练习-7.1与三角形有关的线段习题
初中数学知识点——与三角形有关的线段(知识讲解与巩固练习)

一、与三角形有关的线段(基础篇)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点1、三角形的定义及分类1. 定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示. 2.三角形的分类 (1)按角分类:要点诠释:①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形. (2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ②等边三角形:三边都相等的三角形.要点2、三角形的三边关系定理:三角形任意两边的和大于第三边. 推论:三角形任意两边的差小于第三边.⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. (3)证明线段之间的不等关系.要点3、三角形的高、中线与角平分线 1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB=∠ADC=∠90°.注意:AD 是ΔABC 的高∠ADB=∠ADC=90°(或AD⊥BC 于D); 要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心; (3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部; (ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部; (ⅲ)直角三角形三条高的交点是直角的顶点. 2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线. 三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD=BC.要点诠释:(1)三角形的中线是线段; (2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心; (4)中线把三角形分成面积相等的两个三角形. 3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.21注意:AD 是ΔABC 的角平分线∠BAD=∠DAC=∠BAC (或∠BAC=2∠BAD =2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心; (4)可以用量角器或圆规画三角形的角平分线.要点4、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性. 要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.21【典型例题】类型1、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E 再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型2、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD , 在△ODC 中有OD+OC >CD , 在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA 即2(AC+BD )>AB+BC+CD+DA , 即AC+BD >(AB+BC+CD+DA ).59c <<类型3、三角形中重要线段4. (2016春•江阴市月考)如图,AD⊥BC于点D,GC⊥BC于点C,CF ⊥AB于点F,下列关于高的说法中错误的是()A.△ABC中,AD是BC边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A、△ABC中,AD是BC边上的高正确,故本选项错误;B、△GBC中,CF是BG边上的高正确,故本选项错误;C、△ABC中,GC是BC边上的高错误,故本选项正确;D、△GBC中,GC是BC边上的高正确,故本选项错误.故选C.【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:【变式】(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A .B .C .D .【答案】A .5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比△ACD 的周长大3. 【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且,4ABC S △则为________.【答案】1.类型4、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB 、CD),这样做的数学道理是什么?【答案与解析】 解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.S阴影与三角形有关的线段(基础篇)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个B.2个C.3个D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A.6B.7 C.8D.94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线B.线段C.射线D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM 的面积,则S1和S2的大小关系是( ).A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9、如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm 和7cm ,则这个三角形的周长为________.12. 如图,AD 是△ABC 的角平分线,则∠______=∠______=∠_______;BE 是△ABC 的中线,则_____=_____=____ ;CF 是△ABC 的高,则∠________=∠________=90°,CF________AB .13. 如图,AD 、AE 分别是△ABC 的高和中线,已知AD =5cm ,CE =6cm ,则△ABE 和△ABC 的面积分别为________________.14. (2015春•焦作校级期中)AD 是△ABC 的边BC 上的中线,AB=3,AC=4,则中线AD 的取值范围是_____________. 三、解答题15.判断下列所给的三条线段是否能围成三角形? (1)5cm ,5cm ,a cm(0<a <10); (2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC 中,∠BAD =∠CAD ,AE =CE ,AG ⊥BC ,AD 与BE 相交于点F ,试指出AD 、AF 分别是哪两个三角形的角平分线,BE 、DE 分别是哪两1212个三角形的中线?AG是哪些三角形的高?17. (2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a>0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图二、与三角形有关的线段(提高篇)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有( )A.1个B.2个C.3个D.4个2.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为( )A.2个B.4个C.6个D.8个3.(2016春•成安县期末)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③4.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是( ) A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高5.(2015春•南长区期中)有4根小木棒,长度分别为3cm、5cm、7cm、9cm 任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.2个B.3个C.4个 D.5个6.给出下列图形:其中具有稳定性的是( )A .①B .③C .②③D .②③④7.如图所示为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为平方公分,则此方格纸的面积为多少平方公分? ( )A .11B .12C .13D .148.王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再钉上几根木条?( )A .0根B .1根C .2根D .3根二、填空题9.(2014春•渝北区期末)对面积为1的△ABC 进行以下操作:分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B=2AB ,B 1C=2BC ,C 1A=2CA,顺次214连接A 1、B 1、C 1,得到△A 1B 1C 1(如图所示),记其面积为S 1.现再分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2,则S 2= .10.三角形的两边长分别为5 cm 和12 cm ,第三边与前两边中的一边相等,则三角形的周长为________.11.(2016春•丹阳市校级期中)如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有 个.12.在数学活动中,小明为了求…的值(结果用n 表示),设计了如图所示的几何图形.请你利用这个几何图形求…=________.13.请你观察下图的变化过程,说明四边形的四条边一定时,其面积________确定.(填“能”或“不能”)23411112222++++12n +23411112222++++12n+14.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,ABCD的面积最大,最大值是________.三、解答题15.草原上有4口油井,位于四边形ABCD的四个顶点上,如图所示,如果现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD为最小,说明理由.16.取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD按图②所示折叠,则AB与DC相交于点G.试问:△AGC和△BGD的面积哪个大?为什么?17. 已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.18. (2014春•西城区期末)阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P 是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:BD=PM+PN.他发现,连接AP,有S△ABC=S△ABP+S△ACP,即AC•BD=AB•PM+AC•PN.由AB=AC,可得BD=PM+PN.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:BD=PN﹣PM.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵S△ABC=S△APC﹣,∴AC•BD=AC•﹣AB•.∵AB=AC,∴BD=PN﹣PM.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示的位置,利用图4探究得出此时BD,PM,PN,PQ之间的数量关系是:.【答案与解析】一、选择题1. 【答案】B ;【解析】根据两边之和大于第三边:⑤⑥满足. 2. 【答案】B ;【解析】5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有4个,所以 3. 【答案】B ;【解析】①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误. 4. 【答案】C ;【解析】三角形高的定义. 5. 【答案】B ;【解析】解:可搭出不同的三角形为:3cm 、5cm 、7cm ;3cm 、5cm 、9cm ;3cm 、7cm 、9cm ;5cm 、7cm 、9cm 共4个,其中3cm 、5cm 、9cm 不能组成三角形,故选B . 6. 【答案】C ;【解析】均是由三角形构成的图形,具有稳定性. 7. 【答案】B ;【解析】设每个小正方形的边长为a ,则有16a 2-4 a ×2 a ÷2-3 a ×2 a ÷2-4 a ×a ÷2=,解得a 2=,而整个方格纸的面积为16a 2=12(平方公分). 8. 【答案】B ; 二、填空题 9. 【答案】361;21434【解析】解:连接A 1C ,根据A 1B=2AB ,得到:AB :A 1A=1:3,因而若过点B ,A 1作△ABC 与△AA 1C 的AC 边上的高,则高线的比是1:3, 因而面积的比是1:3,则△A 1BC 的面积是△ABC 的面积的2倍, 设△ABC 的面积是a ,则△A 1BC 的面积是2a ,同理可以得到△A 1B 1C 的面积是△A 1BC 面积的2倍,是4a , 则△A 1B 1B 的面积是6a ,同理△B 1C 1C 和△A 1C 1A 的面积都是6a , △A 1B 1C 1的面积是19a ,即△A 1B 1C 1的面积是△ABC 的面积的19倍, 同理△A 2B 2C 2的面积是△A 1B 1C 1的面积的19倍, ∴S 2=19×19×1=361. 故答案为:361.10.【答案】29cm ; 11.【答案】6; 12.【答案】; 【答案】解:如图所示,设大三角形的面积为1,然后不断地按顺序作出各个三角形的中线,根据三角形的中线把它分成两个面积相等的三角形可知,…表示组成面积为1的大三角形的n个小三角形的面积之112n -23411112222++++12n +和,因此…=.13.【答案】不能;【解析】因为四边形的高不能确定. 14.【答案】90°, 48 cm 2; 三、解答题 15.【解析】解:维修站应建在四边形两对角线AC 、BD 的交点H 处,理由如下:取不同于H 的F 点,根据三角形两边之和大于第三边可得;FD+FB >HD+HB ,FC+FA >HC+HA .所以:FD+FB+FC+FA >HD+HB+HC+HA , 即HD+HB+HC+HA 为最小. 16.【解析】解:∵ BD =CD ,∴ . ∴ . ∴ . 17.【解析】解:(1)当高AD 在△ABC 的内部时(如图(1)).因为∠BAD =70°,∠CAD =20°,所以∠BAC =∠BAD+∠CAD =70°+20°=90°.当高AD 在△ABC 的外部时(如图(2)).23411112222++++12n +112n -ABD ACD S S =△△ABD ADG ACD ADG S S S S -=-△△△△ADG BGD S S =△△因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.综上可知∠BAC的度数为90°或50°.(2)如图(1),当AD在△ABC的内部时,因为∠BAC=∠BAD+∠CAD=70°+20°=90°,所以△ABC是直角三角形.如图(2),当AD在△ABC的外部时,因为∠BAC=∠BAD-∠CAD=70°-20°=50°,∠ABC=90°-∠BAD=90°-70°=20°,所以∠ACB=180°-∠ABC-∠BAC=180°-50°-20°=110°.所以△ABC为钝角三角形.综上可知,△ABC是直角三角形或钝角三角形.18.【解析】解:(1)证明:连接AP.∵S△ABC=S△APC﹣S△APB,∴AC•BD=AC•PN﹣AB•PM.∵AB=AC,∴BD=PN﹣PM.(2)①BD=PM+PN+PQ;如图3,连接AP、BP、CP,∵S△ABC=S△APC+S△APB+S△BPC∴AC•BD=AC•PN+AB•PM+BC•PQ,∵AB=AC=BC,∴BD=PM+PN+PQ;②BD=PM+PQ﹣PN;如图4,连接AP、BP、CP,∵S△ABC=S△APB+S△BPC﹣S△APC.∵AC•BD=AB•PM+BC•PQ﹣AC•PN,∵AB=AC=BC,∴BD=PM+PQ﹣PN.。
与三角形有关的线段练习题(含答案)

与三角形有关的线段练习题11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80° B.90° C.20° D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30° B.40° C.50° D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61° B.39° C.29° D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60° B.36° C.54° D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80° B.90° C.100° D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30° B.40° C.60° D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180° B.360° C.540° D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?1.1与三角形有关的线段11.1.1三角形的边1.C 2.B 3.C 4.6∠B AE∠AED∠C5.解:(1)∵|a-3|+(b-2)2=0,∴a-3=0,b-2=0,∴a=3,b=2.由三角形三边关系得3-2<c<3+2,即1<c<5.(2)∵c为整数,1<c<5,∴c=2或3或4.11.1.2三角形的高、中线与角平分线11.1.3三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S△ABC=12AB·CE=12×6×4.5=13.5.(2)∵S△ABC=12BC·AD,∴BC=2S△ABCAD=2×13.55=5.4.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和1.D 2.B 3.30° 4.(1)27(2)29(3)595.解:∵∠BAC=65°,∠C=30°,∴∠B=85°.∵DE∥BC,∴∠BDE=180°-∠B=180°-85°=95°.第2课时直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A=70°,CE,BF是△ABC的两条高,∴∠EBF=20°,∠ECA=20°.又∵∠BCE =30°,∴∠ACB=50°,∴在Rt△BCF中,∠FBC=40°.7.证明:∵∠ACB=90°,∴∠A+∠B=90°.∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC =90°,∴CD⊥AB.11.2.2三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE=140°,∴∠ACB=40°.∵∠A=80°,∴∠1=40°+80°=120°.11.3多边形及其内角和11.3.1多边形1.A 2.B 3.B 4.B 5.18 6.457.解:(1)六边形ABCDEF,它的内角是∠A,∠B,∠C,∠D,∠E,∠F.(2)如图所示.(3)如图,∠DCG即为点C处的一个外角(答案不唯一).11.3.2多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n边形.由题意可得(n-2)·180°=3×360°,解得n=8.故该多边形为八边形.8.解:根据题意,设四边形ABCD的四个外角的度数分别为3x,4x,5x,6x,则3x+4x+5x+6x=360°,解得x=20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.。
7.1与三角形有关的线段(习题精选)

三角形边(1)一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个B.2个 C.3个D.4个2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒 B.20cm的木棒C.50cm的木棒D.60cm的木棒4.已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )A. 2cm B. 3cm C. 4cm D. 5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个 B.3个C.4个D.5个二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.三、基础训练:1.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>21(AB+BC+AC).2.已知等腰三角形的两边长分别为4,9,求它的周长.四、提高训练:设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c为边的三角形共有几个?五、探索发现:若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?六、中考题与竞赛题:1.(2001.南京)有下列长度的三条线段,能组成三角形的是( )A. 1cm, 2cm, 3cm B. 1cm, 2cm, 4cm; C. 2cm, 3cm, 4cm D. 2cm, 3cm, 6cm2.(2002.青海)两根木棒的长分别是8cm,10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.三角形边(2)一、选择题:1.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )A .是边BB ′上的中线 B .是边BB ′上的高C .是∠BAB ′的角平分线D .以上三种性质合一2.如图2所示,D ,E 分别是△ABC 的边AC ,BC 的中点,则下列说法不正确的是( ) A .DE 是△BCD 的中线 B .BD 是△ABC 的中线 C .AD=DC ,BD=EC D .∠C 的对边是DE3.如图3所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且S △ABC = 4cm 2,则S 阴影等于( )A . 2cm 2B . 1cm 2C .21 cm 2D .41 cm 24.在△ABC ,∠A=90°,角平分线AE 、中线AD 、高AH 的大小关系为( ) A .AH<AE<AD B .AH<AD<AE C .AH ≤AD ≤AE D .AH ≤AE ≤AD 5.在△ABC 中,D 是BC 上的点,且BD :DC=2:1,S △ACD =12,那么S △ABC 等于( ) A .30 B . 36 C .72 D .24 6.不是利用三角形稳定性的是( )A .自行车的三角形车架B .三角形房架C .照相机的三角架D .矩形门框的斜拉条二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度. 2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC 中,∠B=80°,∠C=40°,AD ,AE 分别是△ABC 的高线和角平分线, 则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______, 三角形的三条角平分线交于一点, 这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____. 三、基础训练:1.如图所示,在△ABC 中,∠C-∠B=90°,AE 是∠BAC 的平分线,求∠AEC 的度数.2.在△ABC 中,AB=AC ,AD 是中线,△ABC 的周长为34cm ,△ABD 的周长为30cm ,求AD 的长. 四、提高训练:在△ABC 中,∠A=50°,高BE ,CF 所在的直线交于点O ,求∠BOC 的度数. 五、探索发现:如图所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花, 每个图案花盆的总数为s .按此规律推断s 与n 有什么关系,并求出当n=13时,s 的值.六、中考题与竞赛题:(2000.杭州)AD ,AE 分别是等边三角形ABC 的高和中线,则AD 与AE 的大小关系为____.。
7.1与三角形有关的线段过关检测题A

:
{ . :1B 4 解 ( ) D=6厘 米
1 ( ) 5 ( ) 7 3 。 ( ) 0 8 。 1 0 .1 3。 2 5。 3 3 2。 0 0。
: ‘AD是 B . ‘ C边 的中线 ,
2 ① 9 。② 8 。③ 9 。 3 7 。9 . 0 5 5 . 54
45 : .2
BE = EB = c
/ABC = x 8  ̄ 1 0 =
罢
分 ,
l・ :工 傅 样 的 学 理 “用 角 的 解木 师 这 做 数 道 是 利 三 形 5
在R 中 1 / :5 t 肋 , : 24 . △ 。
i
lA
; D 第 B …
6题 图
( )A f C. 3 2. D B , . : . /
" .
。 1 层 : , i
1B ・
2・ A
3 C ・
4B ・
5 D ・
7
.
7 ) A 2 E( ! 1CDBC ( A 3 : ・ A ( ) c
・
9
8 1 6 。 ・2 0
9 直 角或 钝 角 ・
国外试题选编( 题在第 2 0页)
0 : , 。c5 5 2。・.Ci . . 114 c 7 2: C 38条 。 3 。 1 .
~ 一 i
: :
自信 是走 向成 功 的第一 步
日 . C
③
第 6 图 题
④
7( . 方案设 计 ) 图所示 有 一个 六 边形 的钢 架 如
A C E , 由六 根 钢管 衔 接 而成 , 个 钢 B D F它 这
架结构是不稳定的, 在建筑和机械中 。 我们 常常需要想办法稳 固这种结构 。使它不能
7.1.1与三角形有关的线段

三解答题:
如图,AB=AC=BE=DC,AD=AE=BD, 写出图中所有的等腰三角形。
A
B
D
E
C
用一条长为18cm的细绳围成一个等腰三 角形 (1)如果腰长是底边的2倍,那么各边 的长是多少? 4cm (2)能围成有一边的长为8cm 的等腰三 角形吗?为什么?
不等边三角形
锐角三角形
腰和底不相等 等边三角形
按边分
等腰三角形
按角分
直角三角形 钝角三角形
表示方法
基本要素 定义
三角形两边之差小于第三边
· 认识三角形
三 角
形
· 认识三角形
与三角形有关的线段
—三角形的边
不等边三角形
锐角三角形
腰和底不相等 等边三角形
直角三角形 钝角三角形
表示方法
基本要素 定义
三 角 形
如图所示,你能从图中找到多少个三角形? 把它们写出来.
A
B
C
D
E
1 元宵节的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线 与装有红色彩灯的电线哪根长呢?说明你的理由。
结论 三角形任意两边之差小于第三边
试一试
下列每组数分别是三条线段的长度,用它们作 为边能组成三角形吗?为什么?
(1) 3cm 4cm 5cm (2)12cm 12cm 20cm (3) 8cm 15cm 7cm (4) 5cm 11cm 5cm 结论 如果三条线段中较短的两条线段之和大于
较长的一条线段,那么这三条线段就能组成三角形.
三 角 形
一 填空题: 1、图中共有___个三角形,用字母表示出来 是_____________。 A D
E
B C 2、从长为2cm,3cm ,4cm ,5cm中的四条线 段中取出三条线段首尾顺次连接,其中能够组成 三角形的取法有___种。
与三角形有关的线段练习题

与三角形的边、角有关的练习1、 对于下面每个三角形,过顶点A 画出中线、角平分线和高。
2、 对于下面第个三角形,过顶点A 画出中线、角平分线和高。
3、如图(1),AD 、BE 、CF 是△ABC 的三条中线,请根据线段中线的几何表示填空: AB=2 ,BD= ,AE=214、如图(2),AD 、BE 、CF 是△ABC 的三条角平分线,请根据角平分线的几何表示填空: ∠1= ,∠3=∠ =21,∠ACB=2 ,∠4= . 5、一个三角形有两条边相等,周长为20㎝,三角形的一边长6㎝,求其他两边长。
6、(1)已知等腰三角形的一边等于6,一边等于5,求它的周长。
(2)已知等腰三角形的一边等于9,一边等于4,求它的周长。
7、如图(3),△ABC 中,AB=2㎝,BC=4㎝,△ABC 的高AD 与CE 的比是多少? 8、如图(4),AD 是△ABC 的角平分线,DE ∥AC ,DE 交AB 于E ,DF ∥AB ,DF 交AC 于F ,图中∠1与∠2有什么关系?为什么?9、一个多边形的内角和为1200°,它是几边形? 10、一个多边形的内角和是外角和的21,它是几边形? 11、已知一个n 边形的每一个内角都等于150°. (1)求n ;(2)求这个n 边形的内角和;(3)从这个n 边形的一个顶点出发,可以画出几条对角线?C CB B B AA A CCBBBAAA4(2)321FED (1)F E D CCBBAA (3)ED CBA1(4)2F E D CBA12、一个多边形的内角和与外角和的比是7︰2,求这个多边形的边数和对角线各是多少条? 13、△ABC 中,∠B=∠A +10°,∠C=∠B +10°, △ABC 的各内角的度数。
14、如图(5),AD ⊥BC,∠1=∠2,∠C=65°,求∠BAC 15、如图(6),AB ∥CD,∠A=45°,∠D=40°,求 ∠1与∠2的度数。
精品 2016年八年级数学上册 与三角形有关的线段 练习题

精品 2016年八年级数学上册与三角形有关的线段练习题2016年八年级数学上册与三角形有关的线段练题1.下列各组线段的长为边,能组成三角形的是:A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm2.为了估计池塘两岸A,B间的距离,XXX在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是:A.15m B.17m C.20m D.28m3.若三角形的三条边长分别为4,5,x,则x的取值范围是:A.4<x<5 B.0<x<9 C.1<x<9 D.﹣1<x<94.已知三角形的三边长分别为4、5、x,则x不可能是:A.3B.5C.7D.95.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根可以组成不同三角形的个数是:A.1个 B.2个 C.3个 D.4个6.如果一个三角形的两边长分别是2和4,则第三边可能是:A.2 B.4 C.6 D.87.已知三角形的一边长为2,另一边长为3,且它的周长为偶数,那么第三边长为:A.1 B.2 C.3 D.48.若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b ﹣c﹣a|+|a+b﹣c|=:A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c9.下面的说法正确的是:A.三角形的角平分线、中线和高都在三角形内 B.直角三角形的高只有一条 C.三角形的高至少有一条在三角形内 D.钝角三角形的三条高都在三角形外面11.下列说法正确的是:A.三角形的角平分线,中线和高都在三角形的内部 B.直角三角形的高只有一条 C.钝角三角形的三条高都在三角形外 D.三角形的高至少有一条在三角形内12.在△ABC中,D是BC上的一点,且△ABD与△ADC 的面积相等,则线段AD为△XXX的:A.高 B.角平分线 C.中线 D.不能确定13.能将三角形面积平分的是三角形的:A.角平分线 B.高C.中线D.外角平分线14.下列说法正确的个数是:①两条直线被第三条直线所截,则同旁内角一定互补;②若线段a、b、c,满足b+c>a,则以a、b、c为边一定能组成三角形。
八年级上册数学同步练习题库:与三角形有关的线段(填空题:一般)

与三角形有关的线段(填空题:一般)1、等腰三角形一腰上的中线将三角形的周长分成9和15,则这个等腰三角形的底边长为_________。
2、如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=2AB、B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1、C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,经过2015次操作后△A2015B2015C2015的面积为.3、已知一个三角形的两边长分别为5和3,则第三边上的中线x的取值范围是________。
4、用18cm长的细绳围成一个边长4cm 的等腰三角形,则这个等腰三角形腰长为_______cm5、如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为19cm,则△ABD的周长为_____________________.6、等腰三角形的两边a,b满足,则三角形的周长是_____.7、已知a,b,c为三个正整数,如果a+b+c=12,那么以a,b,c为边能组成的三角形是:①等腰三角形,②等边三角形,③直角三角形,④钝角三角形.以上结论正确的是______.(只填序号)8、如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为______.9、已知a、b、c是一个三角形的三条边长,则化简|a-b+c|-|a-b-c|=_________ .10、一个三角形两边长分别为3和8,第三边长为奇数,则第三边长为__.11、三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________.12、如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为___________.13、已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长为_____________.14、若等腰三角形的两条边长分别为2cm和4cm,则它的周长为________ .15、若实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是______.16、如图,△ABC的面积为1,分别倍长(延长一倍)AB,BC,CA得到△A1B1C1,再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.…按此规律,倍长n次后得到的△A2017B2017C2017的面积为________.17、已知一个等腰三角形两边分别为4和6,那么这个等腰三角形的周长为_________.18、如图所示,是的中线,,,那么和的周长差是________ .19、如图,△ABC的角平分线BO、CO相交于点O,且∠BOC=132°,则∠A=__________.19、如图,已知BE、CF是△ABC的角平分线,BE、CF相交于D,若,则等于________.21、AD是△ABC的边BC上的中线,AB=10,AC=6,中线AD的取值范围是_____________.22、如图,△ABC的面积为1,沿△ABC的中线AD1截取△ABD1的面积为S1,沿△AD1C的中线AD2截取△AD1D2的面积为S2.按上述方法依次截取的三角形的面积分别为S3,S4 …S n,则所截取的三角形的面积之和为_________.23、已知三角形的两边长分别是3cm和7cm,第三边长是偶数,则这个三角形的周长为.24、已知三角形的三边长分别是3,5,x,则x的取值范围是___________.25、已知三角形的三边长分别为3,5,x,则化简式子|x-2|+|x-9|=___.26、三角形纸片上有100个点,连同三角形的顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形共有_______个.27、三角形的两边长分别是2和3,若第三边的长是奇数,则第三边的长为_____;若第三边的长是偶数,则三角形的周长为______.28、一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是______.29、等腰三角形中,已知两边的长分别是9和6,则周长为__________.30、若等腰三角形的周长为10,一边长为3,则这个等腰三角形的腰长为_________31、等腰三角形两边长分别为3,7,则它的周长为____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1与三角形有关的线段习题
画龙点睛
1.AD是△ABC的高,可表示为,AE是△ABC的角平分线,可表示为,BF是△ABC的中线,可表示为 .
2.如图7-1-3,AD是△ABC的角平分线,则∠ =∠ =
1
2
∠;E在
AC上,且AE=CE,则BE是△ABC的;CF是△ABC的高,则∠ =∠ =900,CF AB.
3.如图7-1-4,AD是△ABC的中线,AE是△ABC的角平分线,若BD=2cm,则BC= ;若∠BAC=600,则∠CAE= .
4.如图7-1-5,以AD为高的三角形共有 .
慧眼识金
1.三角形的一条高是一条……………………………()
A.直线
B.垂线
C.垂线段
D.射线
2.下列各组线段中能组成三角形的是…………………()
A.a=6,b=8,c=15
B.a=7,b=6,c=13
C.a=4,b=5,c=6
D.a=
1
2
,b=
1
4
,c=
1
8
3.下列说法中,正确的是………………………………()
A.三角形的角平分线是射线
B.三角形的高总在三角形的内部
C.三角形的高、中线、角平分线一定是三条不同的线段
D.三角形的中线在三角形的内部
4.下列图形具有稳定性的是………………………………()
A.正方形
B.梯形
C.三角形
D.平行四边形
5.如图7-1-6,AD⊥BC于D,CE⊥AB于E,AD、CE交于点O,OF⊥CE,则下列说法中正确的是………………………………………………………()
A.OE为△ABD中AB边上的高
B.OD为△BCE中BC边上的高
C.AE为△AOC中OC边上的高
D.OF为△AOC中AC边上的高
6.某同学把一块三角形玻璃打碎成如图7-1-7所示的三块,现在要到玻璃店去配一块完
C
A
B
E
F
图7-1-3
A
B
D E C
图7-1-4
A
B
D
图7-1-5
A
B C
F
E
O
图7-1-6
全一样的玻璃,那么最省事的办法是……………………( )
A.带①去
B.带②去
C.带③去
D.带①和②去
1.已知△ABC 的周长是36cm ,a 、b 、c 是三边长,且a+b=2c,a:b=1:2,求△ABC 的三边长.
2.已知BD 是△ABC 的中线,AC 长为5cm ,△ABD 与△BDC 的周长差为3cm.AB 长为3cm ,求BC 的长.
1.如图7-1-8,在△ABC 中,∠ACB=900,CD 是AB 边上的高,AB=5cm,BC=4cm,AC=3cm,
求(1) △ABC 的面积;(2)CD 的长.
2.如图7-1-9,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E,若∠EDA=∠EAD,试说明,AD 是△ABC 的角平分线.
小鹏同学有长分别为10cm ,8cm ,9cm ,2cm 的四根小木棒,用来钉成三角形.请你帮他设计,可钉成几种不同的三角形.
图7-1-8 A
E
B C 图7-1-9
一块三角形的试验田,须将该试验田划分为面积相等的四小块,种植四个不同的优良品种,涉及两种以上的划分方案,并作图说明。