常微分方程讲义

合集下载

高等数学常微分方程讲义,试题,答案

高等数学常微分方程讲义,试题,答案

高等数学常微分方程讲义,试题,答案常微分方程§4.1 基本概念和一阶微分方程(甲)内容要点一、基本概念1、常微分方程和阶2、解、通解和特解3、初始条件4、齐次线性方程和非齐次线性方程二、变量可分离方程及其推广1、dyp(x)Q(y)dx(Q(y) 0) 2、齐次方程:dy dxy f x三、一阶线性方程及其推广1、dydyP(x)y Q(x) 2、P(x)y Q(x)y dxdx( 0,1)四、全微分方程及其推广(数学一)1、P(x,y)dx Q(x,y)dy 0,满足Q P2、P(x,y)dx Q(x,y)dy 0,五、差分方程(数学三)(乙)典型例题例1、求y x22Q p (RQ) (RP)但存在R(x,y),使x y x ydydyxy的通解。

dxdx解:y (x xy)22dy0dxydyy2 x d__y x2 y1 x2yduu2令u,则u x udx x(1 u)du 0xdxu 11 udxdu u x C1 ln|xu| u C1例2C1 uce, y cedyy的通解d__ y4uyx求微分方程d__ y4dx1解:此题不是一阶线性方程,但把x看作未知函数,y看作自变量,所得微分方程即x y3是一阶dyydyy11dy 14 dy 133yydy C y Cy 线性方程P(y) ,Q(y) y x e yey 3例3设y e是xy p(x)y x的一个解,求此微分方程满足yx ln2 0的特解xx解:将y e代入微分方程求出P(x) xe先求出对应齐次方程x,方程化为dy(e x 1)y 1 dxx xdy(e x 1)y 0的通解y cex e根据解的结构立刻可得非齐次方程通解y ex cex e dx再由yx ln2 0得2 2ec 0,c e例4设1212故所求解y e exx e x12满足以下件F(x) f(x)g(x),其中f(x),g(x)在( , )内f (x) g(x),g (x) f(x),且f(0) 0,f(x) g(x) 2ex(1)求F(x)所满足的一阶微分方程(2)求出F(x)的表达式解:(1)由F (x) f (x)g(x) f(x)g (x) g2(x) f2(x) [f(x) g(x)]2 2f(x)g(x) (2ex)2 2F(x) 可知F(x)所满足的一阶微分方程为F (x) 2F(x) 4e2x (2)F(x) e2dx4e2xe 2dxdx c e 2x 4e4xdx c e2x ce 2x将F(0) f(0)g(0) 0代入,可知c 1 于是例52F(x) e2x e 2xdy2(1 y)的通解求微分方程(y x) xdxsec2udusec3u 解:令y tanu,x tanv, 原方程化为(tanu tanv)secv2secvdv化简为sin(u v)dudzdudz 1 再令z u v,则1,方程化为sinz 1 sinz dvdvdvdv sinz(sinz 1) 1dz dv c, 1 sinz 1 sinzdz v c,1 sinzv c21 sinz1 sinz z v c 2coszz tanz secz v c z最后Z再返回x,y,v也返回x,即可。

常微分方程第一章课件

常微分方程第一章课件

数值解法的稳定性
数值解法的稳定性是指数值解法对于离散化误差的敏感程度,如果数值 解法对于离散化误差敏感,则会导致数值解的精度下降甚至失去意义。
数值解法的稳定性可以分为条件稳定性和无条件稳定性,其中条件稳定 性是指数值解法在一定条件下是稳定的,无条件稳定性是指数值解法在
任何条件下都是稳定的。
对于不稳定的数值解法,可以采用一些改进的方法来提高其稳定性,例 如减小步长、增加迭代次数等。
04
微分方程的应用
物理中的应用
力学
描述物体的运动规律,如牛顿第二定律、万有引力定律等。
电磁学
解释电磁现象,如振荡电路、交流电等。
光学
研究光的传播规律,如波动光学中的干涉和衍射等。
经济中的应用
1 2
金融
预测股票价格、债券收益率等金融产品的动态变 化。
供需关系
分析商品价格与市场需求和供应之间的关系。
微分方程的几何意义
总结词
微分方程的几何意义是通过图形表示未知函数和其导数的变化规律,有助于直观理解方 程的性质和求解方法。
详细描述
通过作图,可以直观地表示微分方程的解,即未知函数的导数随自变量的变化规律。例 如,一阶常微分方程描述了一条曲线的斜率变化规律,二阶常微分方程描述了曲线的弯 曲程度等。通过观察图形,可以更好地理解微分方程的性质和求解方法,例如,通过观
察斜率的变化规律可以求解一阶常微分方程。
02
一阶常微分方程
一阶线性微分方程
定义
应用
形如y'=ay+b的微分方程,其中a和b 为常数,a≠0。
描述物理、工程等领域的线性现象。
解法
通过变量代换y=e^(at),将其转化为 线性方程。

(整理)常微分方程讲义(三)

(整理)常微分方程讲义(三)

常微分方程讲义(三)常微分方程的初等积分解法:1、可分离变量方程⎰⎰=⇒=dx x g dy y h y h x g dx dy )()(1)()( 2、齐次方程(一般含有xyy x 或的项) ),(y x f dxdy=,令ux y =,可消去右边的x 则)(),(u f ux x f u dxdux ==+例:xyxtg y xy =-'例:344322xy x y y x dx dy --=例:222y x xy dx dy +=例:1)0(,3222=-=y yx xy dx dy 例:22y x y dxdyx-+=3、一阶线性非齐次方程⇒+=)()(x b y x a dxdy常数变易法或])([)()(⎰+⎰⎰=-C dx e x b e y dxx a dxx a例:e y e y dxdyxx ==-+)1(,0 例:1)1()1(++=-+n x x e ny dx dyx例:211'xxyy --=例:21222sin 22sin 1x e y x dxdyyx ++=+4、贝努利方程n y x b y x a dxdy)()(+= 令n y z -=1,则dxdy y n dx dz n --=)1(,代入得:)()1()()1()()(1x b n z x a n dxdz x b y x a dx dy y n n +++=⇒+=-- 可将伯努力方程化成一阶线性非齐次例:)1(22y x xy dxdy+= 例:xyy x dx dy -=sin 12例:0)]ln 1([3=++-dx x xy y xdy 例:0)sin (cos 4=+-dx y x y xdy 例:211y y x dx dy -+-= 当)(x b 为常数时,可直接运用常数变易法,该贝努利方程已变为一种一阶线性非齐次的特例 5、全微分方程0),(),(=+dy y x N dx y x M第一种情况:若xNy M ∂∂=∂∂则⎰⎰+=yy xx d x N d y M y x u 0),(),(),(0ηηξξ或⎰⎰+=yy xxd x N d y M y x u 0),(),(),(0ηηξξ方程解为C y x u =),(,其中),(00y x 在定义域内任取 例:0=+xdy ydx 、0=±ydy xdx 例:022=+-y x ydxxdy例:0)1()1(=-++dy yx e dx e yx y x例:0112222=+-+-xdx dy y x xdx y x y 例:dx y x dy y x dx y x )()()(22+=++- 例:0)()(5445=-+-dy y x x dx y x y 例:0)22()522(32=++++dy x x dx y y x 第二种情况:若xNy M ∂∂≠∂∂则找积分因子1、只存在与x 有关的积分因子的充要条件是)()(1x xNy M N φ=∂∂-∂∂,积分因子⎰=dxx e x )()(φμ2、只存在与y 有关的积分因子的充要条件是)()(1y yMx N M ψ=∂∂-∂∂,积分因子⎰=dyy e y )()(ψμ例:0)12(4322=-+dy y x dx y x 例:0)(344=-+dy xy dx y x 例:0)52()34(324=+++dy xy x dx y xy* 微分方程解法的不确定性与灵活性:xydx dy =⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧方程“凑”的思路:全微分贝努力方程一阶线性非齐次方程齐次方程可分离变量方程“分”的思路:6、可降阶的二阶微分方程第一类:)(22x f dxyd =例:1)0(',1)0(,1'')1(2-===+y y y x第二类:),(22dx dy x f dxy d =,令dx dpdx y d p dx dy ==22,则例:xy y xy 'ln '''=例:01)'('')1(22=+++y y x 例:x e y y =-'''第三类:),(22dx dyy f dxy d =,令dy dp p dx y d p dx dy ==22,则例:1)0(',0)0(,0''2===-y y e y y 例:2)0(',0)0(,0'''===-y y e y y y例:求方程0''2)'(2=+yy y 的在点)1,1(与直线x y =相切的积分曲线 可降阶微分方程解法的灵活性:例:0)'('''3=++y y y ,令dy dpp dxy d p dx dy ==22,则例:0)'(1''2=-+y y ,令dx dydxy d p dx dy ==22,则微分方程的近似解:Picca 序列给定微分方程⎪⎩⎪⎨⎧===00|),(y y y x f dx dyx x ,则有在),(00y x 处的第1次近似:⎰+=xx dx y x f y y 0),(001在),(00y x 处的第2次近似:⎰+=xx dx y x f y y 0),(102…………在),(00y x 处的第n 次近似:⎰-+=xx n n dx y x f y y 0),(10例:求微分方程⎪⎩⎪⎨⎧==1)1(y x ydx dy ,当2=x 时,y=?精确方法Picca 近似:精度与误差例:求微分方程⎪⎪⎩⎪⎪⎨⎧==2)1()ln(sin πy y dxdy的Picca 逼近数列微分方程的初值问题解的存在唯一性:⎪⎩⎪⎨⎧==00),(y y y x f dx dyx定理1:设函数),(y x f 在矩形区域},:),{(:00b y y a x x y x R ≤-≤-上连续;且对R 上任意两点),(),,(21y x y x ,满足Lipschitz 条件:2121),(),(y y L y x f y x f -≤-。

常微分方程讲义++很详细

常微分方程讲义++很详细

定值.方程(1.12)的初值问题常记为
(1.16) 初值问题也常称为柯西(Cauchy)问题. 对于一阶方程,若已求出通解 ,只要把初值条件
代入通解中,得到方程
从中解出 C,设为
,代入通解,即得满足初值条件的解
.
对于 n 阶方程,若已求出通解 得到 n 个方程式
后,代入初值条件(1.15),
(1.17)
2 讲 变量可分离方程方程?1.什么是变量可分离方程?1.什
么是 21.什么是变量可分离方程? 什形如
1. 或
(1.18)
(1.19) 的方程,称为变量可分离方程.我们分别称(1.18)、(1.19)为显式变量可分离方程和微 分形式变量可分离方程. 方程(1.18)的特点是,方程右端函数是两个因式的乘积,其中一个因式是只含 x 的函数,另一个因式是只含 y 的函数.而方程(1.19)是(1.18)的微分形式.例如,方 程
是未知函数对 t 导
数.现在,我们还不会求解方程(1.1),但是,如果考虑 k=0 的情形,即自由落体运动,此 时方程(1.1)可化为
(1.2) 将上式对 t 积分两次得
(1.3) 其中 和 是两个独立的任意常数,它是方程(1.2)的解.
一般说来,微分方程就是联系自变量、未知函数以及未知函数的某些导数之间的关
系式.如果其中的未知函数只与一个自变量有关,则称为常微分方程;如果未知函数是 两个或两个以上自变量的函数,并且在方程中出现偏导数,则称为偏微分方程.本书所 介绍的都是常微分方程,有时就简称微分方程或方程. 例如下面的方程都是常微分方程
(1.4)
(1.5)
(· =
)
(1.6)
(′=
)
(1.7)
在一个常微分方程中,未知函数最高阶导数的阶数,称为方程的阶.这样,一阶常 微分方程的一般形式可表为 (1.8) 如果在(1.8)中能将 y′解出,则得到方程 (1.9) 或 (1.10)

常微分方程讲义精简

常微分方程讲义精简

例2 求解方程 .解令,有原方程的参数形式为由基本关系式有积分得到从而原方程的参数形式通解为也可以消去参数t ,得到原方程的通积分为通解为例4 求解方程解令原方程的参数形式为(1.72)由基本关系式有或上式又可化为由,代入(1.72)的第三式,得原程的一个特解 .再由,解得,代入(1.72)的第三式,得原方程的通解例5求解方程(1.73)这里,假定是二次可微函数.解 (1.73)的参数形式为(1.74)由基本关系式有整理得由,得,代入(1.74)的第三式,得原方程通解(1.75)由于,由解得隐函数 ,代入(1.74)第三式,得到原方程的一个特解(1.76)(第7讲几种可降阶的高阶方程例1求解方程解令则有通解为从而积分四次,得到原方程的通解第二种可降阶的高阶方程例2求解方程.解令,则代入原方程得或积分后得"其中a"为任意常数. 解出p"得或积分后得其中 b为任意常数. 于是有或其中为任意常数.1.7.3恰当导数方程假如方程( 1.80)的左端恰为某一函数对 x的导数,即(1.80)可化为则(1.80)称为恰当导数方程.这类方程的解法与全微分方程的解法相类似,显然可降低一阶,成为之后再设法求解这个方程.例3求解方程.解易知可将方程写成故有即.积分后即得通解例4 求解方程.解先将两端同乘不为0的因子,则有故,从而通解为参数法第10讲解的延展2.3.1 延展解、不可延展解的定义定义2.1 设是初值问题(2,2)在区间上的一个解,如果(2,2)还有一个在区间上的解,且满足(1)(2)当时,则称解是可延展的,并称是在I2上的一个延展解.否则,如果不存在满足上述条件的解,则称是初值问题(2.2)的一个不可延展解,(亦称饱和解).这里区间I1和I2可以是开的也可以是闭的..3.2 不可延展解的存在性定义2.2设定义在开区域上,如果对于D上任一点,都存在以为中心的,完全属于D的闭矩形域R,使得在R上的关于y满足李普希兹条件,对于不同的点,闭矩形域R的大小以及常数N可以不同,则称在D上关于y满足局部李普希兹条件“柯西收敛准则收敛对,N,使当1.数列,就有,存在对,N,使当2.,时,总有.存在对,A> 0,使当3.,总有.”例1试讨论方程通过点(1,1)的解和通过点(3,-1)的解的存在区间.解此时区域D是整个平面.方程右端函数满足延展定理的条件.容易算出,方程的通解是故通过(1,1)的积分曲线为它向左可无限延展,而当x →2-0时,y →+∞, 所以,其存在区间为(-∞,2),参看图2-10.图 2-10通过(3,-1)的积分曲线为它向左不能无限延展,因为当x →2+0时,y →-∞,所以其存在区间为(2,+∞).顺便指出:这个方程只有解y = 0可以向左右两上方向无限延展.这个例子说明,尽管在整个平面满足延展定理条件,解上的点能任意接近区域D的边界,但方程的解的定义区间却不能延展到整个数轴上去.例2讨论方程解的存在区间.解方程右端函数在无界区域内连续,且对y满足李普希兹条件,其通解为过D1内任一点的初值解.图 2-11在(0,+∞)上有定义,且当x →+0时,该积分曲线上的点无限接近D1的边界线x = 0,但不趋向其上任一点(图2-11).在区域内的讨论是类似的.延展定理是常微分方程中一个重要定理.它能帮助我们确定解的最大存在区间.从推论和上面的例子可以看出,方程的解的最大存在区间是因解而异的.例3考虑方程及在平面上连续,试证明:对于任意及假设,方程满足的解都在(-∞,+∞)上存在.图 2-12证明根据题设,可以证明方程右端函数在整个平面上满足延展定理及存在与唯一性定理的条件.易于看到,为方程在(-∞,+∞)上的解.由延展定理可知,满足任意,的解上的点应当无限远离原点,但是,由解的唯一性,又不能穿过直线,故只能向两侧延展,而无限远离原点,从而这解应在(-∞,+∞)上存在(图2-12).2.4.1 奇解在本章 2.2节的例2中,我们已经看到方程的通解是,还有一解,除解外,其余解都满足唯一性,只有解所对应的积分曲线上每一点,唯一性都被破坏. 这样的解在许多方程中存在.例1求方程的所有解.解该方程的通解是此外还有两个特解和.由于该方程右端函数的根号前只取+号,故积分曲线如图2-13所示,图 2-13显然解和所对应的积分曲线上每一点,解的唯一性均被破坏。

常微分方程的基本概念课件

常微分方程的基本概念课件

微分方程的解
总结词
求解常微分方程是数学中的一个重要问题。
详细描述
求解常微分方程是数学中的一个重要问题,也是应用领 域中经常遇到的问题。求解常微分方程的方法有多种, 包括分离变量法、变量代换法、积分因子法、常数变易 法等。对于一些特殊类型的常微分方程,如线性微分方 程、一阶常系数线性微分方程等,有特定的解法。此外, 数值解法也是求解常微分方程的一种常用方法,如欧拉 法、龙格-库塔法等。
线性微分方程的解法
总结词
详细描述
欧拉方法
总结词
详细描述
CATALOGUE
常微分方程的应用
物理问题
01
自由落体运动
02 弹性碰撞
03 电路分析
生物问题
种群增长模型
传染病传播模型
神经网络模型
经济问题
供需关系
股票价格动态 经济周期模型
CATALOGUE常微分源自程的数值解法欧拉方法总结词 详细描述
CATALOGUE
常微分方程的解法
分离变量法
总结词
详细描述
变量代换法
总结词
通过引入新的变量来代换原方程中的未知函数,从而将复杂的问题转化为简单的 问题,便于求解。
详细描述
变量代换法是一种常用的求解常微分方程的方法。通过引入新的变量来代换原方 程中的未知函数,我们可以将复杂的问题转化为简单的问题,便于求解。这种方 法适用于具有特定形式的一阶或高阶常微分方程。
龙格-库塔方法
总结词
详细描述
龙格-库塔方法的基本思想是用一系列 的折线来逼近微分方程的解。在每一 步,它首先计算出折线的斜率,然后 用这个斜率来更新折线的位置。
改进的龙格-库塔方法
总结词
改进的龙格-库塔方法是对标准龙格-库塔 方法的改进,它在每一步都使用更高阶 的插值多项式来逼近微分方程的解。

常微分方程讲义(六)

常微分方程讲义(六)

常微分方程讲义(六)线性微分方程的解法:常系数线性微分方程(特征方程)变系数线性微分方程(欧拉方程)N 阶线性齐次微分方程: 0)()()(1111=++++---y x a dx dyx a dxy d x a dx y d n n n n n n (A )N 阶线性非齐次微分方程:)()()()(1111x f y x a dx dyx a dxy d x a dx y d n n n n n n =++++--- (B )特解的初始条件限制:)(),(''),('),(01000x y x y x y x y n -引入记号:kkkdxd D =; )(D L :N阶线性微分算子)()()()(1111x a dx dx a dx d x a dx d D L n n n n n n ++++=---y x a dx dyx a dxy d x a dx y d y D L n n n n n n )()()()(1111++++=---A 式可简写为0)(=y D L ,B 式可简写为)()(x f y D L =2121)()())((y D L y D L y y D L +=+,即可写成])()()([])()()([))(()()()()()(2211211211111111212111211121y x a dx dy x a dx y d x a dx y d y x a dx dy x a dx y d x a dx y d y y x a dx y y d x a dxy y d x a dx y y d n n n n n n n n n n n n n n n n n n +++++++++=++++++++---------y D cL cy D L )())((=,即可写成])()()([)()()(11111111y x a dx dyx a dxy d x a dx y d c cy x a dx dcyx a dxcy d x a dx cy d n n n n n n n n n n n n ++++=++++------ 若)(x y i 是A 或B 的解,则∑)(x y c i i 也是A 或B 的解定理1:0)(=y D L 与)()(x f y D L =的解存在定理2:0)(=y D L 有n 个线性无关解定理3:设i y 是0)(=y D L 的n 个线性无关解,则0)(=y D L 的通解是∑=ni i i y c 1定理4:设Y 是0)(=y D L 的通解,而*y 是)()(x f y D L =的特解,则*y Y y +=是)()(x f y D L =的通解定理4揭示了线性微分方程与线性微分方程组的解题三部曲:第一步:求“齐次”的通解三部曲 第二步:求“非齐次”的特解第三步:相加,得到“非齐次”的通解常系数线性微分方程的求解(特征方程的方法)————三部曲之一:求“齐次”的通解x x a Ce y Ce y y a dxdy λ=−→−=−→−=+-101解x n x x n n n n n n n e C e C e C y y a dx dy a dxy d a dx y d λλλ++=−→−=++++--- 212111110猜因此,求“齐次”通解的关键是求i λ,引入特征方程:0111=++++--n n n n a a a λλλ特征方程的解分成四种情况:① 1、单的实根21λλ≠,则0)(=y D L 的通解为x x e C e C Y2121λλ+=2、单的复根⎩⎨⎧-=+=βαλβαλi i 21,则0)(=y D L 的通解为)sin cos (21x C x C e Yx ββα+=3、重的实根21λλ=,则0)(=y D L 的通解为x e x C C Y λ)(21+=4、重的复根⎪⎪⎩⎪⎪⎨⎧-=+=-=+=βαλβαλβαλβαλi i i i 4321,则0)(=y D L 的解]sin )(cos )[(4321x x C C x x C C e Y x ββα+++=例:01823622=-+y dxdydx y d例:0'2''2)3()4(=+--y y y y例:⎪⎪⎪⎩⎪⎪⎪⎨⎧===++15)0('0)0(029'422y y y y dx yd例:0)12(2=+-y D D例:已知常系数线性齐次微分方程的特征方程是013=-λ,求该微分方程的通解例:0168335577=+-dx yd dx y d dx y d例:02''''22=++y dxyd y例:04)4(=+y y①为书写方便,仅仅考虑特征方程只有2个解或2组解。

常微分方程考研讲义第二章一阶微分方程的初等解法

常微分方程考研讲义第二章一阶微分方程的初等解法

常微分⽅程考研讲义第⼆章⼀阶微分⽅程的初等解法第⼆章、⼀阶微分⽅程的初等解法[教学⽬标]1. 理解变量分离⽅程以及可化为变量分离⽅程的类型(齐次⽅程),熟练掌握变量分离⽅程的解法。

2. 理解⼀阶线性微分⽅程的类型,熟练掌握常数变易法及伯努⼒⽅程的求解。

3. 理解恰当⽅程的类型,掌握恰当⽅程的解法及简单积分因⼦的求法。

4. 理解⼀阶隐式⽅程的可积类型,掌握隐式⽅程的参数解法。

[教学重难点] 重点是⼀阶微分⽅程的各类初等解法,难点是积分因⼦的求法以及隐式⽅程的解法。

[教学⽅法] 讲授,实践。

[教学时间] 14学时[教学内容] 变量分离⽅程,齐次⽅程以及可化为变量分离⽅程类型,⼀阶线性微分⽅程及其常数变易法,伯努利⽅程,恰当⽅程及其积分因⼦法,隐式⽅程。

[考核⽬标]1.⼀阶微分⽅程的初等解法:变量分离法、⼀阶线性微分⽅程的常数变易法、恰当⽅程与积分因⼦法、⼀阶隐⽅程的参数解法。

2.会建⽴⼀阶微分⽅程并能求解。

§1 变量分离⽅程与变量变换1、变量分离⽅程1) 变量分离⽅程形如()()dyf xg y dx= (或1122()()()()0M x N y dx M x N y dy +=) (2.1)的⽅程,称为变量分离⽅程,其中函数()f x 和()g y 分别是,x y 的连续函数. 2) 求解⽅法如果()0g y ≠,⽅程(2.1)可化为,()()dyf x dxg y = 这样变量就分离开了,两边积分,得到()()dyf x dx cg y =+??(2.2)把,()()dy f x dx g y ??分别理解为1,()()f x y ?的某⼀个原函数. 容易验证由(2.2)所确定的隐函数(,)y x c ?=满⾜⽅程(2.1).因⽽(2.2)是如果存在0y 使0()0g y =,可知0y y =也是(2.1)的解.可能它不包含在⽅程的通解(2.2)中,必须予以补上.3) 例题例1 求解⽅程dy x dx y=- 解将变量分离,得到ydy xdx =- 两边积分,即得22222y x c=-+ 因⽽,通解为22x y c += 这⾥的c 是任意的正常数. 或解出显式形式y =例2 解⽅程2cos dyy x dx= 并求满⾜初始条件:当0x =时.1y =的特解.解将变量分离,得到 2cos dyxdx y= 两边积分,即得1sin x c y-=+因⽽,通解为1sin y x c=-+这⾥的c 是任意的常数.此外,⽅程还有解0y =.为确定所求的特解,以0x =.1y =代⼊通解中确定常数c ,得到 1c =- 因⽽,所求的特解为11sin y x=-例3 求⽅程 ()dyP x y dx的通解,其中()P x 是x 的连续函数.解将变量分离,得到 ()dyP x dx y= 两边积分,即得ln ()y P x dx c =+?这⾥的c 是任意常数.由对数的定义,即有 ()P x dx cy e +?=即()P x dxc y e e ?=±令ce c ±=,得到()P x dxy ce ?=(2.4)此外,0y =也是(2.3)的解.如果在(2.4)中允许0c =,则0y =也就包括在(2.4)中,因⽽,(2.3)的通解为(2.4),其中c 是任意常数. 注: 1.常数c 的选取保证(2.2)式有意义.2.⽅程的通解不⼀定是⽅程的全部解,有些通解包含了⽅程的所有解,有些通解不能包含⽅程的所有解.此时,还应求出不含在通解中的其它解, 即将遗漏的解要弥补上.3.微分⽅程的通解表⽰的是⼀族曲线,⽽特解表⽰的是满⾜特定条件00()y x y =的⼀个解,表⽰的是⼀条过点00(,)x y 的曲线.2、可化为变量分离⽅程的类型1).形如 dy y g dx x ??=(2.5)的⽅程,称为齐次⽅程,这⾥的()g u 是u 的连续函数. 另外,ⅰ)对于⽅程(,)(,)dy M x y dx N x y = 其中函数(,)M x y 和(,)N x y 都是x 和y 的m 次齐次函数,即对0t >有(,)(,)m M tx ty t M x y ≡ (,)(,)m N tx ty t N x y ≡事实上,取1t x=,则⽅程可改写成形如(2.5)的⽅程. (1,)(1,)(1,)(1,)m m y y== ⅱ)对⽅程(,)dyf x y dx= 其中右端函数(,)f x y 是x 和y 的零次齐次函数,即对0t >有(,)(,)f tx ty f x y =则⽅程也可改写成形如(2.5)的⽅程(1,)dy y f dx x= 对齐次⽅程(2.5)利⽤变量替换可化为变量分离⽅程再求解. 令yu x= (2.6)即y ux =,于是dy du x u dx dx=+ (2.7)将(2.6)、(2.7)代⼊(2.5),则原⽅程变为 ()dux u g u dx+= 整理后,得到()du g u udx x-=(2.8)⽅程(2.8)是⼀个可分离变量⽅程,按照变量分离法求解,然后将所求的解代回原变量,所得的解便是原⽅程(2.5)的解.例4 求解⽅程dy y y tg dx x x=+ 解这是齐次⽅程,以,y dy duu x u x dx dx==+代⼊,则原⽅程变为 dux u u tgu dx+=+ 即du tgudx x=(2.9)分离变量,即有dx= 两边积分,得到ln sin ln u x c =+ 这⾥的c 是任意的常数,整理后,得到sin u cx = (2.10)此外,⽅程(2.9)还有解0tgu =,即sin 0u =. 如果(2.10)中允许0c =,则sin 0u =就包含在(2.10)中,这就是说,⽅程(2.9)的通解为(2.10).代回原来的变量,得到原⽅程的通解为sinycx x =例5 求解⽅程(0).dyxy x dx+=<解将⽅程改写为(0)dy y x dx x=<这是齐次⽅程,以,y dy du u x u x dx dx==+代⼊,则原⽅程变为dux dx=(2.11)分离变量,得到dxx = 两边积分,得到(2.11)的通解ln()x c =-+ 即2[ln()](ln()0)u x c x c =-+-+>(2.12)这⾥的c 是任意常数.此外,(2.11)还有解0u = 注意,此解不包括在通解(2.12)中.原⽅程的通解还可表为2[ln()],ln()0,0,x x c x c y ?-+-+>=?它定义于整个负半轴上.注:1.对于齐次⽅程dy y g dx x ??=的求解⽅法关键的⼀步是令y u x =后,解出y ux =,再对两边求关于x 的导数得dy duu x dx dx=+,再将其代⼊齐次⽅程使⽅程变为关于,u x 的可分离⽅程.2.齐次⽅程也可以通过变换xv y=⽽化为变量分离⽅程.这时x vy =,再对两边求关于y 的导数得dx dv v y dy dy =+,将其代⼊齐次⽅程dxx f dy y ??=使⽅程变为,v y 的可分离⽅程⼩结:这⼀讲我们主要讲解了⼀阶微分⽅程的可分离变量法和齐次⽅程的dy y g dx x ??=形状的解法.⽽这⼀齐次⽅程通过变量替换任然可化为可分离⽅程,因⽽,⼀定要熟练掌握可分离⽅程的解法. 2)形如111222a xb yc dy dx a x b y c ++=++ (2.13)的⽅程经变量变换化为变量分离⽅程,这⾥的121212,,,,,a a b b c c 均为常数.分三种情况来讨论(1)120c c ==情形. 这时⽅程(2.13)属齐次⽅程,有1122a x b y dy y g dx a x b y x +??== ?+??此时,令yu x=,即可化为变量可分离⽅程. (2)0a b a b =,即1122a b a b =的情形. 设1122a b k a b ==,则⽅程可写成22122222()()()k a x b y c dy f a x b y dx a x b y c ++==+++ 令22a x b y u +=,则⽅程化为22()dua b f u dx=+ 这是⼀变量分离⽅程.(3)1112220,a b c c a b ≠及不全为零的情形. 这时⽅程(2.13)右端的分⼦、分母都是,x y 的⼀次式,因此 1112220a xb yc a x b y c ++=??++=?(2.14)代表xy 平⾯上两条相交的直线,设交点为(,)αβ.显然,0α≠或0β≠,否则必有120c c ==,这正是情形(1)(只需进⾏坐标平移,将坐标原点(0,0)移⾄(,)αβ就⾏了,若令X x Y y αβ=-??=-?(2.15)则(2.14)化为11220a X bY a X b y +=??+=?从⽽(2.13)变为 1122a X bY dY Y g dX a X b Y X +??== ?+??(2.16)因此,得到这种情形求解的⼀般步骤如下:(1)解联⽴代数⽅程(2.14),设其解为,x y αβ==; (2)作变换(2.15)将⽅程化为齐次⽅程(2.16); (3)再经变换Y将(2.16)化为变量分离⽅程; (4)求解上述变量分离⽅程,最后代回原变量可得原⽅程(2.13)的解. 上述解题的⽅法和步骤也适⽤于⽐⽅程(2.13)更⼀般的⽅程类型111222a x b y c dyf dx a x b y c ??+== ?++??()dyf ax by c dx++ ()()0y xy dx xg xy dy += 2()dyx f xy dx= 2dy y xf dx x= ?以及(,)()(,)()0M x y xdx ydy N x y xdy ydx ++-=(其中,M N 为,x y 的齐次函数,次数可以不相同)等⼀些⽅程类型,均可通过适当的变量变换化为变量分离⽅程.例6 求解⽅程13dy x y dx x y -+=+- (2.17)解解⽅程组 1030x y x y -+=??+-=? 得1, 2.x y ==令12x X y Y =+??=+?代⼊⽅程(2.17),则有 dY X YdX X Y-=+ (2.18)再令Yu X= 即 Y uX = 则(2.18)化为2112dX u22ln ln 21X u u c=-+-+22(21)c X u u e +-=± 记1,c e c ±=并代回原变量,就得2212Y XY X c +-= 221(2)2(1)(2)(1)y x y x c -+----= 此外,易验证2210u u +-= 即2220Y XY X +-= 也就是(2.18)的解.因此⽅程(2.17)的通解为22262y xy x y x c +---= 其中c 为任意的常数.3、应⽤举例例7 电容器的充电和放电如图(2.1)所⽰的R C -电路,开始时电容C 上没有电荷,电容两端的电压为零.把开关K 合上“1”后,电池E 就对电容C 充电,电容C 两端的电压C u 逐渐升⾼,经过相当时间后,电容充电完毕,再把开关K 合上“2”,这时电容就开始放电过程,现在要求找出充、放电过程中,电容C 两端的电压C u 随时间t 的变化规律.解对于充电过程,由闭合回路的基尔霍夫第⼆定理,c u RI E += (2.19)对于电容C 充电时,电容上的电量Q 逐渐增多,根据C Q Cu =,得到 ()C C du dQ dI Cu C dt dt dt=== (2.20)将(2.20)代⼊(2.19),得到c u 满⾜的微分⽅程 cc du RC u E dt+= (2.21)这⾥R 、C 、E 都是常数.⽅程(2.21)属于变量分离⽅程.将(2.21)分离变量,得到C C du dtu E RC=-- 两边积分,得到11ln C u E t c RC-=-+ 即1112t t c RCRCC u E e e c e---=±=这⾥12c c e =±为任意常数.将初始条件:0t =时,0C u =代⼊,得到2c E =-. 所以 1(1)t RC C u E e -=-这就是R C -电路充电过程中电容C 两端的电压的变化规律.由(2.22)知道,电压C u 从零开始逐渐增⼤,且当t →+∞时,C u E →,在电⼯学中,通常称RC τ=为时间常数,当3t τ=时,0.95C u E =,就是说,经过3τ的时间后,电容C 上的电压已达到外加电压的95%.实⽤上,通常认为这时电容C 的充电过程已基本结束.易见充电结果C u E =.对于放电过程的讨论,可以类似地进⾏.例8 探照灯反射镜⾯的形状在制造探照灯的反射镜⾯时,总是要求将点光源射出的光线平⾏地射出去,以保证照灯有良好的⽅向性,试求反射镜⾯的⼏何形状.解取光源所在处为坐标原点,⽽x 轴平⾏于光的反射⽅向,设所求曲⾯由曲线()y f x z =??=?(2.23)绕x 轴旋转⽽成,则求反射镜⾯的问题归结为求xy 平⾯上的曲线()y f x =的问题,仅考虑0y >的部分,过曲线()y f x =上任⼀点(,)M x y 作切线NT ,则由光的反射定律:⼊射⾓等于反射⾓,容易推知12αα= 从⽽OM ON = 注意到2dy MP tg dx NPα==及,,OP x MP y OM ===就得到函数()y f x =所应满⾜的微分⽅程式dy dx =(2.24)这是齐次⽅程.由2.12知引⼊新变量xu y=可将它化为变量分离⽅程.再经直接积分即可求得⽅程的解.对于⽅齐次⽅程(2.24)也可以通过变换xv y=⽽化为变量分离⽅程也可由x yv =得dx dvv y dy dy=+代⼊(2.24)得到sgn dvv y v y dysgn dy y y =(2.25)积分(2.25)并代回原来变量,经化简整理,最后得2(2)y c c x =+(2.26)其中c 为任意常数.(2.26)就是所求的平⾯曲线,它是抛物线,因此,反射镜⾯的形状为旋转抛物⾯22(2)y z c c x +=+ (2.27)⼩结: 本节我们主要讨论了⼀阶可分离微分⽅程和齐次微分⽅程的求解问题.将各种类型的求解步骤记清楚的同时要注意对解的讨论.§2 线性⽅程与常数变易法1、⼀阶线性微分⽅程()()()0dya xb x yc x dx++= 在()0a x ≠的区间上可以写成()()dyP x y Q x dx=+ (2.28)对于()a x 有零点的情形分别在()0a x ≠的相应区间上讨论.这⾥假设(),()P x Q x 在考虑的区间上是x 的连续函数.若()0Q x ≡,(2.28)变为 ()dyP x y dx= (2.3)称为⼀阶齐线性⽅程.若()0Q x ≠,(2.28)称为⼀阶⾮齐线性⽅程.2、常数变易法(2.3)是变量分离⽅程,已在例3中求得它的通解为 ()P x dxy ce ?=(2.4)这⾥c 是任意的常数.下⾯讨论⼀阶⾮齐线性⽅程(2.28)的求解⽅法.⽅程(2.3)与⽅程(2.28)两者既有联系⼜有区别,设想它们的解也有⼀定的联系,在(2.4)中c 恒为常数时,它不可能是(2.28)的解,要使(2.28)具有形如(2.4)的解, c 不再是常数,将是x 的待定函数()c x ,为此令 ()()P x dx(2.29)两边微分,得到()()()()()P x dxP x dx dy dc x e c x P x e dx dx=+ (2.30)将(2.29)、(2.30)代⼊(2.28),得到()()()()()()()()()P x dxP x dx P x dx dc x e c x P x e P x c x e Q x dx+=+ 即()()()P x dx dc x Q x e dx-?= 积分后得到()()()P x dxc x Q x e dx c -?=+?(2.31)这⾥c 是任意的常数..将(2.31)代⼊(2.29),得到()()()()()() =()P x dxP x dx P x dx P x dx P x dxy e Q x e dx c ce e Q x e dx--=+ +(2.32)这就是⽅程(2.28)的通解.这种将常数变易为待定函数的⽅法,通常称为常数变易法.实际上常数变易法也是⼀种变量变换的⽅法.通过变换(2.29)可将⽅程(2.28)化为变量分离⽅程.注: ⾮齐线性⽅程的通解是它对应的齐线性⽅程的通解与它的某个特解之和. 例1 求⽅程1(1)(1)x n dy x ny e x dx++-=+的通解,这⾥的n 为常数. 解将⽅程改写为 (1)1x n dy n y e x dx x -=++ (2.33)先求对应的齐次⽅程01dy n y dx x -=+ 的通解,得令 ()(1)n y c x x =+ (2.34)微分之,得到()(1)(1)()n dy dc x x n x c x dx dx=+++ (2.35)以(2.34)、(2.35)代⼊(2.33),再积分,得 ()x c x e c =+ 将其代⼊公式(2.34),即得原⽅程的通解 (1)()n x y x e c =++ 这⾥c 是任意的常数. 例2 求⽅程22dy ydx x y=-的通解. 解原⽅程改写为2dx x y dy y=- (2.36)把x 看作未知函数,y 看作⾃变量,这样,对于x 及dxdy来说,⽅程(2.36)就是⼀个线性⽅程了.先求齐线性⽅程2dx x dy y= 的通解为2x cy = (2.37)令2()x c y y =,于是 2()2()dx dc y y c y y dy dy=+ 代⼊(2.36),得到()ln c y y c =-+ 从⽽,原⽅程的通解为2(ln )x y c y =-这⾥c 是任意的常数,另外0y =也是⽅程的解. 特别的,初值问题00()()()dyP x y Q x dxy x y ?=+=? 的解为00()()()=()xxsx x x P d P d P d xx y ceeQ s eds ττττττ-+?例3 试证(1)⼀阶⾮齐线性⽅程(2.28)的任两解之差必为相应的齐线性⽅程(2.3)之解;(2)若()y y x =是(2.3)的⾮零解,⽽()y y x =是(2.28)的解,则(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数.(3)⽅程(2.3)任⼀解的常数倍或两解之和(或差)仍是⽅程(2.3)的解. 证(1)设12,y y 是⾮齐线性⽅程的两个不同的解,则应满⾜⽅程使1122()(1)()(2)dy py Q x dxdy py Q x dx=+=+(1)—(2)有1212()()d y y p y y dx-=-说明⾮齐线性⽅程任意两个解的差12y y -是对应的齐次线性⽅程的解.(2)因为(()())()()(()()()()d cy x y x dy x d y x c p cy p y Q x p cy y Q x dx dx dx+=+=++=++故结论成⽴.(3)因为12121212()()()(),(),()d y y d y y d cy p cy p y y p y y dx dx dx+-==+=- 故结论成⽴.3、Bernoulli ⽅程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故对应齐次方程通解为
p ( x ) dx 或 y ce
y c( x 1) n x 1dx n ce c( x 1)
n
其次应用常数变易法求非齐线性方程的通解,
令y c( x)(x 1)n 为原方程的通解 , 代入得
dc ( x) ( x 1) n nc ( x)( x 1) n 1 nc ( x)( x 1) n 1 e x ( x 1) n dx
电路的Kirchhoff第二定律: 在闭合回路中,所有支路上的电压的代数和为零.
解: 设当开关K合上后, 电路中在时刻t的电流强度为I(t),
dI 则电流经过电感L, 电阻R的电压降分别为 L , RI , dt
于是由Kirchhoff第二定律, 得到
dI L RI E. dt 取开关闭合时的时刻为0, 即I (0) 0. dI R E I . 解线性方程: dt L L
二 伯努利( Bernoulli )方程
形如
dy p( x) y Q( x) y n dx
0
。 的方程,称为伯努利方程. 这里P( x),Q( x)为x的连续函数
解法:
1
引入变量变换 zy
1n
Hale Waihona Puke , 方程变为dz (1 n) P( x) z (1 n)Q( x) dx 20 求以上线性方程的通解
在a( x) 0的区间上可写成 dy P( x) y Q( x) (1) dx 这里假设P( x),Q( x)在考虑的区间上是 x的连续函数 若Q( x) 0, 则(1)变为 dy P( x) y ( 2) dx (2)称为一阶齐次线性方程
若Q( x) 0, 则(1)称为一阶非齐线性方程
~ dc ( x ) x x c( x) e c 积分得 e 即 dx ~ ~ n x y ( x 1 ) ( e c), c 为任意常数 故通解为
dy y 例2 求方程 2 通解. dx 2 x y
解: 原方程不是未知函数 y的线性方程 ,但将它改写为
dx 2 x y 2 dy y
一阶线性微分方程 dy a ( x ) b( x ) y c ( x ) 0 dx
一 一阶线性微分方程的解法-----常数变易法
10 解对应的齐次方程
dy p( x) y dx (2)
得对应齐次方程解 p( x) y ce dx , c为任意常数
2
0
常数变易法求解
dy P( x) y Q( x) dx
积分得
c( x) Q( x)e
p ( x ) dx
p ( x )dx
dx c
~
~
30 故(1)的通解为
ye
( Q( x)e
p ( x ) dx
dx c)
(3)
注 求(1)的通解可直接用公式(3)
例1 求方程
dy ( x 1) ny e x ( x 1) n 1 dx

dx 2 x y dy y
p ( y ) dy
它是以x为未知函数 , y为自变量的线性方程 ,
故其通解为
x e
e
p ( y ) dy
( Q( y)e

dy c)
~
2 dy y
( ( y )e

2 dy y
dy c)
~
y 2 ( ln y c), c为任意常数。
2


1 dx x
1 3 dx c) cx 2 x
2
将z y 代入得所给方程的通解 为:
1 3 y cx x 2
二 线性微分方程的应用举例
例5 R-L串联电路.,由电感L,电阻R和电源所组成的串联电 路,如图所示,其中电感L,电阻R和电源的电动势E均为常数, 试求当开关K合上后,电路中电流强度I与时间t之间的关系.
(1)
(将常数c变为x的待定函数 c( x),使它为 (1)的解)
p ( x ) dx 令y c( x)e 为(1)的解, 则
p ( x )dx dy dc ( x) p ( x )dx e c ( x ) p ( x )e dx dx p ( x )dx dc ( x) Q ( x )e 代入(1)得 dx
得通解为:
I (t ) ce
R t L
E R
I (t ) ce
由初始条件 I (0) 0得,
R t L
E R
E c R
故当开关K合上后,电路中电流强度为
E I (t ) (1 e R
R t L
)
作业
~ 1 x (4 ln x 2 c) 2x ~ x x 3 ln x 4 c x 3 2 ~ 将初始条件 y(1) 1代入后得 c 3 2 3
~ 1 3 2 x ( (4 x 1) 3 dx c) x
故所给初值问题的通解为
3 4
3 3 x y x ln x x 2 2
通解,这里为n常数
dy n x n y e ( x 1) 解: 将方程改写为 dx x 1 dy n 首先,求齐次方程 y 的通解 dx x 1 dy n dy n y 分离变量得 y x 1 dx 从 dx x 1
两边积分得
ln y n ln x 1 c1
3
0
变量还原
注意:n 0时, y(x) 0也为方程的解。
例4 求方程
的通解.
dy y x dx 2 x 2 y
2
2 令 z y , 代入方程得 解: 这是Bernoulli 方程, n 1, dz 1 z x2 dx x
解以上线性方程得
z e

2
1 dx x
( x e
~
例3 求初值问题 dy 3 y 4 x 2 1, dx x
的解. 解: 先求原方程的通解
y (1) 1
y e
p ( x ) dx
( Q( x)e
2
p ( x ) dx
dx c)
~
e

3 dx x
( (4 x 1)e


3 dx x
dx c)
~
~ 1 x 3 ( (4 x 2 1) 3 dx c) x
相关文档
最新文档