常微分方程讲义 (2)
高等数学常微分方程讲义,试题,答案

高等数学常微分方程讲义,试题,答案常微分方程§4.1 基本概念和一阶微分方程(甲)内容要点一、基本概念1、常微分方程和阶2、解、通解和特解3、初始条件4、齐次线性方程和非齐次线性方程二、变量可分离方程及其推广1、dyp(x)Q(y)dx(Q(y) 0) 2、齐次方程:dy dxy f x三、一阶线性方程及其推广1、dydyP(x)y Q(x) 2、P(x)y Q(x)y dxdx( 0,1)四、全微分方程及其推广(数学一)1、P(x,y)dx Q(x,y)dy 0,满足Q P2、P(x,y)dx Q(x,y)dy 0,五、差分方程(数学三)(乙)典型例题例1、求y x22Q p (RQ) (RP)但存在R(x,y),使x y x ydydyxy的通解。
dxdx解:y (x xy)22dy0dxydyy2 x d__y x2 y1 x2yduu2令u,则u x udx x(1 u)du 0xdxu 11 udxdu u x C1 ln|xu| u C1例2C1 uce, y cedyy的通解d__ y4uyx求微分方程d__ y4dx1解:此题不是一阶线性方程,但把x看作未知函数,y看作自变量,所得微分方程即x y3是一阶dyydyy11dy 14 dy 133yydy C y Cy 线性方程P(y) ,Q(y) y x e yey 3例3设y e是xy p(x)y x的一个解,求此微分方程满足yx ln2 0的特解xx解:将y e代入微分方程求出P(x) xe先求出对应齐次方程x,方程化为dy(e x 1)y 1 dxx xdy(e x 1)y 0的通解y cex e根据解的结构立刻可得非齐次方程通解y ex cex e dx再由yx ln2 0得2 2ec 0,c e例4设1212故所求解y e exx e x12满足以下件F(x) f(x)g(x),其中f(x),g(x)在( , )内f (x) g(x),g (x) f(x),且f(0) 0,f(x) g(x) 2ex(1)求F(x)所满足的一阶微分方程(2)求出F(x)的表达式解:(1)由F (x) f (x)g(x) f(x)g (x) g2(x) f2(x) [f(x) g(x)]2 2f(x)g(x) (2ex)2 2F(x) 可知F(x)所满足的一阶微分方程为F (x) 2F(x) 4e2x (2)F(x) e2dx4e2xe 2dxdx c e 2x 4e4xdx c e2x ce 2x将F(0) f(0)g(0) 0代入,可知c 1 于是例52F(x) e2x e 2xdy2(1 y)的通解求微分方程(y x) xdxsec2udusec3u 解:令y tanu,x tanv, 原方程化为(tanu tanv)secv2secvdv化简为sin(u v)dudzdudz 1 再令z u v,则1,方程化为sinz 1 sinz dvdvdvdv sinz(sinz 1) 1dz dv c, 1 sinz 1 sinzdz v c,1 sinzv c21 sinz1 sinz z v c 2coszz tanz secz v c z最后Z再返回x,y,v也返回x,即可。
常微分方程讲义精简

例2 求解方程 .解令,有原方程的参数形式为由基本关系式有积分得到从而原方程的参数形式通解为也可以消去参数t ,得到原方程的通积分为通解为例4 求解方程解令原方程的参数形式为(1.72)由基本关系式有或上式又可化为由,代入(1.72)的第三式,得原程的一个特解 .再由,解得,代入(1.72)的第三式,得原方程的通解例5求解方程(1.73)这里,假定是二次可微函数.解 (1.73)的参数形式为(1.74)由基本关系式有整理得由,得,代入(1.74)的第三式,得原方程通解(1.75)由于,由解得隐函数 ,代入(1.74)第三式,得到原方程的一个特解(1.76)(第7讲几种可降阶的高阶方程例1求解方程解令则有通解为从而积分四次,得到原方程的通解第二种可降阶的高阶方程例2求解方程.解令,则代入原方程得或积分后得"其中a"为任意常数. 解出p"得或积分后得其中 b为任意常数. 于是有或其中为任意常数.1.7.3恰当导数方程假如方程( 1.80)的左端恰为某一函数对 x的导数,即(1.80)可化为则(1.80)称为恰当导数方程.这类方程的解法与全微分方程的解法相类似,显然可降低一阶,成为之后再设法求解这个方程.例3求解方程.解易知可将方程写成故有即.积分后即得通解例4 求解方程.解先将两端同乘不为0的因子,则有故,从而通解为参数法第10讲解的延展2.3.1 延展解、不可延展解的定义定义2.1 设是初值问题(2,2)在区间上的一个解,如果(2,2)还有一个在区间上的解,且满足(1)(2)当时,则称解是可延展的,并称是在I2上的一个延展解.否则,如果不存在满足上述条件的解,则称是初值问题(2.2)的一个不可延展解,(亦称饱和解).这里区间I1和I2可以是开的也可以是闭的..3.2 不可延展解的存在性定义2.2设定义在开区域上,如果对于D上任一点,都存在以为中心的,完全属于D的闭矩形域R,使得在R上的关于y满足李普希兹条件,对于不同的点,闭矩形域R的大小以及常数N可以不同,则称在D上关于y满足局部李普希兹条件“柯西收敛准则收敛对,N,使当1.数列,就有,存在对,N,使当2.,时,总有.存在对,A> 0,使当3.,总有.”例1试讨论方程通过点(1,1)的解和通过点(3,-1)的解的存在区间.解此时区域D是整个平面.方程右端函数满足延展定理的条件.容易算出,方程的通解是故通过(1,1)的积分曲线为它向左可无限延展,而当x →2-0时,y →+∞, 所以,其存在区间为(-∞,2),参看图2-10.图 2-10通过(3,-1)的积分曲线为它向左不能无限延展,因为当x →2+0时,y →-∞,所以其存在区间为(2,+∞).顺便指出:这个方程只有解y = 0可以向左右两上方向无限延展.这个例子说明,尽管在整个平面满足延展定理条件,解上的点能任意接近区域D的边界,但方程的解的定义区间却不能延展到整个数轴上去.例2讨论方程解的存在区间.解方程右端函数在无界区域内连续,且对y满足李普希兹条件,其通解为过D1内任一点的初值解.图 2-11在(0,+∞)上有定义,且当x →+0时,该积分曲线上的点无限接近D1的边界线x = 0,但不趋向其上任一点(图2-11).在区域内的讨论是类似的.延展定理是常微分方程中一个重要定理.它能帮助我们确定解的最大存在区间.从推论和上面的例子可以看出,方程的解的最大存在区间是因解而异的.例3考虑方程及在平面上连续,试证明:对于任意及假设,方程满足的解都在(-∞,+∞)上存在.图 2-12证明根据题设,可以证明方程右端函数在整个平面上满足延展定理及存在与唯一性定理的条件.易于看到,为方程在(-∞,+∞)上的解.由延展定理可知,满足任意,的解上的点应当无限远离原点,但是,由解的唯一性,又不能穿过直线,故只能向两侧延展,而无限远离原点,从而这解应在(-∞,+∞)上存在(图2-12).2.4.1 奇解在本章 2.2节的例2中,我们已经看到方程的通解是,还有一解,除解外,其余解都满足唯一性,只有解所对应的积分曲线上每一点,唯一性都被破坏. 这样的解在许多方程中存在.例1求方程的所有解.解该方程的通解是此外还有两个特解和.由于该方程右端函数的根号前只取+号,故积分曲线如图2-13所示,图 2-13显然解和所对应的积分曲线上每一点,解的唯一性均被破坏。
常微分方程的几何解释

(2.2)
a x b, y ,
假设函数 f x, y在给定区域上连续且有界.于是
它在这个区域上确定了一个线素场.下面利用线素场
求出经过 x0, y0 的近似积分曲线.把
x0 ,b n 等分,其分点为:
xk x0 kh, k 0,1, , n
h b x0 , n
xn b
常微分方程
绵阳师范学院
先求出 f x0, y0
用经过 x0, y0 斜率为
y
x1
,
y1
x2
,
y2
f x0, y0 的直线段来近
y0
似积分曲线,其方程为
y y0 f x0, y0 x x0
x0 x1 x2
bx
求出直线上横坐标 x1 处的点的纵坐标
y1 y0 f x0, y0 x1 x0 y0 f x0, y0 h
如果 h 很小 x1, y1 就很接近积分曲线上的点 x1, y x1
因 f x, y 连续.于是由点 x1, y1 出发的斜率为
f x1, y1 的直线段又近似于原积分曲线.它的方程为
了线素场.
y k x
易见在点 x, y 的线素与
过原点与该点的射线重合.
常微分方程
绵阳师范学院
定理2.1 L为(2.1)的积分曲线的充要条件是: 在L 上任一点,L 的切线方向与(2.1)所确定的线 素场在该点的线素方向重合;即L在每间点均与 线素场的线素相切.
证明 必要性 设L为(2.1)的积分曲线,其方程为
20
若初值问题
dy dx
f ( x, y),的解是存在,是否唯一?
清华大学微积分高等数学课件第讲常微分方程二 共32页

29.07.2019
10
给 y(x0)y0 得 C y0
特解
x
x
yex0p(x)d(xy0xx0q(非x)齐e次x0特p(x解)dd x )x
非齐次通解的结构:
设y是y'p(x)y0 (2)的通 解 ,
y(x)是y'p(x)yq(x) (1)的 一 个 ,
则(1)的 通 解 为 y(x)yy(x)
代入方程并计算化简
yC (y) C (y) C (y) yye
C(y)ey
积分得 C(y)eyd yeyC
通解 xCyyey
29.07.2019
14
[例 3]设 a0,f(x)在 [0, )连 续,证 有明 界 方程
dxaxf(t) (t0) dt
每个[0 解 , 在 )有.界
x2 ydx x2ydyd(x2y2) 2
29.07.2019
23
[ 例 1 ]解(x 方 2 y ) d 程 ( x x y ) d 0 y
[解] 凑微分
x 2 d x (xd yyd )x yd 0 y
d(x3)d(x)yd(y2)0
3
2
d(x3 xyy2)0
3
2
通解
x3 xy y2 C
3
2
29.07.2019
24
[例 2] 解方 yd 程 x(y3ln x)d y0
x
[解] 改写为
(ydx lnxd) yy3dy 0 x
(yld n x ln x) d y y 3 d y 0
d(ylnx)d(y4)0 4
通解为
yl nx1 y4 C 4
例如 xd ydx d(x)y
常微分方程 ppt课件

量,x是未知函数,是未知函数对t导数. 现
在,我们还不会求解方程(1.1),但是,如果
考虑k=0的情形,即自由落体运动,此时方程
(1.1)可化为
d2x dt 2
g
(1.2)
将上式对t积分两次得
x(mt)xk12xgt2mgc1t c2
(1.3) (1.1)
ppt课件
11
一般说来,微分方程就是联系自变量、 未知函数以及未知函数的某些导数之间的关 系式. 如果其中的未知函数只是一个自变量 的函数,则称为常微分方程;如果未知函数 是两个或两个以上自变量的函数,并且在方 程中出现偏导数,则称为偏微分方程. 本书 所介绍的都是常微分方程,有时就简称微分 方程或方程.
这样,从定义1.1可以直接验证:
F(x, y, y) 0
(1.8)
如果在(1.8)中能将 y 解出,则得到方程
y f (x, y)
(1.9)
或
M (x, y)dx N(x, y)dy 0
(1.10)
(1.8)称为一阶隐式方程,(1.9)称为一阶显式方程,(1.10)称为微 分形式的一阶方程.
ppt课件
14
n 阶隐式方程的一般形式为
常微分方程
ppt课件
1
常微分方程课程简介
常微分方程是研究自然科学和社会科学中的事物、 物体和现象运动、演化和变化规律的最为基本的数 学理论和方法。物理、化学、生物、工程、航空航 天、医学、经济和金融领域中的许多原理和规律都 可以描述成适当的常微分方程,如牛顿运动定律、 万有引力定律、机械能守恒定律,能量守恒定律、 人口发展规律、生态种群竞争、疾病传染、遗
ppt课件
2
传基因变异、股票的涨伏趋势、利率的 浮动、市场均衡价格的变化等,对这些 规律的描述、认识和分析就归结为对相 应的常微分方程描述的数学模型的研究.
经济数学基础微积分课件 常微分方程

例2 验证函数 y e x e x 是不是方程
y 2 y y 0的解.
解 求 y e x e x 的导数,得 y e x e x , y e x e x
将y、y及y 代入原方程的左边,有
e x e x 2e x 2e x e x e x 0 即函数 y e x e x 不满足原方程,
前页 后页 结束
M1(x) N1(x)
d
x
N2(y) M 2( y)
d
y
0
将(9.2.3)式两边积分后,
(9.2.3)
M1(x) N1(x)
d
x
N2(y) M 2( y)
d
y
C
(C为任意常数)
可验证,此结果即用隐式给出的方程(9.2.3)的通解.
约定:
在微分方程这一章中不定积分式表示被积函数的一
y e p(x)d x q(x)e p(x)d x d x C
即为所求(9.3.1)的通解.
前页 后页 结束
例1 求微分方程 dy 2xy 2xe x2 的通解. dx
解 p(x) 2x, q(x) 2xex2
代入公式
y e2xd x 2xex2 e2xd x d x C
常微分方程
9.1 常微分方程的基本概念 9.2 可分离变量的微分方程 9.3 一阶微分方程与可降阶
的高阶微分方程 9.4 二阶常系数微分方程 9.5 常微分方程的应用举例
结束
9.1 常微分方程的基本概念
定义一 含有未知函数的导数(或微分)的方程称为 微分方程。
常微分方程:未知函数是一元函数的微分方程 偏微分方程:未知函数是多元函数的微分方程 定义二 在微分方程中,所出现的未知函数的最高阶
清华大学微积分高等数学课件第讲常微分方程二教案资料

2020/6/18
15
设 f(x) M
x(t)x0
tea(ts)f(s)ds
0
x0 M
tea(ts)ds
0
x0
M a
2020/6/18
16
二、伯努利(Bernoulli)方程
Bernoulli 方程
dyp(x)yq(x)yn dx
方程两端同除yn
yndyp(x)y1nq(x) dx
令z y1n
例如 xd ydx d(x)y
xdxyd yd(x2y2) 2
xdx y2ydxd(x y)
ydxy2xdyd(xy)
2020/6/18
22
xxd2 yyy2dxd(arctxya)n
yxd2x x y2dyd(arctxya)n
2020/6/18
8
C (x )y 1 (x ) C (x )y 1 '(x ) p (x )C (x )y 1 (x ) q (x )
y1(x)是 ( 2) 的 解 ,
C (x )y 1 '(x ) p (x ) C (x )y 1 (x ) 0 化简得到 C (x)y1(x)q(x)
即 C(x)q(x)ep(x)dx
通解 xCyyey
2020/6/18
14
[例 3] 设 a0,f(x)在 [0, )连 续,证 有明 界 方程
dxaxf(t) (t0) dt
每个[0 解 , 在 )有.界
[证] 设xx(t)是 满 足 初x始 (0)条 x0 件 的 解 .
则 x (t) e a(tx 0 0 teafs (s)d)s(t0 )
2020/6/18
9
积分 C(x) q(x)ep(x)dxC
常微分方程讲义和作业

第四章 常微分方程与数学模型微积分最主要的应用可能就是微分方程了,在物理学、力学、工程技术、经济学和管理科学等实际问题中具有广泛的应用。
一、什么是微分方程例1:含有未知函数的导数或微分的方程称为微分方程,例如()dyu x dx=,其中()y f x =为未知函数,()u x 为已知函数。
满足上述方程的函数()y f x =称为微分方程的解。
求下列微分方程满足所给条件的解: (1)2(2)dyx dx=-,20x y ==; (2)2232d x dt t =,11t dx dt ==,11t x ==。
二、分离变量法※例2:求微分方程y xy '=的通解。
解: 变形为:dy xy dx =, 分离变量:1dy xdx y=(此时漏掉解0y =), 两边同时积分:1dy xdx y =⎰⎰, 得:211ln 2y x C =+, 22111122x C x C y ee e+==,从而22111222x x C y e eC e =±=,其中12CC e =±,为任意非零常数,但0y =亦是方程的解,统一起来,方程的通解为:212x y Ce=,C 为任意常数。
上述求解过程比较繁琐,由于经常出现,为方便计,从分离变量后开始将求解过程简写为:两边同时积分:1dy xdx y =⎰⎰, 得:21ln ln 2y x C =+, 从而 2211ln 22xx C y e e Ce==这个过程严格说是有问题的,但比较简洁,又能得到正确的结果,所以常被采用。
例3:(1)牛顿冷却定律指出:如果物体和周围环境之间的温度相差不是很大的话,物体冷却速度与温差成正比(同样可用于加热的情况)。
命()T t 表示在时刻t 物体的温度,c T 表示周围环境的温度(假定是常数),建立微分方程并求解,得出()T t 的变化规律。
(2)清晨,警察局接到报案,街头发现一具死尸,6:30时测量体温为18℃,7:30时再测一次为16℃,室外温度为10℃(假定不变),人正常体温为37℃,请估计被害人何时死亡?(死亡时刻记为0t ,则0()37T t =,时刻6:30计算时看成6.5)例4:人口预测记时刻t 的人口为()P t ,当考察一个国家或一个较大地区的人口时,()P t 是一个很大的整数,为了利用微积分这一数学工具,将()P t 视为连续、可微函数.记初始时刻(0)t =的人口为0P ,假设人口增长的速度(即增长率)与t 时刻的人口数量()P t 成正比,利用下表中数据为20世纪世界人口建模,增长率是多少,建立的模型与数据相符合吗?解:设比例系数为μ(即增长率),则()P t 满足的微分方程为:0,(0)dPP P P dtμ==. 解出 0()tP t Pe μ= , 表明人口将按指数规律随时间无限增长(0μ>).上式称为人口指数增长模型,也称为马尔萨斯人口模型.以1900年为初始时刻,0(0)=1650P P =,得()1650tP t e μ=, 以1910年数据估计μ,即10(10)16501750P e μ==,解11750l n .0584101650μ=≈,即增长率约为0.6%,增长模型为0.005884()1650t P t e =若以1950年为初始时刻,为20世纪后50年建模,则0=2560P ,得()2560tP t e μ=,以1960年数据估计μ,即10(10)25603040P e μ==,解13040l n 0.017185102560μ=≈,即增长率约为1.7%,增长模型为0.017185()2560t P t e =但是长期来看,任何地区的人口都不可能无限增长,即指数模型不能描述、也不能预测较长时期的人口演变过程,这是因为人口增长率事实上是不断地变化着.排除灾难、战争等特殊时期,一般来说,当人口较少时,其增长较快,即增长率较大;人口增加到一定数量后,增长就会慢下来,即增长率变小.看来,为了使人口预测特别是长期预测能更好地符合实际情况,必须修改人口指数增长模型中关于人口增长率是常数这个基本假设.2.人口阻滞增长模型(Logistic 模型)分析人口增长到一定数量后增长率下降的主要原因,人们注意到,自然资源、环境条件等因素对人口的增长起着阻滞作用,并且随着人口的增加,阻滞作用越来越大.所谓人口阻滞增长模型就是考虑到这个因素,对人口指数增长模型的基本假设进行修改后得到的.阻滞作用体现在对人口增长率μ的影响上,使得μ随着人口数量P 的增加而下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程讲义(一)
课程目标:
掌握常用的常微分方程解题技巧;利用常微分方程的思想建模。
上课方式:
课堂讲授、练习与考试。
课程特点:
承接高数、微积分、数学分析等课程而来,与导数、积分的关系非常紧密,在经济数学中有广泛的应用;常与其他数学工具与方法混合使用。
参考书目:
《常微分方程》,蔡燧林编著,武汉大学出版社,2003;及所有标注有“常微分方程”、“应用”、“经济数学”、“金融数学”的教材与专著。
为什么在模拟经济变化时要引入常微分方程?
注重刻画在无穷小时间段内的变量的动态变化,实现了从“静态”向“动态”的飞跃。
微分方程比初等函数更近于现实,更真于模拟。
什么是方程?)(x
y 。
f
什么是微分方程?
dy的方程;
常微分方程:含有dy、dx、
dx
偏微分方程:含有y ∂、x ∂、x
y ∂∂的方程。
x
y ∆∆的几何含义:割线、割线的斜率 dx
dy 的几何含义:切线、切线的斜率 dx
dy x y x =∆∆→∆0lim :数学上——切线的斜率,导数 经济上——变化率,边际
例:求2x y =与x e y =的导数
应当记下来的等式:
1)'(-=n n nx x ,c x dx nx n n +=⎰-1
x x e e =)'(,c e dx e x x +=⎰
x x 1
)'(ln =,C x dx x +=⎰ln 1
x x cos )'(sin =,⎰+=C x xdx sin cos
x x sin )'(cos -=,⎰+=-C x dx x cos )sin (
x tgx 2sec )'(=,⎰+=C tgx xdx 2sec
x ctgx 2csc )'(-=,⎰+=-C
ctgx dx x )csc (2
0)'(=C
k kx =)'(
'')'(b a b a +=±
'')'(ab b a ab +=
2'
')'(b ab
b a b a -=
'')])'([(g f x g f =
)()')((x p dx x p =⎰
x x x 2121)'(21==-,⎰+=C x dx x 21
a a a x x ln )'(=,C a adx a x x +=⎰ln
211
)'(arcsin x x -=,⎰+=-C x dx x arcsin 112
211
)'(x arctgx +=,⎰+=+C arctgx dx x
211
例:匀速运动与变速运动
例:不良资产的处置
常微分方程的“阶” 考察方程中导数的最高“阶”n n dx
y d dx y d dx dy ......,22, 而不是考察方程中的最高“次方”n dx
dy dx dy dx dy )......()(,2
常微分方程的“解”
通解:曲线族
特解:初值条件
例:检验1121++=
C x C y 是方程0)'(12''2=-+y y
y 的解
例:检验C y y x =+22sin 是方程0')22sin (sin 2=++y y y x y 的解
例:检验由参数方程⎪⎩
⎪⎨⎧+-=+-=C t t y t t x 24321432所决定的函数)(x f y =,是微分方程2)(3+-=dx
dy dx dy x 的解
例:设)(x p 是区间(a ,b )上的连续函数,证明⎰=-dx x p Ce y )(是微分方程0)('=+y x p y 在区间+∞<<<y b x a ,内的解。
例:一曲线经过点(2,0),且其上任意一点的切线界于切点和纵坐标轴之间的部分的长度恒等于2,求此曲线所满足的微分方程的表达式。
文献清单:
● 《常微分方程及其应用》,周义仓等编,科学出版社,2004
● 《微分方程模型》,(美)William F.Lucas 主编,朱煜民等译,国防科技大学,1998
● 《微分方程模型与混沌》,王树禾编著,中国科学技术大学出版社,1999
●《微分方程及其应用》,(美)M.Braun著,张鸿林译,人民教育出
版社,1980
●《常微分方程习题集》,周尚仁等编,人民教育出版社,1980
●《经济应用数学》,万世栋等主编,科学出版社,2002
●《经管财金建模方法及应用》,饶友玲等编著,清华大学出版社,
2004。