常微分方程考研讲义第二章一阶微分方程的初等解法

合集下载

《一阶常微分方程》课件

《一阶常微分方程》课件

06
CATALOGUE
一阶常微分方程的总结与展望
总结与回顾
1 2 3
定义与性质
一阶常微分方程是描述一个函数随时间变化的数 学模型,具有丰富的理论体系和应用领域。
历史发展
一阶常微分方程的发展可以追溯到早期的微积分 学,随着科学技术的进步,其理论和应用得到了 不断深化和拓展。
解法研究
一阶常微分方程的解法研究是核心内容之一,包 括初值问题、边值问题、积分方程等,以及各种 数值解法。
举例
简单的一阶常微分方程如 dy/dx = y,描述了y随x的变化率与其自身成正比的情况;复杂的一阶常微分方程如 dy/dx = x^2 + y^3,描述了更复杂的函数关系。
02
CATALOGUE
一阶常微分方程的解法
初值问题
定义
已知一阶常微分方程及其在某一点的初 始值,求解该方程在该点的邻域内的解 。
一阶常微分方程
CATALOGUE
目 录
• 一阶常微分方程的定义 • 一阶常微分方程的解法 • 一阶常微分方程的应用 • 一阶常微分方程的扩展 • 一阶常微分方程的实例分析 • 一阶常微分方程的总结与展望
01
CATALOGUE
一阶常微分阶常微分方程是包含一个未知函数 和其导数的等式,形式为 f(x, y', y) = 0。
在工程中的应用
控制工程
在控制工程中,系统的动态特性可以用一阶常 微分方程来描述。
航空航天工程
描述飞行器的运动轨迹和姿态变化,可以用一 阶常微分方程来建模。
机械工程
描述机械系统的动态特性,如振动、位移等,可以用一阶常微分方程来建模。
04
CATALOGUE
一阶常微分方程的扩展

常微分方程第二章一阶微分方程的初等解法

常微分方程第二章一阶微分方程的初等解法
一阶微分方程 微分方程的初等解法 第二章 一阶微分方程的初等解法
一阶微分方程的初等解法, 一阶微分方程的初等解法,即把微分方程的求 解问题化为积分问题。 解问题化为积分问题。用数学方法经过有限次 代数运算和作有限次不定积分,将微分方程的 代数运算和作有限次不定积分, 解用初等函数或初等函数的待积式来表达, 解用初等函数或初等函数的待积式来表达,这 种方法,习惯上称为初等积分法或求积法。 种方法,习惯上称为初等积分法或求积法。能 初等积分法或求积法 用初等积分法求解的微分方程称为可积方程。 用初等积分法求解的微分方程称为可积方程。 可积方程
内江师范学院数学与信息科学学院 ( x , y ) 中几类可积方程的求解
同时, 问题 。同时,对一阶隐式方程和高阶方程中的某些特 殊可积函数类型的求解问题,也作适当的介绍。 殊可积函数类型的求解问题,也作适当的介绍。 主要内容
一、变量分离方程与变量替换 待定函数法) 二、线性方程与常系数变易法(待定函数法 线性方程与常系数变易法 待定函数法 三、恰当方程与积分因子(全微分方法) 恰当方程与积分因子(全微分方法) 四、一阶隐方程与参数表示 五、小结
转化” 这是数学学习的精髓。 基本思想:“变”或“转化”,这是数学学习的精髓。
内江师范学院数学与信息科学学院 吴开腾 制作
初等积分法的实质, 初等积分法的实质,就是尽可能设法把所遇到的 的实质 微分方程的求解问题转化为积分(求原函数) 微分方程的求解问题转化为积分(求原函数)问 转化为积分 题。应当指出,只有少数特殊类型的微分方程, 应当指出,只有少数特殊类型的微分方程, 才可能用初等积分法求解,在多数情况下,初等 才可能用初等积分法求解,在多数情况下, 积分法是不适用的。因此, 积分法是不适用的。因此,对于微分方程中常见 的类型在什么情况下能用初等积分法求解, 的类型在什么情况下能用初等积分法求解,是一 个很重要而又有实际意义的问题。 个很重要而又有实际意义的问题。

一阶微分方程解法

一阶微分方程解法

y x0 4
的特解.
解 分离变量, 得 sinydy sinxdx
cos y cosx
两边积分,得 ln c o sy ln c o s x ln c
于是原方程的通解为 c o sy c c o sx
3
又将初始条件
y x0 4
代入通解中, 得 c
2 2
故满足初始条件的特解为 cosy 2cosx
12
将 y与y’代入方程, 并整理, 得 c'(x) ex
两端积分, 得 c(x)ex c
故原方程的通解为 y = ex + c (x+1)2
例8 求方程 sin2y + xcoty dy = dx 的通解及满足初始 条件 y|x=1 = π / 2 的特解.
解 将方程改写为 dx xcot y sin2 y
dx
解 将方程恒等变形为 dy y ln y
dx x x
令uy, 即yux 则得 dy x du u
x
dx dx
7
代入原方程,

du x
u
ulnu
dx
分离变量, 得
du dx u(ln u 1) x
两端积分, 得 ln (ln u 1 ) ln x ln c
即 lnucx1 将 u y代 入 上 式 , 并 化 简 得 方 程 的 通 解 为
x
y xecx1
8
三. 一阶线性微分方程 形如 y’+ pxy = q(x)的方程,称为一阶线性微分方程. 若 qx = 0 , 则称方程 y’+ p(x)y = 0 为一阶齐次线性微分方程 若 qx ≠ 0 , 则称方程 y’+ p(x)y = q(x) 为一阶非齐次线性微分方程. 1.一阶齐次线性微分方程的通解 方程 y’+ pxy = 0 是变量可分离的方程, 其通解为

常微分方程第二章第一讲

常微分方程第二章第一讲

2.1.2 可化为变量分离方程的类型
引言 有的微分方程从表面上看,不是可分 离变量的微分方程,但是,通过适当的变量替 换,就可以很容易地化为“变量分离方程”, 在这里,介绍两类这样的方程。 1. 齐次方程
1)方程的类型
定义
dy y g ( ) (2.5) 的方程,称为齐次 dx x 微分方程,这里 g (u ) 是 u 的连续函数。 14
dy ( y) f ( x)dx C (2.2)
可以证明这就是方程(2.1)的通解.
2)如果存在 y0, ( y0 ) 0, 则方程( .1 使 2 )还有特解
y y0
(**)
微分方程(2.1)的所有解为:式(2.2)和(**).
注意:积分常数C 的相对任意性。
7
3.变量分离方程的解题步骤
即 1 , 2 1 ,
则 ON OM ,
PM 而 tan 2 , OP ON
_____ _____
则有 y'
y x x y
2 2
.
上述方程为齐次微分 方程,可用变量变换 法求解。
27
小结 1.变量分离方程的形状 dy f ( x) ( y )或M 1 ( x) N1 ( y ) dx M 2 ( x) N 2 ( y ) dy 0 dx 2.变量分离方程的求解:分离变量法 步骤:分离变量,两边积分,检查是否有遗漏的特解
2
(*)
23
分离变量,得 dX 1 u du 2 X 1 2u u 两边积分,得 ~ 2 2 ln X ln | u 2u 1 | C
即X (u 2u 1) C1 (C1 e ), 此外容易验证 u 2 2u 1 0 亦为方程(*)的解,因此方程(*)的通解为 X 2 (u 2 2u 1) C1, 其中C1为任意常数。

一阶微分方程的初等解法

一阶微分方程的初等解法

一阶微分方程的初等解法一阶微分方程的初等解法●一阶微分方程的初等解法:方程的通解能够用初等函数或初等函数的积分表示出来。

●一阶微分方程的一般形式y′=f(x,y)也可写成对称形式(全微分形式)P(x,y)dx+Q(x,y)dy=0在对称形式方程中,变量x与y是对称的,它即可以看作是以x自变量,y为未知函数的方程dy=−P(x,y)() Q(x,y)≠0也可看作是x为自变量,y为未知函数的方程dy dx=−Q(x,y)P(x,y) P(x,y)≠0●一阶微分方程的常见形式:1.可分离变量的一阶微分方程和齐次方程定义:如果一阶微分方程具有形式dy dx=f(x)g(y)则该方程称为可分离变量微分方程。

不妨设g(y)≠0,则可将方程化为dy g(y)=f(x)dx例求微分方程xdy+2ydx=0,满足初始条件y|x=2=1的特解。

解:由∵ xdy+2ydx =0分离变量dy y=−2dx x两边积分lny=−2lnx+lnC ∴ y=Cx−2是通解。

将初始条件代入C=4,即∴ y=Cx−2为方程的一个特解。

例放射性元素铀由于不断地有原子放射出微粒子而变成其它元素,铀的含量就不断减少,这种现象成为衰变。

由于原子物理学告之,铀的衰变速度与当时未衰变的原子的含量M成正比。

已知t=0时铀的含量为M0,求在衰变过程中含量M(t)随时间变化的规律。

解:铀的衰变速度就是M(t)对时间t的导数dM dt即dM dt=−λMλ(>0)是衰变常数。

初始条件M|t=0=M0分离变量dM M=−λdt于是M=Ce−λt是方程的通解代入初始条件M=M0e−λt齐次方程:如果一阶微分方程dy dx=f(x,y)中的函数f(x,y)可变形为φ�y x�即dy dx=φ�y x�则称为齐次方程。

求解步骤:变量代换法设u=y x,y=ux,得u+x du dx=φ(u)∴ xdu=(φ(u)−u)dx 可分离变量方程duφ(u)−u=dx x=>�duφ(u)−u= �dx x 得到齐次方程的通解。

常微分方程(王高雄)第三版 2.1教学教材

常微分方程(王高雄)第三版 2.1教学教材

(I)齐次方程
ddyxg(yx)
(II) 形如 ddyxfaa21xxbb12yycc12的方,程 其中 a1,b1,c1,a2,b2,c2为任意.常数
(I) 形如
dyg(y) dx x
(2.5)
方程称为齐次方程, 这里g(u)是u的连续函. 数
求解方法: 10 作变量代换(引入新变量)u y ,方程化为
x
du g(u)u, (这里d由 yx于 duu)
dx x
dx dx
20 解以上的变量分离方程
30 变量还原.
例4 求解方程 xdy 2xyy dx
(x0)
解: 方程变形为 dy2 yy dx x x
(x0)
这是齐次方程, 令u y 代入得 x
x du u 2 uu 即 x du 2 u
dx
为 (1)的情形,可化为变量分离方程求解.
解的步骤:
10解方 程 aa21xx 组 bb1 2yy cc1200,
得解yx
,
20 作变换 YXyx,方程化为
dY a1Xb1Y dX a2Xb2Y
g
(
Y X
)
30再经变 u换 Y,将以上方程化离 为方 变程 量分
X
40 求解
50 变量还原
dx
10 分离变量, 当 (y)0时 ,将 (2.1)写成
dy f (x)dx,
(y)
这样变量就“分离”开了.
20 两边积分得
dy
(y)f(x)d xc (2.2)
1 的某一原函数 f (x)的某一原函数 ( y)
由 (2.2)所确定 y的 (x,c)就 函 (2 为 .数 1)的.解
例:
分离变量:

一阶常微分方程的初等解法

一阶常微分方程的初等解法

本科毕业论文题目:一阶常微分方程的初等解法院(部):理学院专业:信息与计算科学班级:信计082姓名:落在天涯海角边学号:2008121270指导教师:李宗成完成日期:2012年6月5日目录摘要 (III)ABSTRACT (IV)1 前言 (1)1.1选题的背景和意义 (1)1.2本文要解决的问题和所用的方法 (1)1.3成果及意义 (2)2 微分方程的基本知识 (3)2.1知识脉络图解 (3)2.2微分的基本概念 (4)3 一阶微分方程的解法 (7)3.1线性方程 (7)3.2变量分离方程 (8)3.3恰当微分方程与积分因子 (12)3.4一阶隐式微分方程 (15)3.5近似解法 (19)4 一阶微分方程解法的应用举例 (20)4.1等角轨线 (21)4.2动力学问题 (23)4.3电学问题 (24)4.4光学问题 (26)4.5流体混合问题 (28)总结 (30)谢辞 (31)参考文献 (32)摘要常微分方程是数学分析或基础数学的一个组成部分,在整个数学中占有重要的地位。

本文主要通过讨论一阶微分的相关解法问题,讨论的类型有:变量可分离方程、齐次微分方程、积分因子;本文主要归纳了一阶微分方程的初等解法,并同时例举典型例题加以说明。

关键词:一阶常微分方程;变量变换;恰当微分方程;积分因子First-order Differential Equation With The PirmaryMethod For NalysisABSTRACTOrdinary differential equation is an integral part of the mathematical analysis or basic math, Occupies an important position in the mathematics. In this paper, through the discussion of first-order differential solution, the types of discussion are: Variable separable equation, Homogeneous differential equation, Integrating factor. This paper summarized the elementary solution of first order differential equations. and make some examples to illustrate.Key Words:First-order differential equation; Tariable transformation; Appropriate differential equation; Integrating factor1 前言1.1 选题的背景和意义微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。

一阶常微分方程初等解法 共48页

一阶常微分方程初等解法 共48页
一阶常微分方程 初等解法
2019.11.12
一阶常微方程的初等解法
变量分离方程与变量变换 线性微分方程与常数变易法 恰当微分方程与积分因子 一阶隐式微分方程与参数表示
重点:变量分离方程、线性微分方程、常数变易法、恰当微分方
程、积分因子、一阶隐式微分方程与参数解法;
难点:变量变换、积分因子、分项组合法、建立微分方程模型.
例5
求解方程
dy xy1. dx x y3
解 解方程组 x y 10, 得 x1,y2.
x y 30,

x X 1, y Y 2,
代入方程,有 dY XY. dX XY
再令 u Y , 则化为 dX 1u du,
X
X 12uu2
两边积分,得 lX n 2 lu n 2 2 u 1 c ~ ,
如果考虑方程的满足初值条件的解, 可将初值条件
t 0时,x (0 ) x,y (0 ) y,代如得
0
0
即解为
kxeye, c d0x
a b0y
0
0
或写成
x ey e yexe, c dxa by
a b0y c d0x
0
0
x
y
( )e ( )e 1. c d(xx0)
dx
(2.1)
的方程,称为变量分离方程,这 f (x), (x)
分别里是 x,y连续函数.
如果 (y)0, 我们可将(2.1)改写成
dy f (x)dx,
(y)
这样,变量就“分离”开来了.两边积分,
得到
d(yy) f(x)dxc. (c为常数)
下面来做几道题来来练习一下变量分离方程,
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章、一阶微分方程的初等解法[教学目标]1. 理解变量分离方程以及可化为变量分离方程的类型(齐次方程),熟练掌握变量分离方程的解法。

2. 理解一阶线性微分方程的类型,熟练掌握常数变易法及伯努力方程的求解。

3. 理解恰当方程的类型,掌握恰当方程的解法及简单积分因子的求法。

4. 理解一阶隐式方程的可积类型,掌握隐式方程的参数解法。

[教学重难点] 重点是一阶微分方程的各类初等解法 ,难点是积分因子的求法以及隐式方程的解法。

[教学方法] 讲授,实践。

[教学时间] 14学时[教学内容] 变量分离方程,齐次方程以及可化为变量分离方程类型,一阶线性微分方程及其常数变易法,伯努利方程,恰当方程及其积分因子法,隐式方程。

[考核目标]1.一阶微分方程的初等解法:变量分离法、一阶线性微分方程的常数变易法、恰当方程与积分因子法、一阶隐方程的参数解法。

2.会建立一阶微分方程并能求解。

§1 变量分离方程与变量变换1、 变量分离方程1) 变量分离方程形如()()dy f x g y dx= (或1122()()()()0M x N y dx M x N y dy +=) (2.1)的方程,称为变量分离方程,其中函数()f x 和()g y 分别是,x y 的连续函数.2) 求解方法如果()0g y ≠,方程(2.1)可化为, ()()dy f x dx g y = 这样变量就分离开了,两边积分,得到()()dy f x dx c g y =+⎰⎰ (2.2) 把,()()dy f x dx g y ⎰⎰分别理解为1,()()f x y ϕ的某一个原函数. 容易验证由(2.2)所确定的隐函数(,)y x c ϕ=满足方程(2.1).因而(2.2)是(2.1)的通解.如果存在0y 使0()0g y =,可知0y y =也是(2.1)的解.可能它不包含在方程的通解(2.2)中,必须予以补上.3) 例题例1 求解方程dy x dx y=- 解 将变量分离,得到ydy xdx =-两边积分,即得 22222y x c =-+ 因而,通解为22x y c += 这里的c 是任意的正常数.或解出显式形式y =例2 解方程 2cos dy y x dx= 并求满足初始条件:当0x =时.1y =的特解.解 将变量分离,得到2cos dy xdx y = 两边积分,即得 1sin x c y-=+因而,通解为 1sin y x c=-+ 这里的c 是任意的常数.此外,方程还有解0y =.为确定所求的特解,以0x =.1y =代入通解中确定常数c ,得到 1c =-因而,所求的特解为 11sin y x =- 例3 求方程()dy P x y dx = (2.3)的通解,其中()P x 是x 的连续函数.解 将变量分离,得到()dy P x dx y = 两边积分,即得 ln ()y P x dx c =+⎰这里的c 是任意常数.由对数的定义,即有 ()P x dx c y e +⎰= 即()P x dx c y e e ⎰=±令c e c ±=,得到 ()P x dx y ce ⎰=(2.4) 此外,0y =也是(2.3)的解.如果在(2.4)中允许0c =,则0y =也就包括在(2.4)中,因而,(2.3)的通解为(2.4),其中c 是任意常数.注: 1.常数c 的选取保证(2.2)式有意义.2.方程的通解不一定是方程的全部解,有些通解包含了方程的所有解,有些通解不能包含方程的所有解.此时,还应求出不含在通解中的其它解, 即将遗漏的解要弥补上.3.微分方程的通解表示的是一族曲线,而特解表示的是满足特定条件00()y x y =的一个解,表示的是一条过点00(,)x y 的曲线.2、可化为变量分离方程的类型1).形如dy y g dx x ⎛⎫= ⎪⎝⎭ (2.5)的方程,称为齐次方程,这里的()g u 是u 的连续函数.另外,ⅰ)对于方程 (,)(,)dy M x y dx N x y = 其中函数(,)M x y 和(,)N x y 都是x 和y 的m 次齐次函数,即对0t >有(,)(,)m M tx ty t M x y ≡ (,)(,)m N tx ty t N x y ≡ 事实上,取1t x=,则方程可改写成形如(2.5)的方程. (1,)(1,)(1,)(1,)m m y y x M M dy x x y y dx x N N x x== ⅱ)对方程 (,)dy f x y dx= 其中右端函数(,)f x y 是x 和y 的零次齐次函数,即对0t >有(,)(,)f tx ty f x y =则方程也可改写成形如(2.5)的方程(1,)dy y f dx x= 对齐次方程(2.5)利用变量替换可化为变量分离方程再求解.令y u x=(2.6)即y ux =,于是dy du x u dx dx =+ (2.7)将(2.6)、(2.7)代入(2.5),则原方程变为 ()du xu g u dx += 整理后,得到()du g u u dx x -= (2.8)方程(2.8)是一个可分离变量方程,按照变量分离法求解,然后将所求的解代回原变量,所得的解便是原方程(2.5)的解.例4 求解方程dy y y tg dx x x=+ 解 这是齐次方程,以,y dy du u x u x dx dx ==+代入,则原方程变为 du xu u tgu dx+=+ 即du tgu dx x= (2.9)分离变量,即有 dx ctgudu x=两边积分,得到 ln sin ln u x c =+这里的c 是任意的常数,整理后,得到sin u cx = (2.10)此外,方程(2.9)还有解0tgu =,即sin 0u =. 如果(2.10)中允许0c =,则sin 0u =就包含在(2.10)中,这就是说,方程(2.9)的通解为(2.10).代回原来的变量,得到原方程的通解为sin y cx x=例5 求解方程(0).dy x y x dx+=< 解 将方程改写为(0)dy y x dx x =< 这是齐次方程,以,y dy du u x u x dx dx==+代入,则原方程变为du xdx=(2.11)分离变量,得到dx x = 两边积分,得到(2.11)的通解ln()x c =-+即2[ln()](ln()0)u x c x c =-+-+>(2.12) 这里的c 是任意常数.此外,(2.11)还有解0u =注意,此解不包括在通解(2.12)中.代回原来的变量,即得原方程的通解2[ln()](ln()0)y x x c x c =-+-+>及解0y =.原方程的通解还可表为2[ln()],ln()0,0,x x c x c y ⎧-+-+>=⎨⎩它定义于整个负半轴上.注:1.对于齐次方程dy y g dx x ⎛⎫= ⎪⎝⎭的求解方法关键的一步是令y u x =后,解出y ux =,再对两边求关于x 的导数得dy du u x dx dx=+,再将其代入齐次方程使方程变为关于,u x 的可分离方程. 2.齐次方程也可以通过变换x v y =而化为变量分离方程.这时x vy =,再对两边求关于y 的导数得dx dv v y dy dy =+,将其代入齐次方程dx x f dy y ⎛⎫= ⎪⎝⎭使方程变为,v y 的可分离方程 小结:这一讲我们主要讲解了一阶微分方程的可分离变量法和齐次方程的dy y g dx x ⎛⎫= ⎪⎝⎭形状的解法.而这一齐次方程通过变量替换任然可化为可分离方程,因而,一定要熟练掌握可分离方程的解法.2)形如111222a x b y c dy dx a x b y c ++=++ (2.13)的方程经变量变换化为变量分离方程,这里的121212,,,,,a a b b c c 均为常数.分三种情况来讨论(1)120c c ==情形.这时方程(2.13)属齐次方程,有 1122a x b y dy y g dx a x b y x +⎛⎫== ⎪+⎝⎭此时,令y u x=,即可化为变量可分离方程. (2)11220a b a b =,即1122a b a b =的情形. 设1122a b k a b ==,则方程可写成22122222()()()k a x b y c dy f a x b y dx a x b y c ++==+++ 令22a x b y u +=,则方程化为22()du a b f u dx =+ 这是一变量分离方程.(3)1112220,a b c c a b ≠及不全为零的情形. 这时方程(2.13)右端的分子、分母都是,x y 的一次式,因此11122200a x b y c a x b y c ++=⎧⎨++=⎩ (2.14)代表xy 平面上两条相交的直线,设交点为(,)αβ.显然,0α≠或0β≠,否则必有120c c ==,这正是情形(1)(只需进行坐标平移,将坐标原点(0,0)移至(,)αβ就行了,若令X x Y y αβ=-⎧⎨=-⎩ (2.15)则(2.14)化为 112200a X bY a X b y +=⎧⎨+=⎩ 从而(2.13)变为1122a X bY dY Y g dX a X b Y X +⎛⎫== ⎪+⎝⎭ (2.16)因此,得到这种情形求解的一般步骤如下:(1)解联立代数方程(2.14),设其解为,x y αβ==;(2)作变换(2.15)将方程化为齐次方程(2.16);(3)再经变换Y u X=将(2.16)化为变量分离方程; (4)求解上述变量分离方程,最后代回原变量可得原方程(2.13)的解.上述解题的方法和步骤也适用于比方程(2.13)更一般的方程类型 111222a x b y c dy f dx a x b y c ⎛⎫+== ⎪++⎝⎭()dy f ax by c dx++ ()()0y xy dx xg xy dy += 2()dy x f xy dx=2dy y xf dx x⎛⎫= ⎪⎝⎭ 以及 (,)()(,)()0M x y xdx ydy N x y xdy ydx ++-=(其中,M N 为,x y 的齐次函数,次数可以不相同)等一些方程类型,均可通过适当的变量变换化为变量分离方程.例6 求解方程 13dy x y dx x y -+=+- (2.17)解 解方程组 1030x y x y -+=⎧⎨+-=⎩ 得1, 2.x y ==令12x X y Y =+⎧⎨=+⎩ 代入方程(2.17),则有dY X Y dX X Y -=+ (2.18)再令 Y u X =即 Y uX = 则(2.18)化为2112dX u du X u u+=-- 两边积分,得 22ln ln 21X u u c =-+-+22(21)c X u u e +-=±记1,c e c ±=并代回原变量,就得2212Y XY X c +-=221(2)2(1)(2)(1)y x y x c -+----=此外,易验证2210u u +-=即2220Y XY X +-=也就是(2.18)的解.因此方程(2.17)的通解为22262y xy x y x c +---=其中c 为任意的常数.3、 应用举例例7 电容器的充电和放电如图(2.1)所示的R C -电路,开始时电容C 上没有电荷,电容两端的电压为零.把开关K 合上“1”后,电池E 就对电容C 充电,电容C 两端的电压C u 逐渐升高,经过相当时间后,电容充电完毕,再把开关K 合上“2”,这时电容就开始放电过程,现在要求找出充、放电过程中,电容C 两端的电压C u 随时间t 的变化规律.解 对于充电过程,由闭合回路的基尔霍夫第二定理,c u RI E += (2.19)对于电容C 充电时,电容上的电量Q 逐渐增多,根据C Q Cu =,得到 ()C C du dQ d I Cu C dt dt dt === (2.20)将(2.20)代入(2.19),得到c u 满足的微分方程 c c du RCu E dt+= (2.21)这里R 、C 、E 都是常数.方程(2.21)属于变量分离方程.将(2.21)分离变量,得到C C du dtu E RC=-- 两边积分,得到11ln C u E t c RC-=-+ 即1112t t c RCRCC u E e e c e---=±=这里12c c e =±为任意常数.将初始条件:0t =时,0C u =代入,得到2c E =-. 所以 1(1)t RC C u E e -=-(2.22)这就是R C -电路充电过程中电容C 两端的电压的变化规律.由(2.22)知道,电压C u 从零开始逐渐增大,且当t →+∞时,C u E →,在电工学中,通常称RC τ=为时间常数,当3t τ=时,0.95C u E =,就是说,经过3τ的时间后,电容C 上的电压已达到外加电压的95%.实用上,通常认为这时电容C 的充电过程已基本结束.易见充电结果C u E =.对于放电过程的讨论,可以类似地进行.例8 探照灯反射镜面的形状在制造探照灯的反射镜面时,总是要求将点光源射出的光线平行地射出去,以保证照灯有良好的方向性,试求反射镜面的几何形状.解 取光源所在处为坐标原点,而x 轴平行于光的反射方向,设所求曲面由曲线()y f x z =⎧⎨=⎩(2.23)绕x 轴旋转而成,则求反射镜面的问题归结为求xy 平面上的曲线()y f x =的问题,仅考虑0y >的部分,过曲线()y f x =上任一点(,)M x y 作切线NT ,则由光的反射定律:入射角等于反射角,容易推知12αα= 从而OM ON = 注意到2dy MP tg dx NPα==及,,OP x MP y OM ===就得到函数()y f x =所应满足的微分方程式dy dx =(2.24)这是齐次方程.由2.12知引入新变量xu y=可将它化为变量分离方程.再经直接积分即可求得方程的解.对于方齐次方程(2.24)也可以通过变换xv y=而化为变量分离方程也可由x yv =得dx dvv y dy dy=+代入(2.24)得到sgn dvv y v y dy+=+于是sgn dy y y =(2.25)积分(2.25)并代回原来变量,经化简整理,最后得2(2)y c c x =+(2.26)其中c 为任意常数.(2.26)就是所求的平面曲线,它是抛物线,因此,反射镜面的形状为旋转抛物面22(2)y z c c x +=+ (2.27)小结: 本节我们主要讨论了一阶可分离微分方程和齐次微分方程的求解问题.将各种类型的求解步骤记清楚的同时要注意对解的讨论.§2 线性方程与常数变易法1、一阶线性微分方程()()()0dya xb x yc x dx++= 在()0a x ≠的区间上可以写成()()dyP x y Q x dx=+ (2.28)对于()a x 有零点的情形分别在()0a x ≠的相应区间上讨论.这里假设(),()P x Q x 在考虑的区间上是x 的连续函数.若()0Q x ≡,(2.28)变为 ()dyP x y dx= (2.3)称为一阶齐线性方程.若()0Q x ≠,(2.28)称为一阶非齐线性方程.2、常数变易法(2.3)是变量分离方程,已在例3中求得它的通解为 ()P x dxy ce ⎰=(2.4)这里c 是任意的常数.下面讨论一阶非齐线性方程(2.28)的求解方法.方程(2.3)与方程(2.28)两者既有联系又有区别,设想它们的解也有一定的联系,在(2.4)中c 恒为常数时,它不可能是(2.28)的解,要使(2.28)具有形如(2.4)的解, c 不再是常数,将是x 的待定函数()c x ,为此令 ()()P x dxy c x e ⎰=(2.29) 两边微分,得到()()()()()P x dxP x dx dy dc x e c x P x e dx dx⎰⎰=+ (2.30)将(2.29)、(2.30)代入(2.28),得到()()()()()()()()()P x dxP x dx P x dx dc x e c x P x e P x c x e Q x dx⎰⎰⎰+=+ 即()()()P x dx dc x Q x e dx-⎰= 积分后得到()()()P x dxc x Q x e dx c -⎰=+⎰(2.31)这里c 是任意的常数..将(2.31)代入(2.29),得到()()()()()() =()P x dxP x dx P x dx P x dx P x dxy e Q x e dx c ce e Q x e dx--⎛⎫⎰⎰=+ ⎪⎝⎭⎰⎰⎰+⎰⎰(2.32)这就是方程(2.28)的通解.这种将常数变易为待定函数的方法,通常称为常数变易法.实际上常数变易法也是一种变量变换的方法.通过变换(2.29)可将方程(2.28)化为变量分离方程.注: 非齐线性方程的通解是它对应的齐线性方程的通解与它的某个特解之和. 例1 求方程1(1)(1)x n dyx ny e x dx++-=+的通解,这里的n 为常数. 解 将方程改写为 (1)1x n dy n y e x dx x -=++ (2.33)先求对应的齐次方程01dy n y dx x -=+ 的通解,得(1)n y c x =+令 ()(1)n y c x x =+ (2.34) 微分之,得到()(1)(1)()n dy dc x x n x c x dx dx=+++ (2.35)以(2.34)、(2.35)代入(2.33),再积分,得 ()x c x e c =+ 将其代入公式(2.34),即得原方程的通解 (1)()n x y x e c =++ 这里c 是任意的常数. 例2 求方程22dy ydx x y=-的通解. 解 原方程改写为2dx x y dy y=- (2.36)把x 看作未知函数,y 看作自变量,这样,对于x 及dxdy来说,方程(2.36)就是一个线性方程了.先求齐线性方程2dx x dy y= 的通解为2x cy = (2.37)令2()x c y y =,于是 2()2()dx dc y y c y y dy dy=+ 代入(2.36),得到()ln c y y c =-+ 从而,原方程的通解为2(ln )x y c y =-这里c 是任意的常数,另外0y =也是方程的解. 特别的,初值问题00()()()dyP x y Q x dxy x y ⎧=+⎪⎨⎪=⎩ 的解为00()()()=()xxsx x x P d P d P d xx y ceeQ s eds ττττττ-⎰⎰⎰+⎰例3 试证(1)一阶非齐线性方程(2.28)的任两解之差必为相应的齐线性方程(2.3)之解;(2)若()y y x =是(2.3)的非零解,而()y y x =是(2.28)的解,则(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数.(3)方程(2.3)任一解的常数倍或两解之和(或差)仍是方程(2.3)的解. 证 (1)设12,y y 是非齐线性方程的两个不同的解,则应满足方程使1122()(1)()(2)dy py Q x dxdy py Q x dx=+=+(1)—(2)有1212()()d y y p y y dx-=-说明非齐线性方程任意两个解的差12y y -是对应的齐次线性方程的解.(2)因为(()())()()(()()()()d cy x y x dy x d y x c p cy p y Q x p cy y Q x dx dx dx+=+=++=++故结论成立.(3)因为12121212()()()(),(),()d y y d y y d cy p cy p y y p y y dx dx dx+-==+=- 故结论成立.3、Bernoulli 方程形如()()n dyP x y Q x y dx=+ ( 0,1n ≠) (2.38)的方程,称为伯努利(Bernoulli )方程,这里(),()P x Q x 为x 连续函数.利用变量变换可将伯努利方程化为线性方程来求解.事实上,对于0y ≠,用n y -乘(2.38)两边,得到1()()n n dyy y P x Q x dx--=+ (2.39) 引入变量变换1n z y -= (2.40) 从而(1)ndz dyn y dx dx-=- (2.41)将(2.40)、2.41)代入(2.39),得到 (1)()(1)()dzn P x z n Q x dx=-+- (2.42)这是线性方程,用上面介绍的方法求得它的通解,然后再代回原来的变量,便得到(2.38)的通解.此外,当0n >时,方程还有解0y =. 例4 求方程26dy yxy dx x=-的通解 解 这是2n =时的伯努利方程,令 1z y -=,得 2dz dyy dx dx-=- 代入原方程得到6dz z x dx x=-+ 这是线性方程,求得它的通解为268c x z x =+代回原来的变量y ,得到2618c x y x =+或者688x x c y -= 这是原方程的通解. 此外,方程还有解0y =. 例5 求方程331dy dx xy x y=+的解 解 将方程改写为33dxyx y x dy=+ 这是一个自变量为y ,因变量为x 的伯努利方程.解法同上.例6 求方程23y dy e x dx x+=的通解 这个方程只要做一个变换,令,y ydu dyu e e dx dx==,原方程改写为 22231du x u u dx x x=+ 便是伯努利方程.小结;这次主要讨论了一阶线性微分方程的解法.其核心思想是常数变易法.即将非齐线性方程对应的齐线性方程解的常数变易为待定函数,使其变易后的解函数代入非齐次线性方程,求出待定函数()c x ,求出非齐次方程的解.我们还讨论了伯努利方程,求解过程为,先变换,将原方程化为非齐线性方程,再求解.§3 恰当方程与积分因子1、恰当方程的定义 将一阶微分方程(,)dyf x y dx= 写成微分的形式(,)0f x y dx dy -=把,x y 平等看待,对称形式的一阶微分方程的一般式为(,)(,)0M x y dx N x y dy += (2.43)假设(,),(,)M x y N x y 在某区域G 内是,x y 的连续函数,而且具有连续的一阶偏导数. 如果存在可微函数(,)u x y ,使得(,)(,)du M x y dx N x y dy =+ (2.44)即 (,), (,)u u M x y N x y x y∂∂==∂∂ (2.45)则称方程(2.43)为恰当方程,或称全微分方程.在上述情形,方程(2.43)可写成(,)0du x y ≡,于是 (,)u x y C ≡就是方程(2.43)的隐式通解,这里C 是任意常数(应使函数有意义). 2、 恰当方程的判定准则定理1设(,),(,)M x y N x y 在某区域G 内连续可微,则方程(2.43)是恰当方程的充要条件是, (,)M Nx y G y x∂∂=∈∂∂ (2.46)而且当(2.46)成立时,相应的原函数可取为 00(,)(,)(,)xyx y u x y M s y ds N x t dt =+⎰⎰(2.47) 或者也可取为0(,)(,)(,)yxy x u x y N x t dt M s y ds =+⎰⎰(2.48)其中00(,)x y G ∈是任意取定的一点.证明 先证必要性.因为(2.43)是恰当方程,则有可微函数(,)u x y 满足(2.45), 又知(,),(,)M x y N x y 是连续可微的,从而有22M u u Ny y x x y x∂∂∂∂===∂∂∂∂∂∂ 下面证明定理的充分性,即由条件(2.46),寻找函数(,)u x y ,使其适合方程(2.45).从(2.47)可知(,)uN x y y∂=∂ 000000(,)(,) =(,)(,) =(,)(,)(,)yy y x y yy y u M x y N x t dt x x M x y N x t dtM x y M x t dt M x y ∂∂=+∂∂++=⎰⎰⎰即(2.45)成立,同理也可从(2.48)推出(2.45). 例1. 解方程21()02x xydx dy y++=(2.49)解 这里21, =()2x M xy N y=+,则y x M x N ==,所以(2.49)是恰当方程.因为N 于0y =处无意义,所以应分别在0y >和0y <区域上应用定理2.3,可按任意一条途径去求相应的原函数(,)u x y .先选取00(,)(0,1)x y =,代入公式(2.47)有 22011()ln 22xyx x u xdx dy y y y =++=+⎰⎰再选取00(,)(0,1)x y =-,代入公式(2.47)有22011()()ln()22xyx x u x dx dy y y y -=-++=+-⎰⎰ 可见不论0y >和0y <,都有2ln ||2x u y y =+ 故方程的通解为2ln ||2x y y C +=. 3、恰当方程的解法上述定理已给出恰当方程的解法,下面给出恰当方程的另两种常用解法. 解法1. 已经验证方程为恰当方程,从(,)x u M x y =出发,有2(,)(,)()()2x u x y M x y dx y y y φφ≡+=+⎰ (2.50)其中()y φ为待定函数,再利用(,)y u N x y =,有221()22x x y y φ'+=+ 从而1()y yφ'= 于是有 ()ln ||y y φ=只需要求出一个(,)u x y ,因而省略了积分常数.把它代入(2.50)便得方程的通解为2ln ||2x u y y C =+= 解法2. 分项组合的方法 对(2.49)式重新组合变为21()02x xydx dy dy y ++= 于是 2()ln ||02x d y d y +=从而得到方程的通解为 2ln ||2x y y C += 4、积分因子的定义及判别对于微分形式的微分方程(,)(,)0M x y dx N x y dy +=(2.43)如果方程(2.43)不是恰当方程,而存在连续可微的函数(,)0x y μμ=≠,使得(,)(,)0M x y dx N x y dy μμ+= (2.51)为一恰当方程,即存在函数(,)v x y ,使(,)(,)M x y dx N x y dy dv μμ+≡则称(,)x y μ是方程(2.43)的积分因子.此时(,)v x y C =是(2.51)的通解,因而也就是(2.43)的通解.如果函数(,),(,)M x y N x y 和(,)x y μ都是连续可微的,则由恰当方程的判别准则知道, (,)x y μ为(2.43)积分因子的充要条件是M Ny xμμ∂∂=∂∂ 即 ()M N N M x y y xμμμ∂∂∂∂-=-∂∂∂∂ (2.52)5、积分因子的求法方程(2.52)的非零解总是存在的,但这是一个以μ为未知函数的一阶线性偏微分方程,求解很困难,我们只求某些特殊情形的积分因子. 定理2 设(,),(,)M M x y N N x y ==和(,)x y ϕϕ=在某区域内都是连续可微的,则方程(2.43) 有形如((,))x y μμϕ=的积分因子的充要条件是:函数(,)(,)(,)(,)(,)(,)y x x y M x y N x y N x y x y M x y x y ϕϕ--(2.53)仅是(,)x y φ的函数,此外,如果(2.53)仅是(,)x y φ的函数((,))f f x y ϕ=,而()()G u f u du =⎰,则函数((,))G x y e ϕμ= (2.54)就是方程(2.43)的积分因子.证明 因为如果方程(2.43)有积分因子()μμϕ=,则由(2.52)进一步知()()d M N N M d x y y xμϕϕμϕ∂∂∂∂-=-∂∂∂∂ 即y x x yM N d d N M μϕμϕϕ-=-由()μμϕ=可知左端是ϕ的函数,可见右端y x x yM N N M ϕϕ--也是ϕ的函数,即()y x x yM N f N M ϕϕϕ-=-,于是,有()d f d μϕϕμ=, 从而 ()()f d G e e ϕϕϕμ⎰==反之,如果(2.53)仅是ϕ的函数,即()y x x yM N f N M ϕϕϕ-=-,则函数(2.54)是方程(2.52)的解.事实上,因为()()()()G x y y x NM N M f e M N x yϕμμϕϕϕμ∂∂-=-=-∂∂ 因此函数(2.54)的确是方程(2.43)的积分因子. 为了方便应用这个定理,我们就若干特殊情形列简表如下: 例解2(3y -解这里2231,M y xy N xy x =-+=-,注意y x M N y x -=-所以方程不是恰当的,但是1y xM N Nx-=它仅是依赖与x ,因此有积分因子1dx xe x μ⎰≡=给方程两边乘以因子x μ=得到2223(3)()0xy x y x dx x y x dy -++-=从而可得到隐式通解22321122u x y x y x C ≡-+=例3. 解方程2()(1)0xy y dx xy y dy ++++=解 这里2,1M xy y N xy y =+=++方程不是恰当的.但是1y xM N My-=-- 它有仅依赖于y 的积分因子 11dyy eyμ-⎰≡=方程两边乘以积分因子1y μ=得到 1()(1)0x y dx x dy y++++= 从而可得到隐式通解21ln ||2u x xy y y C ≡+++= 另外,还有特解0y =.它是用积分因子乘方程时丢失的解. 例4. 解方程 223(2)()0y x y dx xy x dy +++=解 这里2232,M y x y N xy x =+=+,不是恰当方程.设想方程有积分因子()x y αβμμ=,其中α,β是待定实数.于是2112111()(2)y xM N y x x N y M x y y x x y x y αβαβαβαβαβαβ----⋅=⋅=--+-只须取3,2αβ==.由上述简表知原方程有积分因子32x y μ=从而容易求得其通解为:446313u x y x y C ≡+=六、积分因子的其他求法以例4为例,方程的积分因子也可以这样来求:把原方程改写为如下两组和的形式:223()(2)0y dx xydx x ydx x dy +++=前一组有积分因子11yμ=,并且 21()()y dx xydy d xy y+=后一组有积分因子21xμ=,并且 2321(2)()x ydx x dy d x y x+= 设想原方程有积分因子211()()xy x y y xαβμ== 其中α,β是待定实数.容易看出只须3,2αβ==,上述函数确实是积分因子,其实就是上面找到一个.例5. 解方程 1212()()()()0M x M y dx N x N y dy += 其中1M ,2M ,1N ,2N 均为连续函数.解 这里12()()M M x M y =,12()()N N x N y =.写成微商形式就形式上方程是变量可分离方程,若有0y 使得20()0M y =,则0y y =是此方程的解;若有0x 使得10()0N x =,则0x x =是此方程的解;若21()()0M y N x ≠,则有积分因子211()()M y N x μ=并且通解为1212()()()()M x N y u dx dy N x M y ≡+⎰⎰ 例6、试用积分因子法解线性方程(2.28).解 将(2.28)改写为微分方程[()()]0P x y Q x dx dy +-=(2.55)这里()(),1M P x y Q x N =+=-,而()M Ny xP x N∂∂-∂∂=- 则线性方程只有与x 有关的积分因子()P x dxe μ-⎰= 方程(2.55)两边乘以()P x dxe μ-⎰=,得()()()()()0P x dx P x dx P x dxxP x e ydx e dy Q x e dx ---⎰⎰⎰-+= (2.56)(2.56)为恰当方程,又分项分组法()()()()0P x dx P x dxd ye Q x e dx --⎰⎰-=因此方程的通解为()()()P x dx P x dxye Q x e dx c --⎰⎰-=⎰即()()[()]P x dxP x dxy e Q x e dx c -⎰⎰=+⎰与前面所求得的结果一样.注:积分因子一般不容易求得可以先从求特殊形状的积分因子开始,或者通过观察法进行“分项分组”法求得积分因子.§4 一阶隐方程与参数表示1、一阶隐方程一阶隐式微分方程的一般形式可表示为:(,,)0F x y y '=如果能解出(,)y f x y '=,则可化为显式形式,根据前面的知识求解. 例如方程2()()0y x y y xy ''-++=,可化为y x '=或y y '=但难以从方程中解出y ',或即使解出y ',而其形式比较复杂,则宜采用引进参数的方法求解.一般隐式方程分为以下四种类型:1) (,)y f x y '= 2) (,)x f y y '= 3) (,)0F x y '= 4)(,)0F y y '=2、求解方法Ⅰ)可以解出y (或)x 的方程1) 讨论形如(,)y f x y '= (2.57)的方程的解法,假设函数(,)f x y '有连续的偏导数,引进参数y p '=,则方程(2.57)变为 (,)y f x p = (2.58)将(2.58) 的两边对x 求导数,得到 f f dp p x y dx∂∂=+∂∂ (2.59)方程(2.59)是关于,x p 的一阶微分方程,而且属于显式形式.若求得(2.59)的通解形式为(,)p x c ϕ=,将其代入(2.58),于是得到(2.57)通解为 (,(,))y f x x c ϕ=若求得(2.59)的通解形式为(,)x p c ψ=,于是得到(2.57)的参数形式的通解为(,)((,),)x p c y f p c p ψψ=⎧⎨=⎩其中p 为参数, c 是任意常数.若求得(2.59)的通解形式为(,,)0x p c Φ=,于是得到(2.57)的参数形式的通解为(,,)0(,)x p c y f x p Φ=⎧⎨=⎩其中p 为参数, c 是任意常数. 例1 求方程3()20dy dyx y dx dx+-= 的解 解 令dyp dx=,于是有32y p xp =+ (2.60)两边对x 求导数,得到2322dp dp p p x p dx dx=++ 即 2320p dp xdp pdx ++= 当0p ≠时,上式有积分因子p μ=,从而32320p dp xpdp p dx ++= 由此可知4234p xp c += 得到42223344c pc x p p p -==- 将其代入(2.60),即得43342()c p y p p-=+故参数形式的通解为22334(0) 212c x p p p c y p p ⎧=-⎪⎪≠⎨⎪=-⎪⎩当0p =时,由(2.60)可知0y =也是方程的解.例2 求方程22()2dy dy x y xdx dx =-+的解. 解 令dy p dx=,得到222x y p xp =-+(2.61)两边对x 求导数,得到2dp dp p px p x dx dx =--+ 或 (2)(1)0dpp x dx--= 由10dpdx-=,解得p x c =+,于是得到方程的通解为222x y cx c =++ (2.62)由20p x -=,解得2xp =,于是得到方程的一个解为24x y =(2.63)特解(2.63)与通解(2.62)中的每一条积分曲线均相切,因此称为方程的奇解.2) 讨论形如(,)dyx f y dx= (2.64)的方程的求解方法,方程(2.64)与方程(2.57)的求解方法完全类似,假定函数(,)f y y ' 有连续偏导数. 引进参数dyp dx=,则(2.64) 变为 (,)x f y p = (2.65)将(2.65) 的两边对y 求导数,得到 1f f dp p y x dy∂∂=+∂∂ (2.66)方程(2.66))是关于,y p 的一阶微分方程,而且属于显式形式.设其通解为 (,,)0y p c Φ= 则(2.64)的通解为(,,)0(,)y p c x f y p Φ=⎧⎨=⎩Ⅱ)不显含y (或)x 的方程 3) 讨论形如(,)0F x y '=(2.67) 的方程的解法.记dyp y dx'==,此时(,)0F x p =表示的是xp 平面上的一条曲线,设曲线用参数形式表示为()x t ϕ=,()p t ψ= (2.68)由于dy pdx =,进而()()dy t t dt ψϕ'= 两边积分,得到()()y t t dt c ψϕ'=+⎰于是得到方程(2.67)参数形式的解为()()()x t y t t dt c ϕψϕ=⎧⎪⎨'=+⎪⎩⎰c 是任意常数.例3 求解方程3330x y xy ''+-=解 令y p tx '==,则由方程得331tx t=+, 2331t p t =+ 于是 23339(12)(1)t t dy dt t -=+ 积分得到23333329(12)314(1)2(1)t t t y dt c c t t -+=+=+++⎰故原方程参数形式的通解为:3332313142(1)t x t t y c t ⎧=⎪+⎪⎨+⎪=+⎪+⎩4) 讨论形如(,)0F y y '=(2.69)的方程,其解法与方程(2.67)的求解方法类似.记dyp y dx'==,此时(,)0F y p =表示的是yp 平面上的一条曲线,设曲线用参数形式表示为()y t ϕ=,()p t ψ= 由关系式dy pdx =可知 ()()t dt t dx ϕψ'=,于是0p ≠时,有 ()()t dx dt t ϕψ'=, ()()t x dt c t ϕψ'=+⎰ 故方程(2.69)的参数形式的通解()()()t x dt c t y t ϕψϕ'⎧=+⎪⎨⎪=⎩⎰c 是任意常数.此外,不难验证,若(,0)0F y =有实根y k =,则y k =也是方程的解.例4 求解方程 22(1)(2)y y y ''-=-.解 令2y yt '-=,则有222(1')y y y t -=由此可以得2'1y t =-,1y t t=+ 代入1dx dy p=,得到 222111(1)1dx dt dt t t t=-+=-- 积分,得到1x c t=+故原方程参数形式的通解为 11x c t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩其中c 是任意常数.此外, 当0y '=时原方程变为24y =,于是2y =±也是方程的解. 例5求解方程y '=解 令y p '=,则有p =,取,(,)22p tgt t ππ=∈-,则sin sec tgt x t t === 由dy pdx =得到cos sin dy tgt tdt tdt ==所以cos y t c =-+故原方程参数形式的通解为sin cos x t y t c =⎧⎨=-+⎩ 其中c 是任意常数.(注:本资料素材和资料部分来自网络,仅供参考。

相关文档
最新文档