stalls, Plectrum will be 1 / 2 file synchronization engagement with a back stall gear and output shaft lock it, the power input shaft, intermediate shaft and output shaft gear of a stall, a stall the output shaft gear driven, and the output shaft power will be transmitted to the drive shaft (red arrow). A typical stall Biansuchilun transmission ratio is 3:1, that is to say three lapsto the input shaft and output shaft to a circle.When the growth rate of car drivers choose two stalls, Plectrum will be 1 / 2-file synchronization and file a joint separation after 2 stall and lock the output shaft gear, power transmission line similar, the difference is that the output shaft gear of a stall 2 stall replaced by the output shaft gear driven. 2 stall Biansuchilun typical transmission ratio is 2.2:1, 2.2 laps to the input shaft and output shaft to a circle than a stall speed increase, lower torque.When refueling vehicle drivers growth stalls option 3, Plectrum to 1 / 2 back to the free file-synchronization position, and also allows the 3 / 4 file synchronization Mobile stall until 3 in the output shaft gear lock, power can be into the shaft axis - intermediate shaft - the output shaft of the three stalls Biansuchilun, led through three stalls Biansuchilun output shaft. 3 stalls typical transmission ratio is 1.7:1, 1.7 laps to the input shaft and output shaft to a circle is further growth.When car drivers Option 4 refueling growth stalls, Plectrum will be 3 / 4 from the 3-file synchronization stall gear directly with the input shaft gear joint initiative, and power transmission directly from the input shaft to the output shaft, the transmission ratio at 1:1, that the input shaft and output shaft speed the same. The driving force without intermediate shaft, also known as direct file, the file transmission than the maximum transmission efficiency. Most cars run-time files are used directly to achieve the best fuel economy.Shift into the first interval when, in a free transmission when Biansuchilun output shaft is not locked in, they cannot rotate the output shaft driven, not power output.General automotive manual transmission than the main 1-4 stalls, usually the first designers to determine the minimum (one stall) and maximum (4 files) transmission ratio, the middle stall drive by geometric progression than the general distribution. In addition, there are stalls Daodang and speeding, speeding file is also known as the five stalls.When the car to accelerate to more than car drivers with the choice of five stalls, and a typical five-transmission ratio is 0.87:1, which is driven by a pinion gear, thegear when the initiative to 0.87 zone, passive gear have been transferred to a circle of the End.Dao Dang, the opposite direction to the output shaft rotation. If one pair of meshing gears when we reverse rotation, with a middle gear, it will become the same to the rotation. Use of this principle, we should add a gear Daodang the "media" will be rotational direction reversed, it will have a Daodang axis. Daodang installed in the transmission shaft independent crust, and the intermediate shaft parallel axis gear with the intermediate shaft and output shaft gear meshing gears, will be contrary to the output shaft.Daodang usually used for the synchronization control also joins five stalls, stalls and Daodang 5 position in the same side. As a middle gear, the general transmission Daodang transmission ratio greater than 1 file transmission ratio, by twisting, steep slope with some vehicles encountered on the progress stalls falters with a Daodang boost.Ride from the driver of the considerations, better transmission stall, stall adjacent stall more than the transmission changes the ratio of small, and easy to shift smoothly. However, the short comings of the stalls is more transmission structure is complicated, bulky, light vehicle transmission is generally 4-5 stalls. At the same time, transmission ratio is not integral, but with all of the decimal point, it is because of the gear teeth meshing is not caused by the whole multiples of two gear teeth can lead to the whole multiples of two meshing gears of uneven wear, making the tooth surface quality have a greater difference.Manual transmission and synchronizerManual transmission is the most common transmission, or MT. Its basic structure sum up in one sentence, is a two-axle shaft, where input shaft, the shaft axis and intermediate shaft, which constitute the main body of the transmission and, of course, a Daodang axis. Manual transmission known as manual gear transmission, which can be in the axial sliding gears, the gears meshing different variable speed reached twisting purpose. Typical manual transmission structure and principles are as follows.Input shaft also said that the first axis, and its front-end spline driven directlywith the clutch disc sets with the spline , by the transfer of torque from the engine. The first axis of the intermediate shaft and gears meshing gears often, as long as the shaft axis to a turn, the intermediate shaft and gear also will be rotating. Vice also said intermediate shaft axis, the axis-even more than the size gear. Also known as the second output shaft axis, the axis of various sets of gear stall progress can be manipulated at any time in the role of the device and the corresponding intermediate shaft gear meshing, thus changing its speed and torque. With the end of the output shaft spline associated with the drive shaft through the drive shaft torque transmitted to the drive axle reducer.Thus, progress stalls drive transmission path is: input shaft gear often rodents - often rodents intermediate shaft gear - corresponding intermediate shaft gear - the second axis corresponding gear. Reversing the gear shaft can be manipulated by the device pick in the axis movement, and the intermediate shaft and output shaft gear meshing gears, to the contrary to the direction of rotation output.Most cars have five stalls and a Daodang forward, a certain degree of each stall transmission ratio, the majority of stalls transmission ratio greater than 1, 4 file transmission ratio of 1, known as direct stalls, and transmission ratio is less than 1 No.5 stall called accelerated stall. Free at the output shaft gear in a position of non-engagement, unacceptable power transmission.The transmission input shaft and output shaft rotational speed to their own, transform a stall when there is a "synchronous". Two different rotational speed gear meshing force will impact the collision occurred, damage gear. Therefore, the old transmission shift to a "feet-off" approach, or stall on the location of the free stay for a while by stalls in the free position refueling doors, in order to reduce the speed differential gear. However, this operation is relatively more complicated and difficult to grasp accurate. So designers create a "synchronized," and allows synchronization through the meshing of gears to be consistent speed and smooth meshing.At present Synchronous Transmission is based on the synchronization of inertia, mainly from joint sets, synchronous lock ring, and so on, it is characterized by friction on the role of synchronization. Splice sets Genlock engagement ring gear and the ringgear when it had Chamfer (Lock angle), Genlock within the cone ring gear engagement with the question of cone ring gear contact friction. Lock and cone angle has been made in the design of an appropriate choice to be made friction cone of the teeth meshing with the ring gear quickly sets pace at the same time will have a Lock role and to prevent the gears meshing in sync before. When synchronization lock cone ring gear engagement with the question of cone ring gear after contact in the effects of friction torque gear speed quickly lower (or higher) with the same speed synchronous lock ring, the two synchronous rotation of the gear Genlock Central zero speed, thus moment of inertia also disappear, then in force under the impetus of engagement sets unhindered and synchronization lock ring gear engagement, and further engagement with the question of gear engagement and the completion Gear Shift Process.The automatic gearboxThe automatic gearbox chooses to block the pole the equal to moving the stick shift of the gearbox, having generally below several blocks:P( parking), R( pour to block), N( get empty to block), D( go forward), S( or2, namely for 2 block soon), L.( or1, namely for 1 block soon)This several an usage for blocking a right usages coming driver the automatic gearbox is automotive of person to say particularly important, underneath let us very much familiar with once automatic gearbox eachly blockings main theme.The usage of the P ( the parking blocks)The launches the luck turns as long as choose to block the pole in driving the position, automatic gearbox car run about very easily.But park, choose to block the pole must pull into of P, from but pass the internal parking system in gearbox moves the device will output the stalk lock lives, combining to tense the hand system move, preventing the car ambulation.The usage of the R( pour to block)R a control for is pouring blocking, using inside wanting slicing recording, automatic gearbox car unlike moving gearbox car so can using half moving, so while reversing the car wanting special attention accelerating pedal.The usage of the N( get empty to block)The N is equal to get empty to block, can while starting or hour of trailer usage.At wait for the signal or block up the car will often often choose to block the pole keeps in the of D, trampling at the same time the next system move.If time is very short, do like this is an admission of, but if stop the time long time had better change into of N, combine to tense the hand system moves.Because choose to block the pole in driving the position, the automatic gearbox car has generally and all to drive the trend faintly, long hours trample the system move same as a deterrent this kind of trend, make gearbox oil gone up, the oil liquid changes in character easily.Particularly in the air condition machine work, launch the soon higher circumstance in machine bottom more disadvantageous.Some pilots for the sake of stanza oil, at made good time or go down slope will choose to block the pole pull the of N skids, this burn the bad gearbox very easily, launching the machine to revolves soon in the however because the gearbox outputs at this time the stalk turns soon very high,, the oil pump provides the oil shortage, lubricating the condition worsen, burn the bad gearbox easily.The usage of the D( go forward to block)Will choose to block when is normal to drive the pole put in the of D, car can at 1 ~4 block( or 3 block) its change to block automatically.The of D drives the position most in common usely. What demand control is: Because the automatic gearbox is soon high and low with car to come to make sure to block according to the accelerator size a, so accelerate the pedal operation method is different, changing to block the hour of the car is soon too not same alike.If start hour quick accelerate the pedal tramples the bottom, rising to block the night, accelerating the ability is strong, arriving certain car soon behind, then will accelerate the pedal loosen to open very quickly, car can rise to block immediately, launch like this the machine voice is small, comfortable good.The another characteristics of the D is a compulsory low blocking, easy to high speed the hour overtakes a car, will accelerate quickly in of D drove the pedal trample after all, connect the compulsory low fend off the pass and then can reduce to block automatically, the car accelerates very quickly, after overtaking a car loosen to openthe pedal of acceleration to can rise to block automatically again.The usage of the S, of L low the usage that blockThe automatic gearbox in in is placed in the low blocking the scope on of S or of Ls, can usage under an etc. circumstance.It change to can make use of to launch well into of S or of Ls the mechanism move, avoiding the car wheel system move the machine over hot, cause the system move the effect descent while going down slope.But change into from the of D of S or of L, car soon can't higher than rise to block the car homologously soon, otherwise strong vibration in opportunity to launch, make gearbox oil hoicked, even will damage the gearbox.The is another at rain fog weather hour, if the road adheres to the term bad, can change into a position for or of L, fixing at somely first lowly blocking driving, doing not use can automatically changing blocking, in order to prevent the car beats slippery.Must keep firmly in mind at the same time, beat the slippery hour can will choose to block the pole pushes into a motive for, cutting off launching machine, toing guarantee a car the safety.汽车变速器设计----------英文文献翻译我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。

英文翻译外文文献翻译33变速器概述

英文翻译外文文献翻译33变速器概述

附录附录A 英文文献原文Transmission OverviewTransmission gearbox's function the engine's output rotational speed is high, the maximum work rate and the maximum torque appears in certain rotational speed area. In order to display engine's optimum performance, must have a set of variable speed gear, is coordinated the engine the rotational speed and wheel's actual moving velocity. The transmission gearbox may in the automobile travel process, has the different gear ratio between the engine and the wheel, through shifts gears may cause the engine work under its best power performance condition. Transmission gearbox's trend of development is more and more complex, the automaticity is also getting higher and higher, the automatic transmission will be future mainstream.Automotive Transmission's mission is to transfer power, and in the process of dynamic change in the transmission gear ratio in order to adjust or change the characteristics of the engine, at the same time through the transmission to adapt to different driving requirements. This shows that the transmission lines in the automotive transmission plays a crucial role. With the rapid development of science and technology,people's car is getting higher and higher performance requirements, vehicle performance, life, energy consumption, such as vibration and noise transmission depends largely on the performance, it is necessary to attach importance to the study of transmission.Transmission gearbox's pattern the automobile automatic transmission common to have three patterns: Respectively is hydraulic automatic transmission gearbox (AT), machinery stepless automatic transmission (CVT), electrically controlled machinery automatic transmission (AMT). At present what applies is most widespread is, AT becomes automatic transmission's pronoun nearly.AT is by the fluid strength torque converter, the planet gear and the hydraulic control system is composed, combines the way through the fluid strength transmission and the gear to realize the speed change bending moment. And the fluid strength torque converter is the most important part, it by components and so on pump pulley, turbine wheel and guide pulley is composed, has at the same time the transmission torque and the meeting and parting function.And AT compare, CVT has omitted complex and the unwieldy gear combination variable transmission, but is two groups of band pulleys carries on the variable transmission. Through changes the driving gear and the driven wheel transmission belt's contact radius carries on thespeed change. Because has cancelled the gear drive, therefore its velocity ratio may change at will, the speed change is smoother, has not shifted gears kicks the feeling.AMT and the hydraulic automatic transmission gearbox (AT) is the having steps automatic transmission equally. It in the ordinary manual transmission gearbox's foundation, through installs the electrically operated installment which the microcomputer controls, the substitution originally coupling's separation which, the joint and the transmission gearbox completes by the manual control elects to keep off, to shift gears the movement, realizes fluid drive.Manual transmission gear mainly uses the principle of deceleration. Transmission within the group have different transmission ratio gear pair, and the car at the time of shift work, that is, through the manipulation of institutions so that the different transmission gear pair work. Manual transmission, also known as manual gear transmission, with axial sliding in the gears, the meshing gears through different speed to achieve the purpose of torque variation. Manual shift transmission can operate in full compliance with the will of the driver, and the simple structure, the failure rate is relatively low, value for money.Automatic transmission is based on speed and load (throttle pedal travel) for two-parameter control gear in accordance with the above twoparameters to automatically take-off and landing. Automatic transmission and manual transmission in common, that is, there are two-stage transmission, automatic transmission can only speed the pace to automatically shift, manual transmission can be eliminated, "setback" of the shift feel.Automatic transmission is a torque converter, planetary gears and hydraulic manipulation of bodies, through the hydraulic transmission and gear combination to achieve the purpose of variable-speed torque variation.Also known as CVT-type continuously variable CVT. This transmission and automatic transmission gear generally the biggest difference is that it eliminates the need of complex and cumbersome combination of variable-speed gear transmission, and only two groups to carry out variable-speed drive pulley.CVT transmission than the traditional structure of simple, smaller and it is not the number of manual gear transmission, no automatic transmission planetary gear complex group, mainly rely on the driving wheel, the driven wheel and the transmission ratio brought about by the realization of non-class change.Widely used in automotive internal combustion engine as a power source, the torque and speed range is very small, and complexconditions require the use of motor vehicles and the speed of the driving force in the considerable changes in the scope. To resolve this contradiction, in the transmission system to set up the transmission to change transmission ratio, the expansion of the driving wheel torque and speed range in order to adapt to constantly changing traffic conditions, such as start, acceleration, climbing and so on, while the engine in the most favorable conditions to work under the scope; in the same direction of rotation of the engine under the premise of the automobile can be driven back; the use of neutral, interruption of power transmission, in order to be able to start the engine, idle speed, and ease of transmission or power shift . Transmission is designed to meet the above requirements, so that the conditions in a particular vehicle stability.In addition to transmission can be used to meet certain requirements, but also to ensure that it and the car can have a good match, and can improve the car's power and economy to ensure that the engine in a favorable condition to increase the scope of the work of the use of motor vehicles life, reduce energy consumption, reduce noise, such as the use of motor vehicles.Today the world's major car companies CVT are very active in the study. The near future, with electronic control technology to furtherimprove, electronically controlled Continuously Variable Transmission-type is expected to be a wide range of development and application.附录B 文献翻译变速器概述发动机的输出转速非常高,最大功率及最大扭矩在一定的转速区出现。

汽车手动变速箱外文及其部分翻译

汽车手动变速箱外文及其部分翻译

MANUAL GEARBOXES9.1 MANUAL GEARBOX CLASSIFICATIONGearboxes are normally classified according to the number of toothed wheelcouples (stages) involved in the transmission of motion at a given speed; in thecase of manual vehicle transmissions, the number to be taken into account isthat of the forward speeds only, without consideration of the final gear, even if included in the gearbox.Therefore there are:•Single stage gearboxes•Dual stage or countershaft gearboxes•Multi stage gearboxesFigure 9.1 sho ws the three configurations for a four speed gearbox.It is useful to comment on the generally adopted rules of these schemes.Each wheel is represented by a segment whose length is proportional to the pitch diameter of the gear; the segment is ended by horizontal strokes, representingthe tooth width. If the segment is interrupted where crossing the shaft, thegear wheel is idle; the opposite occurs if the segment crosses the line of theshaft without interruption. Then the wheel rotates with the shaft. Hubs are represented according to the same rules, while sleeves are represented with apair of horizontal strokes. Arrows show the input and output shafts.Single stage gearboxes are primarily applied to front wheel driven vehicles,because in these it is useful that the input and the output shaft are offset; inG. Genta and L. Morello, The Automotive Chassis, Volume 1: Components Design, 425 Mechanical Engineering Series,c Springer Science+Business Media B.V. 2009426 9. MANUAL GEARBOXES FIGURE 9.1. Schemes for a four speed gearbox shown in three different configurations: a: single stage, b: double stage and c: triple stage.conventional vehicles, on the other hand, it is better that input and output shaftsare aligned.This is why rear wheel driven vehicles usually adopt a double stage gearbox.The multi-stage configuration is sometime adopted on front wheel drivenvehicles with transversal engine, because the transversal length of the gearboxcan be shortened; it is used when the number of speeds or the width of the gearsdo not allow a single stage transmission to be used.It should be noted that on a front wheel driven vehicle with transversalengine, having decided on the value of the front track and the size of the tire,the length of the gearbox has a direct impact on the maximum steering angle ofthe wheel and therefore on the minimum turning radius.The positive result on the transversal dimension of multi-stage gearboxes isoffset by higher mechanical losses, due to the increased number of engaged gear wheels.It should be noted that in triple stage gearboxes, shown in the picture, theaxes of the three shafts do not lie in the same plane, as the scheme seems toshow. In a lateral view, the outline of the three shafts should be represented asthe vertices of a triangle; this lay-out reduces the transversal dimension of the gearbox. In this case and others, as we will show later, the drawing is representedby turning the plane of the input shaft and of the counter shaft on the plane ofthe counter shaft and of the output shaft.Gear trains used in reverse speed are classified separately. The inversion ofspeed is achieved by using an additional gear. As a matter of fact, in a train ofthree gears, the output speed has the same direction as the input speed, whilethe other trains of two gears only have an output speed in the opposite direction;the added gear is usually called idler.The main configurations are reported in Fig. 9.2.In scheme a, an added countershaft shows a sliding idler, which can matchtwo close gears that are not in contact, as, for example, the input gear of thefirst speed and the output gear of the second speed. It should be noted that, inthis scheme, the drawing does not preserve the actual dimension of the parts.9.1 Manual gearbox classification 427FIGURE 9.2. Schemes used for reverse speed; such schemes fit every type of gearboxlay-out.Scheme b shows instead two sliding idlers, rotating together; this arrange-ment offers additional freedom in obtaining a given transmission ratio. The coun-tershaft is offset from the drawing plane; arrows show the gear wheels that matchwhen the reverse speed is engaged.Scheme c is similar to a in relation to the idler; it pairs an added specificwheel on the output shaft with a gear wheel cut on the shifting sleeve of the firs tand second speed, when it is in idle position.Configuration d shows a dedicated pair of gears, with a fixed idler and ashifting sleeve.The following are the advantages and disadvantages of the configurationsshown in the figure.•Schemes a, b and c are simpler, but preclude the application of synchro-nizers (because couples are not always engaged), nor do they allow the useof helical gears (because wheels must be shifted by sliding).•Scheme d is more complex but can include a synchronizer and can adopthelical gears.•Schemes a, b and c do not increase gearbox length.428 9. MANUAL GEARBOXES9.2 MECHANICAL EFFICIENCYThe mechanical efficiency of an automotive gear wheel transmission is high com-pared to other mechanisms performing the same function; indeed, the value ofthis efficiency should not be neglected when calculating dynamic performanceand fuel consumption. The continuous effort of to limit fuel consumption justi-fies the care of transmission designers in reducing mechanical losses.Total transmission losses are conveyed up by terms that are both dependentand independent of the processed power; the primary terms are:•Gearing losses; these are generated by friction between engaging teeth(power dependent) and by the friction of wheels rotating in air and oil(power independent).•Bearing losses; these are generated by the extension of the contact area ofrolling bodies and by their deformation (partly dependent on and partlyindependent of power) and by their rotation in the air and oil (powerindependent).•Sealing losses; they are generated by friction between seals and rotatingshafts and are power independent.•Lubrication losses; these are generated by the lubrication pump, if present,and are power independent.All these losses depend on the rotational speed of parts in contact and,therefore, on engine speed and selected transmission ratio.Table 9.1 reports the values of mechanical efficiency to be adopted in calcu-lations considering wide open throttle conditions; these values consider a pair ofgearing wheels or a complete transmission with splash lubrication; in the sametable we can see also the efficiency of a complete powershift epicycloidal auto-matic transmission and a steel belt continuously variable transmission. For thetwo last transmissions, the torque converter must be considered as locked-up.TABLE 9.1. Mechanical efficiency of different transmission mechanisms.Mechanism type Efficiency (%)Complete manual gearboxwith splash lubrication 92–97Complete automatic transmission(ep. gears) 90–95Complete automatic gearbox(steel belt; without press. contr.) 70–80Complete automatic gearbox(steel belt; with press. contr.) 80–86Pair of cyl. gears 99.0–99.5Pair of bevel gears 90–939.2 Mechanical efficiency 429FIGURE 9.3. Contributions to total friction loss of a single stage gearbox designed for300 Nm as function of input speed.It is more correct to reference power loss measurement as a function ofrotational input speed rather than efficiency. Figure 9.3 shows the example ofa double stage transmission, in fourth speed, at maximum power; the differentcontributions to the total are shown.This kind of measurement is made by disassembling the gearbox step bystep, thus eliminating the related loss.In the first step all synchronizer rings are removed, leaving the synchronizerhubs only; mechanical losses of non-engaged synchronizers are, therefore, mea-surable. The loss is due to the relative speed of non-engaged lubricated conicalsurfaces; the value of this loss depends, obviously, on speed and the selectedtransmission ratio.In the second step all rotating seals are removed.In the third step the lubrication oil is removed, and therefore, the bulk ofthe lubrication losses is eliminated; some oil must remain in order to leave thecontact between teeth unaffected.By removing those gear wheels not involved in power transmission, theirmechanical losses are now measurable.The rest of the loss is due to bearings; the previous removal of parts canaffect this value.A more exhaustive approach consists in measuring the complete efficiencymap; the efficiency can be represented as the third coordinate of a surface, wherethe other two coordinates are input speed and engine torque. Efficiency calcu-lations can be made by comparing input and output torque of a working trans-mission.Such map can show how efficiency reaches an almost constant value at amodest value of the input torque; it must not be forgotten that standard fuelconsumption evaluation cycles involve quite modest values of torque and there-fore imply values of transmission efficiency that are changing with torque.Figure 9.4 shows a qualitative cross section of the aforesaid map, cut atconstant engine speed. It should be noted that efficiency is also zero at input430 9. MANUAL GEARBOXESFIGURE 9.4. Mechanical efficiency map, as a function of input torque at constantengine speed; the dotted line represents a reasonable approximation of this curve, to beused on mathematical models for the prediction of performance and fuel consumption.torque values slightly greater than zero; as a matter of fact, friction implies acertain minimum value of input torque, below which motion is impossible.A good approximation to represent mechanical efficiency can be made usingthe dotted broken line as an interpolation of the real curve.9.3 MANUAL AUTOMOBILE GEARBOXES9.3.1 Adopted schemesIn manual gearboxes, changing speed and engaging and disengaging the clutchare performed by driver force only.This kind of gearbox is made with helical gears and each speed has a syn-chronizer; some gearboxes do not use show the synchronizer for reverse speed,particularly those in economy minicars.We previously discussed a first classification; additional information is thespeed number, usually between four and six.Single stage gearboxes are used in trans-axles; they are applied, with someexceptions, to front wheel driven cars with front engine and rear driven cars withrear engine; this is true with longitudinal and transversal engines.In all these situations the final drive is included in the gearbox, which istherefore also called transmission.Countershaft double stage gearboxes are used in conventionally driven cars,where the engine is mounted longitudinally in the front and the driving axle isthe rear axle. If the gearbox is mounted on the rear axle, in order to improve theweight distribution, the final drive could be included in the gearbox.9.3 Manual automobile gearboxes 431By multi-stage transmissions, some gear wheels could be used for differentspeeds. The number of gearing wheels could increase at some speeds; this nor-mally occurs at low speeds, because the less frequent use of these speeds reducesthe penalty of lower mechanical efficiency on fuel consumption.Cost and weight increases are justified by transmission length reduction,sometimes necessary on transversal engines with large displacement and morethan four cylinders.In all these gearboxes synchronizers are coupled to adjacent speeds (e.g.:first with second, third with fourth, etc.) in order to reduce overall length andto shift the two gears with the same selector rod.We define as the selection plane of a shift stick (almost parallel to the xzcoordin ate body reference system plane for shift lever on vehicle floor) the planeon which the lever knob must move in order to select two close speed pairs. Forinstance, for a manual gearbox following many existing schemes, first, second,third, fourth and fifth speed are organized on three different selection planes; thereverse speed can have a dedicated plane or share its plane with the fifth speed.Figure 9.5 shows a typical example of a five speed single stage gearbox. Thefirst speed wheels are close to a bearin g, in order to limit shaft deflection.In this gearbox the total number of tooth wheels pairs is the same as forthe double stage transmission shown in Fig. 9.6.While in the first gearbox there are only two gearing wheels for each speed,in the second there are three gearing wheels for the first four speeds and noneFIGURE 9.5. Scheme for a five speed single stage transmission, suitable for front wheeldrive with transversal engine.432 9. MANUAL GEARBOXESFIGURE 9.6. Scheme of an on-line double stage gearbox for a conventional lay-out.for the fifth. This property is produced by the presence of the so called constantgear wheels (the first gear pair at the left) that move the input wheels of thefirst four speeds; the fifth speed is a direct drive because the two p arts of theupper shaft are joined together.The single stage gearbox in Fig. 9.5 shows the fifth speed wheel pair posi-tioned beyond the bearing, witness to the upgrading of an existing four speedtransmission; in this case the fifth speed has a dedicated selection plane.The double stage gearbox in Fig. 9.7 is organized in a completely differentway but also shows the first speed pair of wheels close to the bearing. The directdrive is dedicated to the highest speed; the fifth speed shows a dedicated selectio nplane.Six speed double stage gearboxes do not show conceptual changes in com-parison with the previous examples; synchronizers are organized to leave firstand second, third and fourth, fifth and sixth speeds on the same selection plane.As already seen, the multistage configuration shown in Fig. 9.7 allows areasonable reduction of the length of the gearbox. In this scheme, only first andsecond speeds benefit from the second countershaft; power enters the counter-shaft through a constant gear pair of whee ls and flows to the output shaft at areduced speed. Third, fourth and fifth speed have a single stage arrangement.Reverse speed is obtained with a conventional idling wheel.9.3.2 Practical examplesFour speed gearboxes represented the most widely distributed solution in Europeuntil the 1970s, with some economy cars having only three speeds.9.3 Manual automobile gearboxes 433FIGURE 9.7. Scheme of a triple stage five speed gearbox, suitable for front wheel drivencar with transversal engine.With the increase in installed power, the improvement in aerodynamic per-formance and increasing attention to fuel consumption, it became necessary toincrease the transmission ratio of the last speed, having the first speed remain atthe same values; as a matter of fact car weight continued to increase and engineminimum speed did not change significantly.To achieve satisfactory performance all manufacturers developed five speedgearboxes; this solution is now standard, but many examples of six speed gear-boxes are available on the market, not limited to sports cars.Figure 9.8 shows an example of a six speed double stage transmission withthe fifth in direct drive; here the first and second pair of wheels are close to thebearing.This rule is not generally accepted; on one hand having the most stressedpairs of wheels close to the bearing allows a shaft weight containment. On theother hand, having the most frequently used pairs of wheels close to the bearingreduces the noise due to shaft deflection.Synchronizers of fourth and third speed are mounted on the countershaft;this lay-out reduces the work of synchronization, improving shifting quality by anamount proportional to the dimension of the synchronizing rings. Synchronizersof first and second gear on the output shaft are, because of their diameter, larger434 9. MANUAL GEARBOXESFIGURE 9.8. Double stage six speed gearbox (GETRAG).than those of the corresponding gear; the penalty of the synchronization work ispaid by the adoption of a double ring synchronizer.Synchronizers on the countershaft offer a further advantage: In idle positionthe gears are stopped and produce no rattle; this subject will be studied later on.9.3 Manual automobile gearboxes 435Figure 9.9 introduces the example of a single stage gearbox for a frontlongitudinal engine. The input upper shaft must jump over the differential, whichis set between the engine and the wheels. The increased length of the shaftssuggested adopting a hollow section. Because of this length the box is dividedinto two sections; on the joint between the two sections of the box additionalbearings are provided to reduce the shaft deflection.The input shaft features a ball bearing close to the engine and three otherneedle bearings that manage solely the radial loads. The output shaft has twotapered roller bearings on the differential side and a roller bearing on the oppositeside. This choice is justified by the relevant axial thrust emerging from the bevelgears.The first and second speed synchronizers are on the output shaft a nd featurea double ring.The reverse speed gears are placed immediately after the joint (the idlergear is not visible) and have a synchronized shift. Remaining synchronizers areset in the second section of the box on the input shaft. The output shaft endswith the bevel pinion, a part of the final ratio.It should be noted that the gears of the first, second and reverse speeds aredirectly cut on the input shaft, in order to reduce overall dimensions.Most contemporary cars use a front wheel drive with transversal engine; thenumber of gearboxes with integral helical final ratio is, therefore, dominant.In these gearboxes geared pairs are mounted from the first to the last speed,starting from the engine side. An example of this architecture is given in Fig. 9.10.Like many other transmissions created with only four speeds, it shows thefifth speed segregated outside of the aluminium box and enclosed by a thin steelsheet cover; this placement is to limit the transverse dimension of the powertrain, in the area where there is potential interference with the left wheel in thecompletely steered position.This solution is questionable as far as the total length is concerned but showssome advantage in the reduction of the span between the bearings. Each bearingis of the ball type; on the side opposite to the engine the external ring of thebearing can move axially, to compensate for thermal differential displacements.One of the toothed wheels of the reverse speed is cut on the first and secondshifting sleeve.The casing is open on both sides; one of these is the rest of one of thebearings of the final drive. A large cover closes the casing on t he engine side and,in the meantime, provides installation for the second bearing of the final driveand the space for the clutch mechanism; it is also used to join the gearbox tothe engine.In this gearbox synchronizers are placed partly on the input shaft and partlyon the output shaft.Figure 9.11 shows a drawing of a more modern six speed gearbox, in whichit was possible to install all the gears in a conventional single stage arrangement,thanks to the moderate value of the rated torque.436 9. MANUAL GEARBOXESFIGURE 9.9. Single stage six speed gearbox for longitudinal front engine (Audi).9.4 Manual gearboxes for industrial vehicles 437FIGURE 9.10. Five speed transmission for a transversal front engine (FIAT).Gears are arranged from the first to the sixth, starting from the engineside; as we have already said this arrangement is demanded by the objectiveof minimizing shaft deflection. Only the synchronizers of first and second speedfound no place on the input shaft; they are of the double ring type, as for thefirst speed.The reverse speed is synchronized and benefits of a countershaft not shownin this drawing.9.4 MANUAL GEARBOXES FOR INDUSTRIALVEHICLES9.4.1 Lay-out schemesThe gearboxes we are going to examine in this section are suitable for vehicles ofmore than about 4 t of total weight; lighter vehicles, usually called commercialvehicles, adopt gearboxes that are derived from automobile production, as notedin the previous section.438 9. MANUAL GEARBOXESFIGURE 9.11. Six speed transmission for a transversal front engine (FIAT).Gearboxes used in industrial vehicles also feature synchronizers; they can beshifted directly, as in a conventional manual transmission, or indirectly with theassistance of servomechanisms. Non-synchronized gearboxes are sometimes usedon long haul trucks, because of their robustness. Assisted shifting mechanismsare widespread because of the easy availability of power media. Automatic orsemi-automatic transmis sions are also used, the first type especially in buses.For gearboxes with four up to six speeds, the double stage countershaftarchitecture represents a standard; the scheme is the same as seen before.The constant gear couple is used for all speeds but the highest. Also notableis that the lowest speed wheels are close to the bearings.As shown in the drawings of Fig. 9.12, the highest speed can be obtainedeither in direct drive (scheme b) or with a pair of gears (scheme a); in this lastcase the direct drive is used for the speed before the last: these architectures arecalled direct drive and overdrive.In the figure, only the last and the first before the last speed are represented.The choice between the two alternatives can be justified by the differentvehicle mission; virtually the same gearbox can be used on different vehicleswith different frequently used speeds (a truck and a bus for example).9.4 Manual gearboxes for industrial vehicles 439FIGURE 9.12. Alternative constant gear schemes with last or first before the last speedin direct drive.Sometime the constant gear is set on the output shaft, after the differentspeed gears; this configuration offers the following advantages:•Reduction of the work of synchronization, because of the smaller gear di-mension at the same torque and total transmission ratio•Less stress on the input shaft and countershaftOn the other hand, the following disadvantages emerge:•Bearings rotate faster.•Constant gear wheels are more highly stressed.This applies for single range transmissions.Multiple range transmissions feature, in addition to the main gearbox, othergearboxes that multiply the number of speeds of the main gearbox by the numberof their speeds. With this architecture the total number of gear pairs might bereduced, for a given number of speeds, and, sometime the use of the gearshiftlever can be simpler.This arrangement is used when more than six speeds are necessary. A multi-ple range transmission is therefore made out of a combination of different coun-tershaft gearboxes, single range gearboxes or epicycloidal gearboxes.Each added element is called a range changer if it is conceived as beingcapable of using the main gearbox speeds in sequence, in two completely non-overlapping series of vehicle speeds; for example, if the main gearbox has fourspeeds, the first speed in the high range is faster than the fourth speed in thelow range.The element is called a splitter if it is intended to create speeds that areintermediate to those of the main gearbox; in this case, for example the third440 9. MANUAL GEARBOXESFIGURE 9.13. Scheme of a 16 speed gearbox for industrial vehicles; it is made with afour gear main gearbox, a double speed splitter and a double speed range changer withdirect drive.speed in the high range is faster than the third speed in the low range, but slowerthan the fourth speed in the low range.We call the gearbox with the highest number of speeds the main gearbox;the splitter and the range changer will be set in series before and after the maingearbox.Figure 9.13 shows the scheme of a gearbox featuring a splitter and a rangechanger. The splitter is made out of a pair of wheels that work as two differentconstant gears for the main gearbox. The countershaft can therefore be movedat two different speeds, according to the position of the splitter unit. Becausethe main gearbox has four speeds, this splitter unit can create a total of eightspeeds, one of them being in direct drive.At the output shaft of this assembly, there is a range changer unit madeas a two speed double stage gearbox with direct drive; this unit multiplies bytwo the total number of obtainable speeds. The range changer is qualified by the significant difference between the two obtainable speeds.The range changer can be made with a countershaft gearbox or an epicy-cloidal gearbox with direct drive; the advantage in the latter case is the possi-bility of an easier automatic actuation, by braking some of the elements of the epicycloidal gear.9.4 Manual gearboxes for industrial vehicles 441FIGURE 9.14. Transmission ratios obtained with the scheme of transmission shown in Fig. 9.15; speed identification shows the main gearbox speed with the number, the splitter position with the first letter, the range changer position wi th the second; L stands for low, H stands for high.It is also possible to place the range changer before the main gearbox andthe splitter unit after the main gearbox.A different way of defining the functions of range change units is to say thatthe splitter is a gearbox that compresses the gear sequence, because it reducesthe gap between speeds, while the range changer is a gearbox that expands the gear sequence, because it increases the total range of the transmission.Figure 9.14 explains the concept of compression; the bars represent the ratios obtained in all shifting lever positions. Ratios obtained with the splitter unit inthe L position (the first letter in the speed identification, L stands for lower ratio) are interspersed with the ratios obtained with the splitter unit in the H position (H stands for higher ratio, in this case 1:1) and reduce the amplitude of the gear steps of the main gearbox.The same figure also explains the concept of expansion, showing on thesame graph the ratio obtained with the range changer in the H position (second identification letter) and the L position; the gear step between the first in lowgear and the first in high gear is as big as the range of the main gearbox, andthe total transmission range is widened.The range changer is therefore seldom used, when driving conditions change suddenly, as, for example, when leaving a normal road for a country road that must be driven more slowly, or when encountering a strong slope with a fully loaded vehicle. The splitter allows the dynamic performance of the vehicle to be improved, making the optimum transmission ratio available to obtain the desired power. The splitter is therefore used frequently. In a fully loaded vehicle, for example, all split ratios can be used in sequence during full throttle acceleration from a standstill.442 9. MANUAL GEARBOXESThe range changer and splitter are usually made as modular units that canbe mounted at both ends of the main gearbox, or changed with simple covers,in order to satisfy all application needs with limited total production costs. Generalizing these concepts could suggest building transmissions using ad- ditional range changing units arranged in series. These could be conceived as being made only of splitter units with direct drive.In such a case, with n pairs of tooth wheels it is possible to obtain a totalof z transmission ratios, given by the formula:z =2n−1. (9.1)The formula expresses the number of possible states that can be obtainedfrom n − 1 pairs of gears; one unit is subtr acted because one pair must be a constant gear to move the countershaft.With four pairs of gears, for example, four speeds can be obtained in adouble stage gearbox; while using a cascade of splitters eight different speeds could be obtained. The goal of good shift manoeuvrability and the implicationsfor mechanical losses must not be forgotten, while defining the best architecture. Figure 9.15 shows the scheme of the 16 speed transmission with splitter andrange changer we already described. In this picture are represented the spans of。

汽车变速箱英语词汇

汽车变速箱英语词汇

汽车变速器英语词汇(1)(副变速器)变速杆range selector 按钮控制finger-tip control 半自动换档机械式变速器semi-automatic mechanical transmission半自动液力变速器semiautomatic transmission包角scroll 泵轮impeller边斜角(进出口)bias(entrance and exit) 变矩比torque ratio变矩范围torque conversion range 变矩系数torque ratio变容式液力变矩器variable capacity converter变速叉shifting fork (gear shift fork) 变速齿轮transmission gear 变速齿轮比(变速比)transmission gear ratio变速齿轮组change gear set 变速杆stick shift(gear shift lever) 变速轨(拨叉道轨)shift rail 变速器transmission (gearbox)变速器输出轴transmission output shaft变速器输入轴transmission input shaft变速器中间轴transmission countershaft 变速器轴的刚度rigidity of shaft 变速器主动齿轮轴transmission drive gear shaft变速器主轴transmission main shaft 变速踏板gear shift pedal操纵杆control lever 槽导变速gate change长行星齿轮long planet gear 常啮齿轮constant mesh gear常啮合齿轮传动constant mesh transmission常压式同步器constant pressure synchronizer超速档变速器over drive transmission 超限换档overrun shift带主减速器的变速器final driving transmission 传动比gear ratio单向离合器one-way clutch 单向离合器换档freewheel shift 导轮可反转的变矩器torque converter with reversal reactor倒档reverse gear 倒档中间齿轮reverse idler gear 低速档bottom gear(low speed gear)第二档second gear 第一档first gear电磁阀调压阀solenoid regulator valve电液式自动换档系统electronic -hydraulic automatic电子同步变速装置electronically synchronized transmission assembly调压阀pressure -regulator valve 调制压力modulated pressure定输入扭矩特性constant input torque performance定轴式液力变速器countershaft transmission定子stator 动力换档power shift 动力换档过程timing动力相似dynamic similarity动力助力换档变速器power assisted shift transmission短行星齿轮short planet gear 多级变速器multi-speed transmission 多中间轴变速器multi-countershaft transmission反拖特性coast performance方向盘式变速column shift (handle change)分动齿轮(分动机构)transfer gear 分动箱(分动器)transfer case分动箱控制杆transfer gear shift fork分段式多档变速器sectional type multi-speed transmission分流式液力变速器split torque drive transmission辅助变速器auxiliary gear box 副变速器splitter副轴counter shaft 副轴齿轮counter shaft gear 高速档top gear(high gear)固定轴式变速器fixed shaft transmission惯性式同步器inertial type of synchronizer过载系数overloading ratio 后油泵gear pump (output pump ) 滑差slip 滑动齿轮sliding gear滑动齿轮变速器sliding gear transmission滑动齿轮传动sliding -gear transmission缓冲压力compensator or trimmer pressure 换档shift换档点shift point 换档定时property of automatic shift换档阀shift valve 换档规律process of power shift换档机构gearshift 换档循环shift schedule换档元件engaging element 换档指令发生器shift pattern generator 回油泵scavenge oil pump 机械式变速器mechanical transmission 级stage 几何相似geometry similarity继动阀relay valve汽车变速器英语词汇(2)寄生损失特性no load (parasitic losses)performance 降档downshift经济档economic gear 空档位置neutral position 力矩特性torque factor(coefficient of moment) 空转转速racing speed两轴式变速器twin-shaft transmission 零速起动stall start零速转速stall speed 流量阀flow valve内侧行星齿轮inner planet gear 内齿轮internal or king gear 内环core 能容系数capacity factor啮合套shift sleeve (engagement sleeve) 能容系数capacity factor偶合点coupling point 偶合范围coupling range前油泵front pump (input pump ) 爬行档creeper gear强制换档forced shift 驱动特性drive performance 取力器(动力输出机构)power take-off全齿套变速器all dog clutch transmission全特性total external characteristic全斜齿常啮式变速器fully constant mesh all helical gear transmission全液压自动换档系统hydraulic automatic control system全油门特性full throttle performance全直齿常啮式变速器fully constant mesh all spur gear transmission人工换档液力变速器manually shifted transmission设计流线design path 人工换档manual shift手动换档变速器manually shifted transmission 输出特性characteristic of exit 双泵轮液力变矩器double-impeller torque converter输入特性characteristic of enhance 双联行星齿轮compound planet gear 双涡轮液力变矩器double-turbine torque converter双中间轴变速器twin countershaft transmission速度环量circulation (circulation of stream)速度三角形triangle of velocities 速控阀governor valve速控压力governor pressure 锁止离合器lock-up clutch锁止式液力变矩器lock-up torque converter 太阳齿轮sun gear同步器式变速器synchromesh transmission 同步器synchronizer透穿性transparency 外侧行星齿轮outer planet gear 外环shell 涡轮turbine无级变速器non-stage transmission 吸收特性absorption characteristic先导阀priority valve 限档压力hold pressure相phase 响应特性response characteristic 信号阀signal valve 行星齿轮planet gear行星齿轮式变速器planetary transmission 行星齿轮机构planetary gears行星式液力变速器planetary transmission 行星架planet carrier选档阀selector valve 叶轮member叶片blade 叶片角blade angle叶片转位blade angle shift 液力变矩器torque converter液力变矩器旁通阀converter bypass valve 液力变矩器锁止converter lockup 液力变速器hydrodynamic transmission 液力传动hydrodynamic drive液力传动装置hydrodynamic drive unit液力传动装置充油压力hydrodynamic unit change pressure液力偶合器fluid coupling 液力起步fluid start液流角flow angle 抑制换档inhibited shift原始特性primary characteristic远距离操纵变速器remote control transmission真空调制压力vacuum modulator pressure直接变速direct change(direct control)直接操纵变速器direct control transmission直接档变速器direct drive transmission 直接驱动direct drive锁止式液力变矩器lock-up torque converter 锁止离合器lock-up clutch太阳齿轮sun gear 同步器synchronizer同步器式变速器synchromesh transmission 透穿性transparency外侧行星齿轮outer planet gear 外环shell无级变速器non-stage transmission 涡轮turbine吸收特性absorption characteristic 先导阀priority valve限档压力hold pressure 相phase响应特性response characteristic 信号阀signal valve行星齿轮planet gear 行星齿轮机构planetary gears 行星齿轮式变速器planetary transmission 行星架planet carrier行星式液力变速器planetary transmission 选档阀selector valve叶轮member 叶片blade叶片角blade angle 叶片转位blade angle shift液力变矩器torque converter 液力变矩器旁通阀converter bypass valve液力变矩器锁止converter lockup 液力变速器hydrodynamic transmission液力传动hydrodynamic drive 液力传动装置hydrodynamic drive unit液力传动装置充油压力hydrodynamic unit change pressure液力偶合器fluid coupling 液力起步fluid start液流角flow angle 抑制换档inhibited shift远距离操纵变速器remote control transmission 原始特性primary characteristic 真空调制压力vacuum modulator pressure直接变速direct change(direct control) 直接操纵变速器direct control transmission直接档变速器direct drive transmission 直接驱动direct drive中间齿轮intermediate gear(counter gear)中间轴变速器countershaft transmission 重迭阀overlap valve 主变速器basic transmission主压力line pressure 转动叶片variable blade转子rotor 自动换档automatic shift自动换档机械式变速器automatic mechanical transmission自动液力变速器automatic transmission自动增力式同步器self-servo synchronizer综合式液力变矩器torque converter-coupling组合式变速器combinatory transmission。

汽车变速器的设计外文文献翻译、中英文翻译、外文翻译

汽车变速器的设计外文文献翻译、中英文翻译、外文翻译

汽车变速器的设计外文文献翻译、中英文翻译、外文翻译A manual n。

also known as a standard n。

XXX。

It consistsof gears。

synchros。

roller bearings。

shafts。

and gear selectors。

The main clutch assembly is used to engage and disengage the engine from XXX gears are used to select the desired。

and the sector fork moves gears from one to another using the gearshift knob。

Synchros are used to slow the gear to a。

before it is XXX。

The counter shaft holds the gears in place and against the main input and output shaft。

Unlike automatic ns。

XXX。

as there isno XXX。

Note: XXX "n Shifter" was deleted as it had no XXX.)XXX have four to six forward gears and one reverse gear。

However。

some cars may have up to eight forward gears。

while semi trucks XXX by the number of forward gears。

such as a 5-speed standard n.The n of a standard n includes three shafts: the input shaft。

汽车变速器的设计外文文献翻译、中英文翻译、外文翻译

汽车变速器的设计外文文献翻译、中英文翻译、外文翻译

本科毕业设计(论文)英文资料翻译*****指导教师:孙飞豹(副教授)学科、专业:车辆工程沈阳理工大学应用技术学院2011年12月20日transmission used in automobilesA standard transmission or manual transmission is the traditional type of transmission used in automobiles. The manual or standard transmission consists of a series of gears, synchros, roller bearings, shafts and gear selectors. The main clutch assembly is used to engage and disengage the engine from the transmission. Heliacal cut gears are used to select the ratio desired the sector fork move gears from one to another by using the gearshift knob. Synchros are used to slow the gear to a stop before it is engaged to avoid gear grinding, the counter shaft hold the gears in place and against the main input and output shaft. A stick shift transmission has no torque converter so there is no need for a transmission cooler. A stick shift transmission needs a simple fluid change for proper service. (there is no transmission filter in a stick shift transmission).Transmission ShifterMost manual transmissions have one reverse gear and four to six forward gears. Some cars also have eight forward gears while thirteen to twenty-four gears are present in semi trucks. To differentiate among the available standard transmissions, they are addressed by the number of forward gears. For example, if the standard transmission has five gears, it will be referred to as 5-speed standard transmission or 5-speed standard.Typical Standard Transmission ConfigurationInside the transmission shafts contain all forward and reverse gears. Most transmissions contain three shafts: input shaft, output shaft and counter or lay shaft. Other than standard transmission, there are other transmissions like continuously variable transmission, automatic transmission and semi-automatic transmission. In the manual transmission, a pair of gears inside the transmission selects the gear ratios. Whereas, in an automatic transmission, combination of brake bands and clutch packs control the planetary gear which selects the gear ratio.If there is a provision to select a gear ratio manually in automatic transmissions, the system is called a semi-automatic transmission. The driver can select from any of the gears at any pointof time. In some automobiles like racing cars and motorcycles that have standard transmissions, the driver can select the preceding or the following gear ratio with no clutch operation needed. This type of standard transmission is known as sequential transmission. In this transmission the clutch is still used for initial take off.Clutch and Flywheel AssemblyThe main clutch plays the role of a coupling device which separates the transmission and the engine. If the clutch is absent and the car comes to a stop the engine will stall. In automobiles, the clutch can be operated with the help of a pedal located on the floor of the vehicle. In an automatic transmission instead of a clutch, a torque converter is used to separate the transmission and engine.Typical Stick Shift PatternsA desired gear can be selected by a lever which is usually located on the floor in between the driver and passenger seat. This selector lever is called the gear lever or gear selector or gear shift or shifter. This gear stick can be made to move in right, left, forward and backward direction. When the gear is placed on the N position or neutral position, no gear will be selected. To move the car in the backward direction, the R gear or reverse gear should be selected.Standard transmissions are more efficient and less expensive to produce than automatic transmissions. A Standard transmission is about 15% more efficient compared to an automatic transmission. Standard transmissions are generally stronger than automatic transmissions and off road vehicles take advantage of a direct gear selection so they can withstand rough conditions. Less active cooling is also required in manual transmission system because less power is wasted.●Popular Problem ChecksCar will not go into gearClutch disc is broken completelyInternal transmission damageFailed clutch master cylinderSeized clutch slave cylinderBroken clutch fork pivotBroken clutch cableCar goes into gear but it fades out or is slippingClutch is worn out and needs replacementClutch is oil soaked from a external engine oil leakCar makes grinding noise while operating or shifting gearsOne of the roller or thrust bearings has failedThe gear synchro is worn out not forcing the gear stop before it is engaged causing a grinding gear.A counter or main shaft bearing has failed causing misalignment of the gears●Troubleshooting Noise and ProblemsIf the vehicle is running and a whirring sound is heard, then it goes away when the clutch is depressed, the transmission input bearing has failed.If the transmission is quiet in neutral but when you depress the clutch a squeaking noise is observed, a clutch throw out bearing has failed.Tips:Never let little noises go unattended; a small noise can cause a large noise and transmission operation failure. Never overload a vehicle or tow beyond the capacity this can cause premature transmission failure.汽车变速器汽车传统变速器是那种标准的手动变速器。

汽车变速器变速箱外文文献翻译、中英文翻译、外文翻译

汽车变速器变速箱外文文献翻译、中英文翻译、外文翻译

TRANSMISSIONOf all transmission technologies, the manual gearbox is the most efficient; around 96 per cent of the energy that is put in comes out of the other end. But not everyone can drive one or wants to. Because you have to dip the clutch pedal, it is less comfortable to drive in heavy traffic. It makes the driver tired and the torque interruptions’ head-nod effect on passengers can be wearing.The driver's clutch control and corresponding torque interruptions are also the manuals weak point. When accelerating up through the gearbox, each up-shift requires the driver to cut the torque momentarily by lifting the gas pedal and dipping the clutch. It may just take a second to complete the operation, but during this time the vehicle is losing speed and acceleration.At the opposite end of the spectrum is the traditional automatic. The modern transmission is by far, the most complicated mechanical component in today’s automobile. It is a type of transmission that shifts itself .A fluid coupling or torque converter is used instead of a manually operated clutch to connect the transmission to the engine.There are two basic types of automatic transmissions based on whetherthe vehicle is rear wheel drive . On a rear wheel drive car , the transmission is usually mounted to the back of the engine and is located under the hump in the center of the floorboard alongside the gas pedal position . A drive shaft connects the rear of the transmission to the final drive which is located in the rear axle and is used to send power to the rear wheel. Power flow on this system is simple and straight forward going from the engine, through the torque converter , then through the transmission and driver shaft until it reaches the final driver where it is split and sent to the two rear wheel .On a front wheel drive car, the transmission is usually combined .With the final drive to from what is called a transaxle. The engine on a front wheel driver car is usually mounted sideways in the car with the transaxle tucked under it onthe side of the engine facing the rear of the car. Front axles are connected directly to the transaxle and provide power to the front wheels. In this example, power flows from the engine through the torque converter to a large chain that sends the power through a 180 degree turn to the transmission that is along side the engine. From there,The power is routed through the transmission to the final drive where it is split and sent to the two front wheels through the drive axles.There are a number of other arrangements including front drive vehicles where the engine is mounted front to back instead of sideways and there are other systems that drive all four wheels but the two systems described here are by far the most popular. A must less popular rear drive arrangement has the transmission mounted to the final drive at the rear and is connected by a drive shaft to the torque converter which is still mounted on the engine. This system is found on the new corvette and is used in order to balance the weight evenly between the front and rear wheels for improved performance and handling. Another rear drive system mounts everything, the engine, transmission and final drive in the rear. This rear engine arrangement is popular on the Porsche.The modern automatic transmission consists of many components and systems that are designed to work together in a symphony of planetary gear sets, the hydraulic system, seals and gaskets, the torque converter, the governor and the modulator or throttle cable and computer consider being an art form.On the automobile planet gear mainly uses in two places, one is the driving axle reduction gear, two is the automatic transmission. Very many net friends all want to know that, the planet gear has any function, why automobile must have it . We knew very well the gear major part all rotates the spool thread fixed gear. For example mechanical type clock and watch, above all gears although all in make the rotation, but their rotation center (with center of a circle position superposition) often installs through the bearing on the cabinet, therefore, their rotating axis all is the relative cabinet fixed, thus also is called "dead axle gear" . Has must have surely moves, the corresponding place, some kind of not that manner knows very well is called "planet gear" the gear, their rotation spool thread is not fixed, but is installs the support which may rotate in (blue color) on(in chart black part is shell, yellow expression bearing). The planet gear (green) besides can look like the dead axle gear such to revolve own rotating axis (B-B) to rotate, their rotating axis also (is called planet) along with the blue color support to circle other gears the spool thread (A-A) to rotate. Circles oneself spool thread the rotation to be called "rotation", circles other gear spool threads the rotation to be called "revolution", looks like in solar system planet such, therefore acquires fame.The spool thread fixed gear drive principle is very simple, meshes mutually in a pair in the gear, some gear takes the driving pulley, the power spreads from its there, another gear takes the driven wheel, the power outputs from it toward outside. Also some gears only take the stopover station, at the same time meshes with the driving pulley, one side meshes in addition with the driven wheel, the power passes from its there.In contains the planet gear in the gear system, the situation was different. Because has the planet frame, in other words, may have three rotating axes permissions power input/Output, but also may use the coupling or the brake and so on method. in needs time limits axis the rotation, is left over two axes to carry on the transmission, as the matter stands, meshes mutually between the gear relations may have the many kinds of combinations: The power from sun gear input, outputs from other sun gear, the planet put through brake mechanism has checked dies; Power from sun gear input, from planet output, moreover a sun gear ecks dies; The power from a planet input, outputs from sun gear, moreover a sun gear checks dies; Two powers separately from two sun gears inputs, after synthesis from planet output; Two powers separately from the planet and sun gear input, after the synthesis output from other sun gear; The power from sun gear input, divides two groups outputs from other sun gear and the planet frame; The power from a planet input, divides two groups to output from two sun gears;Its shift quality is good thanks to its torque converter, but efficiency is relatively poor despite recent advances. Because of this, a lot of the current research is trying to find an efficient alternative to the conventional automatic.The main technologies are continuously variable transmissions (CVTs); dualclutch transmissions (DCTs) and automated manual transmission (AMTs).They all offer different benefits over the conventional planetary automatic.The CVT uses a belt chain or torodial shaped dish drive to vary an infinite number of gear ratios. It has improved efficiency and cost when compared to conventional automatics. Its advantage comes from its simplicity. It consists of very few components;usually a rubber or metal-link belt;a hydraulically operated driving pulley, a mechanical torque-sensing driving pulley, microprocessors and some sensors.The transmission works by varying the distance between the face of the two main pulleys. The pulleys have V-shaped grooves in which the connecting the belt rides. One side of the pulley is fixed axially; the other side moves, actuated by hydraulics.When actuated, the cylinder can increase or reduce the amount of space between the two sides of the pulley. This allows the belt to ride lower or higher along the walls of the pulley, depending on driving conditions. This changes the gear ratio. A torodial-type design works in a similar way but runs an discs and power- rollersThe "step less" nature of its design is CVT's biggest draw for automotive engineers .Because of this, a CVT can work to keep the engine in its optimum power range, thereby increasing efficiency and mileage. A CVT can convert every point on the equine’s operating curve to a corresponding point on its own operating curve.The transmission is most popular with Japanese carmakers and Japanese supplier JATCO is a major producer. But in the US and Europe driving styles are different. Uptake has been slow despite Audi and other manufacturers having Offered CVT operations on their ranges.The DCT is, in effect, two manual gearboxes coupled together. Gear shifts are made by switching from one clutch on one gearbox to another clutch on the other. The shift quality is equal to a conventional automatic, but slip, fluid drag and hydraulic losses in the system result in only slightly improved efficienc y and acceleration over the conventional planetary automatic. Developing the controlstrategy is costly too."Resent advances in conventional automatic technology have weakened the argument to develop and set up production for CVT or DCT," says Bill Martin, managing director of transmission firm Zeroshift "Some carmakers have cancelled DCT projects because of the cost."The cheapest way to build an automatic is with an AMT. AMTs use actuators to replace the clutch pedal and gear stick of a conventional manual. They keep the high efficiency and acceleration of a manual gearbox, but the shift quality on some models is lacking. Torque interruptions and the head-nod effect are the most common complaint.SO what is the alternative? There are always new ideas in transmissions, but Zeroshift says that its technology has efficiency benefits over a manual, delivering fuel economy improvements to city driving. Shift quality can also be equal to that of a refined automatic.Zeroshift's approach is an upgrade to the AMT. The synchromesh is replaced with an advanced dog engagement system.Dog engagement has been used for many years in motor sport to allow fast shifts. Conventional dog Boxes are unsuitable for road use as the large spaces between the drive lugs or 'dogs" create backlash, an uncomfortable shunt caused by the sudden change in torque direction.Zeroshift's technology solves this problem by adding a second set of drive dogs. It has also made each of The two sets of dogs only capable of transmitti ng torque in one or other opposing directions错误!未找到引用源。

自动变速器中英文对照外文翻译文献

自动变速器中英文对照外文翻译文献

中英文翻译外文翻译THE RESEARCHS OFAMT SHIFTING SCHEDULESVehicular Automatic Transmission can be divided into three types: Automatic Transmission (AT), Automated Mechanical Transmission (AMT) and Continuously Variable Transmission (CVT). AMT has become a kind of transmission that is full of potentiality, due to its high transfer efficiency, low cost and easiness to manufacture.The research on AMT shifting performance is key technology in the developing. Shifting performance directly influence the market competition and industrialization of AMT.AMT has good market expectation, but during the shifting procedure, the power must be cut off which causes the poor shifting performance than AT and CVT. Only through improving the shifting performance can the commercial competence be established. So the virtual important thing is to find the way to improve shifting performance.The development of AMT can be divided into three phases: semi-automatic, automatic and intelligent. The two major part of AMT are: the hardware including the mastered object, executor, sensors and TCU; and the software performing the control strategy.The performance of AT shift influences greatly the performance of the vehicle. So the research on at shift quality is an important problem in the domain of AT researching. Shift quality control of AT is accomplished by electronic andhydraulic system. To shift smoothly, according the real time throttle valve opening and vehicle speed signal, the controller sends electronic signals to control oil pressure changing curve of the applying elements. this paper analyzes and research detailed shift quality control system,the analyzing model of shifting process and pressure changing curve of the applying elements Firstly this paper summarizes the existing evaluated quota of shift quality, and fully analyzes and introduces the existing control manner of AT shift quality.To meet the needs of research of vehicle starting and the real time control of shift, this paper puts forward a simplified model of engine-torque and a dynamics model of AT shifting process. Through the applying of the established model, this paper fully analyzes the process of the AT shifting.This paper drafts the proper oil pressure changing curve of the applying elements which can improve the AT shift quality, and gives the material calculated methods of the AG4 AT. This paper simulates the AG4 AT’s shifting process of 2H to 3H.The results of the simulation validate the established simplified models and the expected oil pressure changing curve.This paper fully analyzes the mechanism of the pressure regulating and flow controlling system of the AG4 AT, and preparatory discusses the design of the block-diagram of the shift quality control. This paper test the control system and hydraulic system of the AG4 AT by the AT hydraulic-electronic testing-bed. The result of the test validates the correction of these analyses.Automated Mechanical Transmission, as so called AMT, is a new-style transmission system. AMT technology applies the automatic technology to the manual mechanical transmission and makes the selection-gear, shift, clutch and throttle implement automatically. AMT technology is suitable for the situation of our country, and has an expansive market and development foreground. Shift schedules decide the time to shift and are the soul of the AMT. When the AMT is working, by comparing the states of the vehicle with the optimal shift schedules, the AMT decides the optimal shift time and achieves the shift automatically. This will lessen the tiredness of the driver and improve the safety. At the same time, the power and fuel-economy of the vehicle can also be improved. Theauthor chooses the shift schedule as the key technology problem to be researched and the main study aim of this thesis is to get the optimal shift schedules for the AMT and so improve the power and fuel-economy of the vehicle. Through analyzing the influence factors of power and fuel-economy for the automobile, the author get the establishment methods for the optimal-power shift schedule and optimal fuel-economy shift schedule. In order to solve the influence of mass on the shift schedule, the author presents a variable-structure-controlled shift system. This enriches the theory of shift schedules. Because the computer simulation can save a lot of manpower and material resources comparing with the true-car test, so in this thesis, the author uses the simulation toolbox MATLAB/Simulate to setup the simulation model for shift schedules. Using this model, the optimal-power shift schedule and optimal fuel-economy shift schedule above are simulated and proved to be reasonable.Shifting performance is defined as the extent of swiftness and softness during the procedure of non-power shifting and to extend the life of the power train. The index is comfort of passenger, time duration and shock, nine factors maybe influence the shifting performance, and two experimental methods can be used to investigate the nature of this performance: one is collecting real-time data during road experiment and analyzing them, the other is the simulation of the operation conditions of the vehicle.The core of the AMT system is the control strategy, the principle of the clutch engagement, shifting procedure, the choice of control method and the CAN communication between TCU and ECU can influence the shifting performance.Shifting schedule is the schedule of auto shifting time between two shifts with controlling parameters. It includes economical and dynamical shifting schedule. At present, shifting schedule of two controlling parameters (vehicle speed and opening on throttle) is mainly used. If shifting schedule is not good, shifting will not happen at right time and the working condition of engine will be severe. It will make the sound of engine abnormally and stability badly through the whole shifting procession. Sometimes even flame out Schedule of clutchengagement is determined by releasing journey of clutch, opening of throttle, shifting, vehicle speed and loading. The mainControlling goals are engaging quantity and engaging speed. The engaging control of clutch is mainly referred to the control of engaging speed. It is divided into three stages: fast, slow, fast. Shifting quality is directly influenced by the second stage. If engaging harder, it will make shifting concussion, even flame out; if engaging more slowly, it will make the friction time longer and reduce its longevity. The main controlling parameters are difference between initiative and passive and torques on both sides. When torques being approximately equal, it is proved by experiments that it can guarantee shifting time and not make concussion through the procession of engagement at the time of difference of rotating speed below some value. Meanwhile, the abrasion of clutch is not severe.Shifting procedure is the procedure through working harmoniously among engine, clutch and transmission. Their cooperation will affect shifting time heavily. In order to decrease the shifting time, the time that is spent on the friction of the clutch should be decreased first. If we intend to increase the time of non-load stage, which helps to minimize the difference of the rotary speed between the driving disc and the driven disc. If we intend to shorten the time of the non-load stage, engage the clutch immediately after the gear change. The clutch can engage in a satisfying period if the new method of controlling the engaging speed of the clutch is realizable. And the time that is spent on synchronizing the gears should also be shortened. It can be realized in the following two ways. The first is to decrease the difference of the driving gear and the driven gear. The second is to increase the shifting force. If realizing the union control between ECU and TCU by CAN bus, AMT has the best control and the best shifting performance by use of communication strategy between TCU and ECU.Influence on shifting performance by hardwareThe elements in hardware system are the basis of proper functions of AMT. Executors, sensors, electronic components, hydraulic systems have influences onshifting performance, the choice of hardware parameters is of vital important to improvement of shifting performance.With the development of the theory and technology of vehicle, the technical increasingly mature of microprocessor and the extensive application of electronic technique on the car, people have no limit at satisfying the automotive means of transportation only, facing gradually from the request of the car power, economy and easily manipulating, flexibility, safety, an d the intelligent type of car becomes the focus in the vision of people increasingly. Company’s publicity slogan of" person, car, life"," make people the center" etc. On the side exhibit the expectation of people to the automotive individuation, humanity.In the development direction of the car intelligence, the intelligence of the automatic gearbox has important effect. But the intelligence of the automatic gearbox embodies at the establishment of the shift regulation. For the fashion, for satisfying people to the new automotive request, for competitive advantage of the car type, at present, each big factory in world worked very much in shift regulation of new car type. Among those, the most arresting is AL4 automatic gearbox developed by PEUGEOT/CITROEN and RENAULT in that there unexpectedly are the 10 kinds of so many shift regulations. In the big system of person— car — road, the good and bad of the car control, reflect primarily in the coordination of the vehicle and environment (road), the coordination of the vehicle and person. And so, the electronic automatic control system can save various regulations to provide the driver to choose to use, not only having the economic regulation, motive (call to sport the type again) regulation, but also still having the general (usual) regulation, environment temperature and regulation with the outsider condition variety etc. Namely, the point of shifting can be freely enacted for every kind of regulation. In the intelligence direction of the shift regulation, everyone has made much work up to now, parts of the results has been applied on the car. But the work that developing this intelligent shift regulation still is hard, this is mainly because of:1. The intelligence degree of the current intelligent gearbox needs to be increased, and it expresses at that accurate degree to identify environment is nothigh and to identify the driver’s driving can't give satisfaction.2. The intelligence function is still not perfect. The intelligent automatically shift system is an open system; it must be continuously perfect and plentiful on the current foundation. Only this way, it can adapt to the driving request of the different drivers, reducing the driver’s labor strength, increasing the performance of the whole vehicle.Conventional design method which used in the structure parameters' design of automobile gear box and synchronizer is a time-wasting job and hard work, and it is difficult to get idea design parameters and no good to the enhancement of products qualities. The optimum design of automobile gearbox and synchronizer which take the advantage of computers seeking the best structure parameters within constrains is a perfect and high-quality design method. The main target of this article is to set up a optimum mathematical model of structure parameters of the truck's gearbox and synchronizer, the auth or use a optimum method based on K-T equation to improve the design level of automobile gearbox and synchronizer. Gear box is a important part of transmission, so the optimization of automobile gearbox is very important because the transmission is a main part of automobile. According to the design request and character sofa sort of truck, the optimum mathematical model of truck's gearbox is analyzed and set up in this article to decrease its weight and volume when the strength, stiffness, and lifetime of parts are permitted. And we can receive a satisfaction result through optimizing it's parameter for instance.Synchronizer is a important part of automobile gearbox, it make drive gear and driven gear engaged after their synchronized, so it can decrease engaged shock and noise, it can decrease shift forcing and make it comfort to gear shift and increase the life of synchronizer. The synchronized process of synchronizer is analyzed in this article; we can receive a satisfaction result through optimizing its influence parameter for instance when the synchronized time is the shortest. The optimum toolbox of MATLAB is a convenient of ware of modern optimization with fast speed and powerful function. The algorithms of different mathematical subsets are divided into different librarians in the form offunctions in MATLAB optimum toolbox. When we use them, we just call the functions and give special parameters to solve the problems and this will be fast and accurate. The author gives an optimum design for automobile gearbox and synchronizer by using the optimum toolbox of MATLAB and receives a satisfaction result.自动变速器换档规律的研究车辆自动变速器通常分为液力机械式自动变速器(简称AT)、电控机械式自动变速器(简称AMT)和机械式无级变速器(简称CVT)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车变速器设计(外文翻译)我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。

因此,我们希望发动机总是在最好的状态下工作。

但是,汽车在使用的时候需要有不同的速度,这样就产生了矛盾。

这个矛盾要通过变速器来解决。

汽车变速器的作用用一句话概括,就叫做变速变扭,即增速减扭或减速增扭。

为什么减速可以增扭,而增速又要减扭呢?设发动机输出的功率不变,功率可以表示为 N = wT,其中 w 是转动的角速度,T 是扭距。

当 N 固定的时候,w 与 T 是成反比的。

所以增速必减扭,减速必增扭。

汽车变速器齿轮传动就根据变速变扭的原理,分成各个档位对应不同的传动比,以适应不同的运行状况。

一般的手动变速器内设置输入轴、中间轴和输出轴,又称三轴式,另外还有倒档轴。

三轴式是变速器的主体结构,输入轴的转速也就是发动机的转速,输出轴转速则是中间轴与输出轴之间不同齿轮啮合所产生的转速。

不同的齿轮啮合就有不同的传动比,也就有了不同的转速。

例如日产 ZN6481W2G 型 SUV 车手动变速器,它的传动比分别是:1 档 3.704:1;2 档 2.202:1;3 档1.414:1;4 档 1:1;5 档(超速档)0.802:1。

当汽车启动司机选择 1 档时,拨叉将 1/2 档同步器向后接合 1 档齿轮并将它锁定输出轴上,动力经输入轴、中间轴和输出轴上的 1 档齿轮,1 档齿轮带动输出轴,输出轴将动力传递到传动轴上。

典型 1 档变速齿轮传动比是3:1,也就是说输入轴转 3 圈,输出轴转 1 圈。

当汽车增速司机选择 2 档时,拨叉将 1/2 档同步器与 1 档分离后接合 2 档齿轮并锁定输出轴上,动力传递路线相似,所不同的是输出轴上的 1 档齿轮换成 2 档齿轮带动输出轴。

典型 2 档变速齿轮传动比是 2.2:1,输入轴转2.2 圈,输出轴转 1 圈,比 1 档转速增加,扭矩降低。

当汽车加油增速司机选择 3 档时,拨叉使 1/2 档同步器回到空档位置,又使 3/4 档同步器移动直至将 3 档齿轮锁定在输出轴上,使动力可以从轴入轴—中间轴—输出轴上的 3 档变速齿轮,通过 3 档变速齿轮带动输出轴。

典型 3 档传动比是 1.7:1,输入轴转 1.7 圈,输出轴转 1 圈,是进一步的增速。

当汽车加油增速司机选择 4 档时,拨叉将 3/4 档同步器脱离 3 档齿轮直接与输入轴主动齿轮接合,动力直接从输入轴传递到输出轴,此时传动1:1,即输出轴与输入轴转速一样。

由于动力不经中间轴,又称直接档,该档传动比的传动效率最高。

汽车多数运行时间都用直接档以达到最好的燃油经济性。

换档时要先进入空档,变速器处于空档时变速齿轮没有锁定在输出轴上,它们不能带动输出轴转动,没有动力输出。

一般汽车手动变速器传动比主要分上述 1-4 档,通常设计者首先确定最低(1 档)与最高(4 档)传动比后,中间各档传动比一般按等比级数分配。

另外,还有倒档和超速档,超速档又称为 5 档。

当汽车要加速超过同向汽车时司机选择 5 档,典型 5 档传动比0.87:1,也就是用大齿轮带动小齿轮,当主动齿轮转 0.87 圈时,被动齿轮已经转完 1 圈了。

倒档时输出轴要向相反方向旋转。

如果一对齿轮啮合时大家反向旋转,中间加上一个齿轮就会变成同向旋转。

利用这个原理,倒档就要添加一个齿轮做“媒介”,将轴的转动方向调转,因此就有了一根倒档轴。

倒档轴独立装在变速器壳内,与中间轴平行,当轴上齿轮分别与中间轴齿轮和输出轴齿轮啮合时,输出轴转向会相反。

通常倒档用的同步器也控制 5 档的接合,所以5档与倒档位置是在同一侧的。

由于有中间齿轮,一般变速器倒档传动比大于 1 档传动比,增扭大,有些汽车遇到陡坡用前进档上不去就用倒档开上去。

从驾驶平顺性考虑,变速器档位越多越好,档位多相邻档间的传动比的比值变化小,换档容易而且平顺。

但档位多的缺点就是变速器构造复杂,体积大,现在轻型汽车变速器一般是 4-5 档。

同时,变速器传动比都不是整数,而是都带小数点的,这是因为啮合齿轮的齿数不是整倍数所致,两齿轮齿数是整倍数就会导致两齿轮啮合面磨损不均匀,使得轮齿表面质量产生较大的差异。

手动变速器与同步器手动变速器是最常见的变速器,简称 MT。

它的基本构造用一句话概括,就是两轴一中轴,即指输入轴、轴出轴和中间轴,它们构成了变速器的主体,当然还有一根倒档轴。

手动变速器又称手动齿轮式变速器,含有可以在轴向滑动的齿轮,通过不同齿轮的啮合达到变速变扭目的。

典型的手动变速器结构及原理如下。

输入轴也称第一轴,它的前端花键直接与离合器从动盘的花键套配合,从而传递由发动机过来的扭矩。

第一轴上的齿轮与中间轴齿轮常啮合,只要轴入轴一转,中间轴及其上的齿轮也随之转动。

中间轴也称副轴,轴上固连多个大小不等的齿轮。

输出轴又称第二轴,轴上套有各前进档齿轮,可随时在操纵装置的作用下与中间轴的对应齿轮啮合,从而改变本身的转速及扭矩。

输出轴的尾端有花键与传动轴相联,通过传动轴将扭矩传送到驱动桥减速器。

由此可知,变速器前进档位的驱动路径是:输入轴常啮齿轮-中间轴常啮齿轮-中间轴对应齿轮-第二轴对应齿轮。

倒车轴上的齿轮也可以由操纵装置拨动,在轴上移动,与中间轴齿轮和输出轴齿轮啮合,以相反的旋转方向输出。

多数汽车都有 5 个前进档和一个倒档,每个档位有一定的传动比,多数档位传动比大于 1,第 4 档传动比为 1,称为直接档,而传动比小于 1 的第 5 档称为加速档。

空档时输出轴的齿轮处于非啮合位置,无法接受动力传输。

由于变速器输入轴与输出轴以各自的速度旋转,变换档位时合存在一个"同步 "问题。

两个旋转速度不一样齿轮强行啮合必然会发生冲击碰撞,损坏齿轮。

因此,旧式变速器的换档要采用"两脚离合"的方式,升档在空档位置停留片刻,减档要在空档位置加油门,以减少齿轮的转速差。

但这个操作比较复杂,难以掌握精确。

因此设计师创造出"同步器",通过同步器使将要啮合的齿轮达到一致的转速而顺利啮合。

目前全同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,它的特点是依靠摩擦作用实现同步。

接合套、同步锁环和待接合齿轮的齿圈上均有倒角(锁止角),同步锁环的内锥面与待接合齿轮齿圈外锥面接触产生摩擦。

锁止角与锥面在设计时已作了适当选择,锥面摩擦使得待啮合的齿套与齿圈迅速同步,同时又会产生一种锁止作用,防止齿轮在同步前进行啮合。

当同步锁环内锥面与待接合齿轮齿圈外锥面接触后,在摩擦力矩的作用下齿轮转速迅速降低(或升高)到与同步锁环转速相等,两者同步旋转,齿轮相对于同步锁环的转速为零,因而惯性力矩也同时消失,这时在作用力的推动下,接合套不受阻碍地与同步锁环齿圈接合,并进一步与待接合齿轮的齿圈接合而完成换档过程。

自动变速器自动变速器的选挡杆相当于手动变速器的变速杆,一般有以下几个挡位:P(停车)、R(倒挡)、N(空挡)、D(前进)、S(or2,即为 2 速挡)、L(or1,即为1 速挡)。

这几个挡位的正确使用对于驾驶自动变速器汽车的人来说尤其重要,下面就让我们一起来熟悉一下自动变速器各挡位的使用要领。

●P(停车挡)的使用发动机运转时只要选挡杆在行驶位置上,自动变速器汽车就很容易地行走。

而停放时,选挡杆必须扳入 P 位,从而通过变速器内部的停车制动装置将输出轴锁住,并拉紧手制动,防止汽车移动。

●R(倒挡)的使用R 位为倒挡,使用中要切记,自动变速器汽车不像手动变速器汽车那样能够使用半联动,故在倒车时要特别注意加速踏板的控制。

●N(空挡)的使用N 位相当于空挡,可在起动时或拖车时使用。

在等待信号或堵车时常常将选挡杆保持在 D 位,同时踩下制动。

若时间很短,这样做是允许的,但若停止时间长时最好换入 N 位,并拉紧手制动。

因为选挡杆在行驶位置上,自动变速器汽车一般都有微弱的行驶趋势,长时间踩住制动等于强行制止这种趋势,使得变速器油温升高,油液容易变质。

尤其在空调器工作、发动机怠速较高的情况下更为不利。

有些驾驶员为了节油,在高速行驶或下坡时将选挡杆扳到 N 位滑行,这很容易烧坏变速器,因为这时变速器输出轴转速很高,而发动机却在怠速运转,油泵供油不足,润滑状况恶化,易烧坏变速器。

●D(前进挡)的使用正常行驶时将选挡杆放在 D 位,汽车可在 1~4 挡(或 3 挡)之间自动换挡。

D 位是最常用的行驶位置。

需要掌握的是:由于自动变速器是根据油门大小与车速高低来确定挡位的,所以加速踏板操作方法不同,换挡时的车速也不相同。

如果起步时迅速将加速踏板踩下,升挡晚,加速能力强,到一定车速后,再将加速踏板很快松开,汽车就能立即升挡,这样发动机噪声小,舒适性好。

D 位的另一个特点是强制低挡,便于高速时超车,在 D 位行驶中迅速将加速踏板踩到底,接通强制低挡开关就能自动减挡,汽车很快加速,超车之后松开加速踏板又可自动升挡。

●S、L 位低挡的使用自动变速器在 S 位或 L 位上处于低挡范围,可以在坡道等情况下使用。

下坡时换入 S 位或 L 位能充分利用发动机制动,避免车轮制动器过热,导致制动效能下降。

但是从 D 位换入 S 位或 L 位时,车速不能高于相应的升挡车速,否则发动机会强烈振动,使变速器油温急剧上升,甚至会损坏变速器。

另外在雨雾天气时,若路面附着条件差,可以换入 S 位或 L 位,固定在某一低挡行驶,不要使用能自动换挡的位置,以免汽车打滑。

同时必须牢记,打滑时可将选挡杆推入 N 位,切断发动机的动力,以保证行车安全。

原文:原文:Transmission designAs we all know,automobile engine to a certain speed can be achieved under the best conditions, when compared issued by the power, fuel economy is relatively good. Therefore, we hope that the engine is always in the best of conditions to work under. However, the use of motor vehicles need to have different speeds, thus creating a conflict. Transmission through this conflict to resolve.Automotive Transmission role sum up in one sentence, called variable speed twisting, twisting or slow down the growth rate by increasing torsional. Why can slow down by twisting, and the growthrate but also by twisting? For the same engine power output, power can be expressed as N = wT, where w is the angular velocity of rotation, and T is the torque. When N fixed, w and T is inversely proportionalto the. Therefore, the growth rate will reduce twisting, twisting slowdown will increase. Automotive Transmission speed gear based onthe principle of variable twisted into various stalls of different transmission ratio corresponding to adapt to different operational conditions.General to set up a manual gearbox input shaft, intermediate shaft and output shaft, also known as the three-axis, as well as the reverse gear shaft. Three-axis is the main transmission structure, input shaft speed is the speed of the engine, the output shaft speed is theintermediate shaft and output shaft gear meshing between differentfrom the speed. Different gears are different transmission ratio, and will have a different speed. For example, the Nissan ZN6481W2G SUV car manual transmission, its transmission ratio are: 1 File 3.704:1; 2stalls 2.202:1;3 stalls 1.414:1; 4 stalls 1:1; 5 stalls (speeding file) 0.802: 1.When drivers choose a launch vehicle stalls, Plectrum will be 1 / 2 file synchronization engagement with a back stall gear and output shaft lock it, the power input shaft, intermediate shaft and output shaft gear of a stall, a stall the output shaft gear driven, and the output shaft power will be transmitted to the drive shaft . 1 shifting speed gear transmission ratio is 3:1, that is to say three laps to the input shaft and output shaft to a circle.When the growth rate of car drivers choose two stalls, Plectrum will be 1 / 2-file synchronization and file a joint separation after 2 stall and lock the output shaft gear, power transmission line similar, the difference is that the output shaft gear of a stall 2 stall replaced by the output shaft gear driven. Band 2 speed gear transmission ratio is 2.2 :1, 2.2 laps to the input shaft and output shaft to a circle than a stall speed increase, lower torque.When refueling vehicle drivers growth stalls option 3, Plectrumto 1 / 2 back to the free file-synchronization position, and also allows the 3 / 4 file synchronization Mobile stall until 3 in the output shaft gear lock, power can be into the shaft axis intermediate shaft - the output shaft of the three stalls speed gear, led through three stalls speed gear output shaft. 3 stalls typical transmission ratio is 1.7:1, 1.7 laps to the input shaft and output shaft to acircle is further growth.When car drivers Option 4 refueling growth stalls, Plectrumwill be 3 / 4 from the 3-file synchronization stall gear directly with the input shaft gear joint initiative, and power transmission directly from the input shaft to the output shaft, the transmission ratio at1:1, that the input shaft and output shaft speed the same. The driving force without intermediate shaft, also known as direct file, the file transmission than the maximum transmission efficiency. Most cars run-time files are used directly to achieve the best fuel economy.Shift into the first interval when, in a free transmission when the speed gear output shaft is not locked in, they can not rotate the output shaft driven, not power output.General automotive manual transmission than the main 1-4 stalls, usually the first designers to determine the minimum (one stall) and maximum (4 files) transmission ratio, the middle stall drive by geometric progression than the general distribution. In addition, Alsohave a reverse and overdrive, overdrive is also known as the five stalls.When the car to accelerate to more than car drivers with the choice of five stalls, and a typical five-transmission ratio is 0.87:1, which is driven by a pinion gear, the gear when the initiative to 0.87 zone, passive gear have been transferred to a circle of the End.When the reverse gear output shaft to rotate in opposite directions. If one pair of meshing gears when we reverse rotation,with a middle gear, it will become the same to the rotation. Use ofthis principle, reverse will add a gear do "media interface", modulate the axis rotation direction, therefore there is a bone in the reverse gear shaft.Independent in the reverse gear shaft gearbox, parallel to the intermediate shaft, when the shaft gear respectively with intermediate shaft gear and the output shaft gear meshing, the output shaft will turn to instead.The reverse usually used for the synchronization control also joins five stalls, reverse and 5 position in the same side. As amiddle gear, general transmission shifting gear ratio is greater than1 transmission ratio, increasing twist, some car encounter to thesteep slope with the forward couldn't get on with the reverse open up.Ride from the driver of the considerations, better transmission stall, stall adjacent stall more than the transmission changes theratio of small, and easy to shift smoothly. However, the shortcomingsof the stalls is more transmission structure is complicated, bulky,light vehicle transmission is generally 4-5 stalls. At the same time, transmission ratio is not integral, but with all of the decimal point, it is because of the gear teeth meshing is not caused by the whole multiples of two gear teeth can lead to the whole multiples of two meshing gears of uneven wear, making the tooth surface quality have a greater difference.Manual transmission and synchronizerManual transmission is the most common transmission, or MT. Its basic structure sum up in one sentence, is a two-axle shaft, whereinput shaft, the shaft axis and intermediate shaft, which constitutethe main body of the transmission and, Of course also have a reverse axis. Manual transmission known as manual gear transmission, which can be in the axial sliding gears, the gears meshing different variable speed reached twisting purpose. Typical manual transmission structure and principles are as follows.Input shaft also said that the first axis, and its front-end Spline driven directly with the clutch disc sets with the Spline, bythe transfer of torque from the engine. The first axis of the intermediate shaft and gears meshing gears often, as long as the shaft axis to a turn, the intermediate shaft and gear also will be rotating.Vice also said intermediate shaft axis, the axis-even more than the size gear. Also known as the second output shaft axis, the axis of various sets of gear stall progress can be manipulated at any time in the role of the device and the corresponding intermediate shaft gear meshing, thus changing its speed and torque. With the end of the output shaft spline associated with the drive shaft through the drive shaft torque transmitted to the drive axle reducer.Thus, progress stalls drive transmission path is: input shaft gear often rodents often rodents intermediate shaft gear - corresponding intermediate shaft gear - the second axis corresponding gear. Reversing the gear shaft can be manipulated by the device pick in the axis movement, and the intermediate shaft and output shaft gear meshing gears, to the contrary to the direction of rotation output.Most cars have a five forward gears and one reverse gear, a certain degree of each stall transmission ratio, the majority ofstalls transmission ratio greater than 1, 4 file transmission ratio of 1, known as direct stalls, and transmission ratio is less than 1 No. 5 stall called accelerated stall. Free at the output shaft gear in a position of non-engagement, unacceptable power transmission.The transmission input shaft and output shaft rotational speed to their own, transform a stall when there is a "synchronous". Two different rotational speed gear meshing force will impact thecollision occurred, damage gear. Therefore, the old transmission shift to a "feet-off" approach, or stall on the location of the free stayfor a while by stalls in the free position refueling doors, in order to reduce the speed differential gear. However, this operation is relatively more complicated and difficult to grasp accurate. So designers create a "synchronized," and allows synchronization through the meshing of gears to be consistent speed and smooth meshing.At present Synchronous Transmission is based on the synchronization of inertia, mainly from joint sets, synchronous lock ring, and so on, it is characterized by friction on the role of synchronization. Splice sets Genlock engagement ring gear and the ring gear when it had Chamfer (Lock angle), Genlock within the cone ring gear engagement with the question of cone ring gear contact friction. Lock and cone angle has been made in the design of an appropriate choice to be made friction cone of the teeth meshing with the ring gear quickly sets pace at the same time will have a Lock role and to prevent the gears meshing in sync before. When synchronization lock cone ring gear engagement with the question of cone ring gear after contact in the effects of friction torque gear speed quickly lower (or higher) with the same speed synchronous lock ring, the two synchronous rotation of the gear Genlock Central zero speed, thus moment ofinertia also disappear, then in force under the impetus of engagementsets unhindered and synchronization lock ring gear engagement, and further engagement with the question of gear engagement and the completion Gear Shift Process.The automatic gearboxThe automatic gearbox chooses to block the pole the equal to moving the stick shift of the gearbox, having generally below several blocks:P( parking), R( pour to block), N( get empty to block), D( go forward), S( or2, namely for 2 block soon), L.( or1, namely for 1 block soon)This several an usage for blocking a right usages coming driver the automatic gearbox is automotive of person to say particularly important, underneath let us very much familiar with once automatic gearbox eachly blockings main theme.The usage of the P ( the parking blocks)The launches the luck turns as long as choose to block the pole in driving the position, automatic gearbox car run about veryeasily.But park, choose to block the pole must pull into of P, from but pass the internal parking system in gearbox moves the device will output the stalk lock lives, combining to tense the hand system move, preventing the car ambulation.The usage of the R( pour to block)R a control for is pouring blocking, using inside wantingslicing recording, automatic gearbox car unlike moving gearbox car so can using half moving, so while reversing the car wanting special attention accelerating pedal.The usage of the N( get empty to block)The N is equal to get empty to block, can while starting or hour of trailer usage.At wait for the signal or block up the car will often often choose to block the pole keeps in the of D, trampling at the same time the next system move.If time is very short, do like this is an admission of, but if stop the time long time had better change into of N, combine to tense the hand system moves.Because choose to block the pole in driving the position, the automatic gearbox car has generally and all to drive the trend faintly, long hours trample the system move same as a deterrent this kind of trend, make gearbox oil gone up, the oil liquid changes in character easily.Particularly in the air condition machine work, launch the soon higher circumstance in machine bottom more disadvantageous.Some pilots for the sake of stanza oil, at made good time or go down slope will choose to block the pole pull the of N skids, this burn the bad gearbox very easily, launching the machine to revolves soon in the however because the gearbox outputs at this time the stalk turns soon very high,, the oil pump provides the oil shortage, lubricating the condition worsen, burn theThe usage of the D( go forward to block)Will choose to block when is normal to drive the pole put in the of D, car can at 1 ~ 4 block( or 3 block) its change to block automatically.The of D drives the position most in common usely.What demand control is:Because the automatic gearbox is soon high and low with car to come to make sure to block according to the acceleratorsize a, so accelerate the pedal operation method is different,changing to block the hour of the car is soon too not same alike.If start hour quick accelerate the pedal tramples the bottom, rising to block the night, accelerating the ability is strong, arriving certain car soon behind, then will accelerate the pedal loosen to open very quickly, car can rise to block immediately, launch like this the machine voice is small, comfortable good.The another characteristics of the D is a compulsory low blocking, easy to high speed the hour overtakes a car, will accelerate quickly in of D drove the pedal trample after all, connect the compulsory low fend off the pass and then can reduce to block automatically, the car accelerates very quickly, after overtaking acar loosen to open the pedal of acceleration to can rise to block automatically again.The usage of the S, of L low the usage that blockThe automatic gearbox in in is placed in the low blocking the scope on of S or of Ls, can usage under an etc. circumstance.It change to can make use of to launch well into of S or of Ls the mechanism move, avoiding the car wheel system move the machine over hot, causethe system move the effect descent while going down slope.But change into from the of D of S or of L, car soon can't higher than rise to block the car homologously soon, otherwise strong vibration in opportunity to launch, make gearbox oil hoicked, even will damage the gearbox.The is another at rain fog weather hour, if the road adheres to the term bad, can change into a position for or of L, fixing at somely first lowly blocking driving, doing not use can automatically changing blocking, in order to prevent the car beats slippery.Must keep firmlyin mind at the same time, beat the slippery hour can will choose to block the pole pushes into a motive for, cutting off launching machine, toing guarantee a car the safety.。

相关文档
最新文档