大学物理7章作业

合集下载

《大学物理》章节试题及答案(七)

《大学物理》章节试题及答案(七)

《大学物理》章节试题及答案第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). *7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

2022大学物理B-第7章气态动理论答案

2022大学物理B-第7章气态动理论答案

第7章 气体动理论练习题一、选择题1、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,R 是摩尔气体常量,k 称为玻耳兹曼常量,则该理想气体的分子数为[ B ](A) pV/m. (B) pV/(kT).(C) pV/(RT). (D) pV/(mT).2、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,mol M 为摩尔质量,A N 为阿伏加得罗常量)[ A ] (A)pV M m 23. (B) pV M M mol 23. (C) npV 23. (D) pV N MM A 23mol . 3、根据经典的能量按自由度均分原理,每个自由度的平均能量为[ C ](A) kT /4. (B)kT /3.(C) kT /2. (D)kT.4、在20℃时,单原子理想气体的内能为[ D ](A)部分势能和部分动能. (B)全部势能. (C)全部转动动能.(D)全部平动动能. (E)全部振动动能.5、如果氢气和氦气的温度相同,摩尔数也相同,则[ B ](A)这两种气体的平均动能相同. (B)这两种气体的平均平动动能相同.(C)这两种气体的内能相等. (D)这两种气体的势能相等.6、在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为[D ](A) 3 p 1. (B) 4 p 1.(C) 5 p 1. (D) 6 p 1.7、在容积V =4×10-3 m 3的容器中,装有压强P =5×102 Pa 的理想气体,则容器中气体分子的平动动能总和为[B ](A) 2 J . (B) 3 J .(C) 5 J . (D) 9 J .8、若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了[B ](A) 0.500. (B) 400.(B) 900. (D) 2100.9、麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示[ D ](A) 0v 为最概然速率.(B) 0v 为平均速率.(C) 0v 为方均根速率.(D) 速率大于和小于0v 的分子数各占一半.0 v二、填空题 1、有一个电子管,其真空度(即电子管内气体压强)为1.0×10-5 mmHg ,则27 ℃ 时管内单位体积的分子数为_________________ .(玻尔兹曼常量k =1.38×10-23 J/K , 1 atm=1.013×105 Pa =76 cmHg )解:nkT p =故3001038.176010013.1100.12355⨯⨯⨯⨯⨯⨯==--kT p n =3.2×1017 /m 32、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。

大学物理第7章静电场练习题

大学物理第7章静电场练习题

第7章 习题精选(一)选择题7-1、下列几种说法中哪一个是正确的?(A )电场中某点场强的方向,就是点电荷在该点所受电场力的方向.(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强可由q F E /=计算,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受电场力. (D )以上说法都不正确.[ ]7-2、图中实线为某电场的电场线,虚线表示等势面,由图可看出: (A )C B A E E E >>,C B A V V V >>.(B )C B A E E E <<,C B A V V V <<. (C )C B A E E E >>,C B A V V V <<.(D )C B A E E E <<,C B A V V V >>. [ ]7-3、关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A )场强E的大小与试验电荷0q 的大小成反比.(B )对场中某点,试验电荷受力F与0q 的比值不因0q 而变.(C )试验电荷受力F 的方向就是场强E的方向.(D )若场中某点不放试验电荷0q ,则0=F ,从而0=E.[ ]7-4、有一边长为a 的正方形平面,在其中垂线上距中心O 点垂直距离为a /2处,有一电量为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A )03εq . (B )04επq (C )03επq . (D )06εq[ ]7-5、已知一高斯面所包围的体积内电荷代数和0=∑q ,则可肯定:(A )高斯面上各点场强均为零. (B )穿过高斯面上每一面元的电场强度通量均为零. (C )穿过整个高斯面的电场强度通量为零. (D )以上说法都不对.[ ]7-6、点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图,则引入前后: (A )曲面S 的电场强度通量不变,曲面上各点场强不变. (B )曲面S 的电场强度通量变化,曲面上各点场强不变. (C )曲面S 的电场强度通量变化,曲面上各点场强变化. (D )曲面S 的电场强度通量不变,曲面上各点场强变化.[ ]7-7、高斯定理0/d ε∑⎰⋅=q S E S(A )适用于任何静电场. (B )只适用于真空中的静电场. (C )只适用于具有球对称性、轴对称性和平面对称性的静电场.(D )只适用于虽然不具有(C )中所述的对称性、但可以找到合适的高斯面的静电场.[ ]q7-8、关于高斯定理的理解有下面几种说法,其中正确的是:(A )如果高斯面上E处处为零,则该面内必无电荷.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则高斯面内必有电荷.(D )如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[ ]7-9、静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所做的功.[ ]7-10、图中所示为轴对称性静电场的E ~r 曲线,请指出该电场是由下列哪一种带电体产生的(E 表示电场强度的大小,r 表示离对称轴的距离).(A )“无限长”均匀带电圆柱面. (B )“无限长”均匀带电圆柱体. (C )“无限长”均匀带电直线. (D )“有限长”均匀带电直线.[ ]7-11、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A )顶点a 、b 、c 、d 处都是正电荷.(B )顶点a 、b 处是正电荷,c 、d 处是负电荷. (C )顶点a 、c 处是正电荷,b 、d 处是负电荷. (D )顶点a 、b 、c 、d 处都是负电荷.[ ]7-12、图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A )半径为R 的均匀带负电球面.(B )半径为R 的均匀带负电球体. (C )正点电荷. (D )负点电荷.[ ]7-13、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪个是正确的?(A )电场强度N M E E <. (B )电势N M V V <. (C )电势能pN pM E E <. (D )电场力的功0>W .[ ]7-14、有三个直径相同的金属小球.小球1和小球2带等量异号电荷,两者的距离远大于小球直径,相互作用力为F .小球3不带电并装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为:(A )0. (B )F /4. (C )F /8. (D )F /2.[ ]ba7-15、一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为σ+,则在导体板B 的两个表面1和2上的感应电荷面密度为:(A )σσ-=1,σσ+=2. (B )σσ211-=,σσ212+=.(C )σσ211-=,σσ212-=. (D )σσ-=1,02=σ.[ ]7-16、A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷1Q +,B 板带电荷2Q +,如果使B 板接地,则AB 间电场强度的大小E 为(A )S Q 012ε. (B )S Q Q 0212ε-. (C )S Q01ε. (D )SQ Q 0212ε+.[ ]7-17、两个同心薄金属球壳,半径分别为1R 和2R (12R R >),若分别带上电荷1q 和2q ,则两者的电势分别为1V 和2V (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A )1V . (B )2V . (C )21V V +. (D ))(2121V V +.[ ]7-18、如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A )00>=V E ,. (B )00<=V E ,. (C )00==V E ,. (D )00<>V E ,.[ ]7-19、在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A )球壳内、外场强分布均无变化. (B )球壳内场强分布改变,球壳外不变. (C )球壳外场强分布改变,球壳内不变. (D )球壳内、外场强分布均改变.[ ]7-20、电场强度0/q F E=这一定义的适用范围是:(A )点电荷产生的电场. (B )静电场. (C )匀强电场. (D )任何电场.[ ]7-21、在边长为b 的正方形中心放置一点电荷Q ,则正方形顶角处的场强为: (A )20π4b Q ε. (B )20π2b Q ε. (C )20π3b Q ε. (D )20πbQε. [ ]7-22、一“无限大”均匀带电平面A 的右侧放一与它平行的“无限大”均匀带电平面B .已知A 面电荷面密度为σ,B 面电荷面密度为σ2,如果设向右为正方向,则两平面之间和平面B 右侧的电场强度分别为:(A )002εσεσ,. (B )00εσεσ,. (C )00232εσεσ,-. (D )002εσεσ,-. [ ]A +σ2+Q 2A B7-23、一带有电量Q 的肥皂泡(可视为球面)在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中:(A )始终在泡内的点的场强变小. (B )始终在泡外的点的场强不变. (C )被泡面掠过的点的场强变大. (D )以上说法都不对.[ ]7-24、两个同心均匀带电球面,半径分别为a R 和b R (a R <b R ),所带电荷分别为a Q 和b Q .设某点与球心相距r ,当b R r >时,该点的电场强度的大小为:(A )⎪⎪⎭⎫ ⎝⎛+2b b 2a 0π41R Q r Q ε. (B )⎪⎭⎫ ⎝⎛+2b a 0π41r Q Q ε. (C )⎪⎭⎫ ⎝⎛-2b a 0π41r Q Q ε. (D )2a 0π41r Q ε. [ ]7-25、关于高斯定理的理解有下面几种说法,其中正确的是: (A )如果高斯面内有净电荷,则通过高斯面的电通量必不为零.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则该面内必有电荷. (D )高斯定理仅适用于具有高度对称性的电场.[ ]7-26、一点电荷放在球形高斯面的中心处,下列哪一种情况,通过该高斯面的电通量会发生变化. (A )将另一点电荷放在高斯面外. (B )将另一点电荷放在高斯面内. (C )将球心处的点电荷移开,但仍在高斯面内. (D )将高斯面缩小.[ ]7-27、在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A )1P 和2P 两点的位置. (B )1P 和2P 两点处的电场强度的大小和方向. (C )试验电荷所带电荷的正负. (D )试验电荷所带的电量.[ ]7-28、带电导体达到静电平衡时,其正确结论是:(A )导体表面上曲率半径小处电荷密度较小.(B )表面曲率半径较小处电势较高.(C )导体内部任一点电势都为零. (D )导体内任一点与其表面上任一点的电势差等于零.[ ]7-29、一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U ,电场强度的大小E ,将发生如下变化.(A )U 减小,E 减小. (B )U 增大,E 增大.(C )U 增大,E 不变. (D )U 减小,E 不变.[ ](二)填空题7-1、根据定义,静电场中某点的电场强度等于置于该点的___________________所受到的电场力.7-2、电场线稀疏的地方电场强度________;密集的地方电场强度________.(填“较大”或“较小”)7-3、均匀带电细圆环圆心处的场强为______________.7-4、一电偶极子,带电量为C 1025-⨯=q ,间距cm 5.0=L ,则系统电矩为_____________Cm .7-5、在静电场中作一任意闭合曲面,通过该曲面的电场强度通量的值取决于________________.7-6、两个平行的“无限大”均匀带电平面,其电荷面密度分别为σ+和σ-,则两平面之间的电场强度大小为___________________,方向为_____________________.7-7、一个均匀带电球面半径为R ,带电量为Q .在距球心r 处(r <R )某点的电势为________________.7-8、在电荷为q 的点电荷的静电场中,将一电荷为0q 的试验电荷从a 点(距离q 为a r )沿任意路径移动到b 点(距离q 为b r ),外力克服静电场力所做的功=W ____________________.7-9、电荷为C 1059-⨯-的试验电荷放在电场中某点时,受到N 10209-⨯的向下的力,则该点的电场强度大小为____________,方向____________.7-10、两个平行的“无限大”均匀带电平面,其电荷面密度分别为σ+和σ2+,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =______________,E B =________________,E C =_____________(设方向向右为正).7-11、一半径为R 的带有一缺口的细圆环,缺口长度为d (d <<R )环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小=E ______________,场强方向为____________.7-12、半径为R 的半球面置于场强为E 的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的电场强度通量为___________.7-13、一均匀带正电的导线,电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量)是____________.7-14、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰⋅SS E d =_________,式中E为__________________处的场强.+σ +2σ AB C7-15、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:1Φ=___________,2Φ=___________,3Φ=________________.7-16、描述静电场的两个基本物理量是__________________;它们的定义公式是_______________和_________________.7-17、图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA =.现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为_____________.7-18、半径为R 的均匀带电圆环,电荷线密度为λ.设无穷远处为电势零点,则圆环中心O 点的电势V =_____________________.7-19、静电场的场强环路定理的数学表示式为:____________.该式的物理意义____________________该定理表明,静电场是____________场.7-20、电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时系统的电势能E p =___________________.7-21、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U '=________________.7-22、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为:内表面_____________;外表面_______________.7-23、如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置.设两板面积都是S ,板间距离是d ,忽略边缘效应.当B 板不接地时,两板间电势差U AB =_____________;B 板接地时两板间电势差='ABU _____________.7-24、一个不带电的金属球壳的内、外半径分别为R 1和R 2,今在中心处放置一电荷为q 的点电荷,则球壳的电势U =_____________.7-25、一平行板电容器充电后切断电源,若使两电极板距离增加.则电容将____________,两极板间电势差将__________.(填“增大”、“减小”或“不变”)1 2 3S(三)计算题7-1、电荷为q 1=8.0×10-6C 和q 2=-8.0×10-6C 的两个点电荷相距20cm ,求离它们都是20cm 处的电场强度.(真空介电常量-2-12120m N C 108.85⋅⋅⨯=ε)7-2、如图所示,一长为10cm 的均匀带正电细杆,其电荷为1.5×10-8C ,试求在杆的延长线上距杆的端点5cm 处的P 点的电场强度.(2-290C m N 10941⋅⋅⨯=πε)7-3、绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.7-4、“无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.7-5、真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为λ-和λ+.试求:在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).7-6、真空中一立方体形的高斯面,边长a =0.1m ,位于图中所示位置.已知空间的场强分布为:bx E =x ,0z y ==E E .常量b =1000N/(C ⋅m ).试求通过该高斯面的电通量.7-7、如图所示,两个点电荷+q 和-3q ,相距为d ,试求:(1)在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势0=V 的点与电荷为+q 的点电荷相距多远?7-8、一“无限大”平面中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).7-9、一个带等量异号电荷的均匀带电同心球面,半径分别为m 03.01=R 和m 10.02=R .已知两者的电势差为450V ,求内球面上所带的电荷.7-10、厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ.试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.x12。

大学物理第7章习题参考答案(钟韶 编)

大学物理第7章习题参考答案(钟韶 编)

第七章7-1 (1)由RT MmpV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代入.证V =8.31×10-3m 3(2) 设漏气后,容器中的质量为m ′,则T R M m V p ''=' 3201.0853*******⨯⨯='⇒⨯'=⇒R MR M m R Mm pV )kg (151='⇒m 漏去的氧气为kg 103.3kg 301kg )1511.0(2-⨯≈=-='-=m m m ∆ 7-2 太阳内氢原子数H Sm M N =故氢原子数密度为3827303)1096.6(341067.11099.134⨯⨯⨯⨯===-ππs H S R m M VN n)(105.8329-⨯=m由P =nkT 知)(1015.11038.1105.81035.17232914K nk p T ⨯=⨯⨯⨯⨯==- 7-3 如图混合前:2221112222111O He T M m T M m RT M m pV RT M m pV =⇒⎪⎪⎭⎪⎪⎬⎫==气有对气有对 ①总内能 222111212523RT M m RT M m E E E +=+=前 ② ①代入②证1114RT M m E =前 混合后:设共同温度为T题7-2图()RT M m T T EF RT M m M m E 21210221125231,2523⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=式得又由后 ③ 又后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 (1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤≤≤=000002020)(v v v v v av v v v av f (2)由归一化条件⎰∞=01d )(v v f 得020032123d d 000v a av v a v v v a v v v =⇒==+⎰⎰(3)4d d )(00002/02/Nv v v a N v v Nf N v v v v =⎪⎪⎭⎫ ⎝⎛==⎰⎰∆ (4)从图中可看出最可几速率为v 0~2v 0各速率. (5)⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛==∞0002/000d d d )(v v v v va v v v av v v vf v020911611v av ==(6)02/02/097d d d )(d )(0002121v v v v a v v av v v v f v v vf v v v v v v v v v =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛==⎰⎰⎰⎰ 7-5 氧气未用时,氧气瓶中T T p L V V ====111,atm 130,32 V RTMp V RT Mp m 11111==① 氧气输出压强降到atm 102=p 时 V RTMp V RT Mp m 22222== ② 氧气每天用的质量 000V RTMP m =③L 400,atm 100==V P设氧气用的天数为x ,则021210m m m x m m xm -=⇒-= 由(1)(2)(3)知021021)(V p Vp p m m m x -=-=)(6.932400110130天=⨯⨯-=7-6 (1))(m 1041.23001038.110325235--⨯=⨯⨯==KT p n (2)(kg)103.51002.61032262330--⨯=⨯⨯==N M μ (3))kg/m (3.1103.51041.232625=⨯⨯⨯==-μρn (4)(m)1046.31041.21193253-⨯=⨯==nl(5)认为氧气分子速率服从麦克斯韦布,故 )(m s 1046.4103230031.86.16.11-23⨯=⨯⨯==-M RT v (6)122ms 1083.43-⨯==MRTv (7)(J)1004.13001038.12522023--⨯=⨯⨯⨯==KT i ε 7-7 3112310m 1006.12371038.1104---⨯=⨯⨯⨯==∴=kT p n nkTp )(cm 1006.135-⨯= 故1cm 3中有51006.1⨯个氮气分子.m101.21006.111d 43113-⨯≈⨯==n7-8 由课本P 257-258例7-4的结论知 )l n (0pp Mg RTh =(m)1096.1)8.01ln(8.9102930031.833⨯=⨯⨯⨯=- 7-9 (1) (J)1021.63001038.123232123--⨯=⨯⨯⨯==KT t (2)看作理想气体,则3132310101030028.16.16.1---⨯⨯⨯==μKTv 12ms 1003.1--⨯=7-10 (J)5.373930031.82323=⨯⨯===RT N E 平动平动ε (J)249330031.8122=⨯⨯===RT N E 转动转动ε内能(J)1023.630031.825253⨯=⨯⨯==RT E7-11 (1)由KTpn nKT p =⇒=∵是等温等压 ∴ 1:1:21=n n (2) MRT v 6.1=是等温,∴4:1322::1221====M M v v7-12317233102.33001038.11033.1---⨯=⨯⨯⨯==m KT P n m)(8.71033.110923001038.1d 2320232=⨯⨯⨯⨯⨯⨯==---ππλpKT7-13 (1)8000021042.56.1d 2⨯=⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫===z M RT v KT p n v n z π(2)由公式MTRK p M RTKT p v n z 222d 26.1d 2d 2πππ===知 z 与T 和P 有关,由于T 不变,故z 只与P 有关.则1854000071.01042.510013.11033.1::--=⨯⨯⨯⨯='='⇒'='s z p p z p p z z 7-14 (1)如图MRT v 32=∴A c A c T T v v ::22=又 C B →等温过程,故C B T T =. 由B A A B V V P P RT Mm pV ===2则A B T T 2= ∴1:2:22=A c V V(2)AAc c A c P T P T pKT ::d 22==λλπλ C B →等温过程 A C A A A C B B C C p p V p V p V p V p =⇒=⨯⇒=221:2:=∴A C7-15 (1)MRTv 73.12= )(ms 100.7102400031.873.1133--⨯=⨯⨯=(2)m 10210)31(2122101021--⨯=⨯+=+=d d d (3)325202210710401042d 2⨯⨯⨯⨯⨯⨯==-ππv n z110s 105-⨯= 7-16 (1)题7-14图MTR k p z KT pn M RT v v n z ππππ8d 28d 222=⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=== ① 又由mREMT RT M m RT M m E 3326=⇒==② 把②代入①知EmkMpKN E m kM pR z ππ3d 43d 4022== EmMpN π3d 402=(2) MRTv P 2=把②代入得mEmR EM M R V P 3232=⨯=(3)平均平动动能 0232323mN EMmR EM k kT t =⨯==ε。

大学物理学(课后答案)第7章

大学物理学(课后答案)第7章

⼤学物理学(课后答案)第7章第七章课后习题解答、选择题7-1处于平衡状态的⼀瓶氦⽓和⼀瓶氮⽓的分⼦数密度相同,分⼦的平均平动动能也相同,则它们[](A) 温度,压强均不相同(B)温度相同,但氦⽓压强⼤于氮⽓的压强(C)温度,压强都相同(D)温度相同,但氦⽓压强⼩于氮⽓的压强3分析:理想⽓体分⼦的平均平动动能τk= kT,仅与温度有关,因此当氦⽓和氮2⽓的平均平动动能相同时,温度也相同。

⼜由理想⽓体的压强公式p =nkT ,当两者分⼦数密度相同时,它们压强也相同。

故选( C)O7-2理想⽓体处于平衡状态,设温度为T,⽓体分⼦的⾃由度为i ,则每个⽓体分⼦所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为^kT (D)平均平动动能为^RT分析:由理想⽓体分⼦的的平均平动动能3 kT和理想⽓体分⼦的的平均动能2T⼆丄kT ,故选择(C)O27-3三个容器A、B、C中装有同种理想⽓体,其分⼦数密度n相同,⽽⽅均根1/2 1/2 1/2速率之⽐为V A : V B : V C 1:2:4 ,则其压强之⽐为P A : P B : P C[](A) 1:2:4 (B) 1:4:8 (C) 1 : 4 : 16 (D) 4:2:1分析:由分⼦⽅均根速率公式= J3RT,⼜由物态⽅程p = nkT ,所以当三容器中得分⼦数密度相同时,得p1: P2: P3 =T1 :T2 :T3 =1:4:16 O故选择(C)O7-4图7-4中两条曲线分别表⽰在相同温度下氧⽓和氢⽓分⼦的速率分布曲线。

如果(VP O和(V P 分别表⽰氧⽓和氢⽓的最概然速率,则[](A)图中a表⽰氧⽓分⼦的速率分布曲线且V P O z V P H= 4(B) 图中a表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H? =1/4(C) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O / V P H=1/4(D) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H2 =4分析:在温度相同的情况下,由最概然速率公式'..P=I j2RT及氢⽓与氧⽓的摩尔质量M H2£M o2,可知氢⽓的最概然速率⼤于氧⽓的最概然速率,故曲线a对应于氧分⼦的速率分布曲线。

大学物理答案第7~8章

大学物理答案第7~8章

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q,它的几何中间放置一个单位正电荷,求这个电荷受力的大小和偏向.解:如图可看出两2q 的电荷对单位正电荷的在感化力 将互相抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520a qπε偏向由q 指向-4q.7-2 如图,平均带电细棒,长为L,电荷线密度为λ.(1)求棒的延伸线上任一点P 的场强;(2)求经由过程棒的端点与棒垂直上任一点Q 的场强.解:(1)如图7-2 图a,在细棒上任取电荷元dq,树立如图坐标,dq =λd ξ,设棒的延伸线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为 )11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ偏向沿ξ轴正向.(2)如图7-2 图b,设经由过程棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d ydx ytg x ===,习题7-1图dqξd ξ习题7-2 图axdx习题7-2 图by代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,偏向沿x 轴负向.θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,平均散布有电荷q,求半圆中间O 处的场强. 解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ.对称剖析E y =0.θπεθλsin 420R Rd dE x =⎰⎰==πθπελ0sin 4R dE E xR02πελ= 2022R q επ=,如图,偏向沿x 轴正向.7-4 如图线电荷密度为λ1的无穷长平均带电直线与另一长度为l .线电荷密度为λ2的平均带电直线在统一平面内,二者互相垂直,求它们间的互相感化力.解:在λ2的带电线上任取一dq,λ1的带电线是无穷长,它在dq 处产生的电场强度由高斯定理轻易得到为,xE 012πελ=两线间的互相感化力为θθπελθd y dE E x x ⎰⎰-=-=0sin4x习题7-3图λ1 习题7-4图⎰⎰==x dx dF F 0212πελλ⎰=la x dx 0212πελλ,ln 2021ala +πελλ如图,偏向沿x 轴正向. 7-5 两个点电荷所带电荷之和为Q,问它们各带电荷若干时,互相感化力最大? 解:设个中一个电荷的带电量是q,另一个即为Q -q,若它们间的距离为r,它们间的互相感化力为204)(rq Q q F πε-=互相感化力最大的前提为04220=-=r qQ dq dF πε 由上式可得:Q=2q,q=Q/27-6 一半径为R 的半球壳,平均带有电荷,电荷面密度为σ,求球心处电场强度的大小. 解:将半球壳细割为诸多细环带,其上带电量为θθπσθπσd R rRd dq sin 222==dq 在o 点产生的电场据(7-10)式为304R ydqdE πε=,θcos R y =θθπεθπσπd R R dE E cos 4sin 200303⎰⎰==)(sin sin 200θθεσπd ⎰=20202sin 2πθεσ=4εσ=.如图,偏向沿y 轴负向. 7-7 设匀强电场的电场强度E 与半径为R 的半球面临称轴平行,盘算经由过程此半球面电场强度的通量.习题7-6图成为闭合曲面高斯,对此高斯曲面电通量为0, 即021=⋅+⋅=⋅⎰⎰⎰S S SS d E S d E S d E2211R E S d E S d E S S S π-=⋅-=⋅=ψ⎰⎰7-8 求半径为R,带电量为q 的空心球面的电场强度散布.解: 因为电荷散布具有球对称性,因而它所产生的电场散布也具有球对称性,与带电球面齐心的球面上各点的场强E 的大小相等,偏向沿径向.在带电球内部与外部区域分离作与带电球面齐心的高斯球面S 1与S 2.对S 1与S 2,运用高斯定理,即先盘算场强的通量,然后得出场强的散布,分离为04d 21==⋅=⎰r E S πψS E得 0=内E (r<R )24d 2επψqr E S ==⋅=⎰S Errˆ204q πε=外E (r>R) 7-9 如图所示,厚度为d 的“无穷大”平均带电平板,体电荷密度为ρ,求板表里的电场散布.解:带电平板平均带电,在厚度为d/2的等分街面上电场强度为零,取坐标原点在此街面上,树立如图坐标.对底面积为A,高度分离为x <d/2和x >d/2的高斯曲面运用高斯定理,有d ρψAxEA ==⋅=⎰S E r习题7-18图2d 2ερψd A EA S ==⋅=⎰S E)2( 202d x i d E > ερ=7-10 一半径为R 的无穷长带电圆柱,其体电荷密度为)(0R r r ≤=ρρ,ρ0为常数.求场强散布.解: 据高斯定理有⎰⎰==⋅VSdV rl E S d E ρεπ012R r ≤时:⎰'''=rr ld r r krl E 022πεπ⎰''=rr d r lk202επ=rl E π23230r lk επn e kr E 023ε=→R r >时:⎰'''=Rr ld r r krl E 022πεπ⎰''=Rr d r lk202επ=rl E π23230R lk επn e rkR E 033ε=→7-11 带电为q.半径为R 1的导体球,其外齐心肠放一金属球壳,球壳内.外半径为R 2.R 3. (1)球壳的电荷及电势散布;(2)把外球接地后再绝缘,求外球壳的电荷及球壳表里电势散布; (3)再把内球接地,求内球的电荷及外球壳的电势. 解:(1)静电均衡,球壳内概况带-q,外概况带q 电荷. 据(7-23)式的结论得:),)(111(4132101R r R R R q V ≤+-=πε );)(111(212R r R qV ≤≤+-=习题7-10图r),(432303R r R R q V ≤≤=πε).(4304R r rq V ≥=πε (2)),)(11(412101R r R R q U ≤-=πε );)(11(421202R r R R r qV ≤≤-=πε),(0323R r R V ≤≤=).(034R r V >>= (3)再把内球接地,内球的电荷及外球壳的电荷从新散布设静电均衡,内球带q /,球壳内概况带-q /,外概况带q /-q.),)((41132101R r R q q R q R q V ≤-'+'-'=πε 得:21313221R R R R R R qR R q +-='=-'=3034R qq V πε)(4)(213132021R R R R R R q R R +--πε)(32R r R ≤≤ 7-12 一平均.半径为R 的带电球体中,消失一个球形空腔,空腔的半径r(2r<R),试证实球形空腔中随意率性点的电场强度为匀强电场,其偏向沿带电球体球心O 指向球形空腔球心O /. 证实:运用补缺法,此空腔可视为同电荷密度的一个完全的半径为R 的大球和一个半径为r 与大球电荷密度异号完全的小球构成,两球在腔内随意率性点P 产生的电场分离据〔例7-7〕成果为03ερ11r E =, 03ερ22r E -= E =E 1+E 2=03ερ1r 03ερ2r - o o '=3ερ上式是恒矢量,得证.习题7-12图7-13 一平均带电的平面圆环,内.外半径分离为R 1.R 2,且电荷面密度为σ.一质子被加快器加快后,自圆环轴线上的P 点沿轴线射向圆心O.若质子到达O 点时的速度正好为零,试求质子位于P 点时的动能E K .(已知质子的带电量为e,疏忽重力的影响,OP=L )解:圆环中间的电势为⎰=210042R R r rdr V πεπσ )(2120R R -=εσ圆环轴线上p 点的电势为⎰+=2122042R R P Lr rdrV πεπσ)(22221222022021L R L R L r R R +-+=+=εσεσ质子到达O 点时的速度正好为零有k P E E E +=0p k E E E -=→0 p k eV eV E -=0=210()2e R R σε=-02e σε-210(2e R R σε=- 7-14 有一半径为R 的带电球面,带电量为Q,球面外沿直径偏向上放置一平均带电细线,线电荷密度为λ,长度为L (L>R ),细线近端离球心的距离为L.设球和细线上的电荷散布固定,试求细线在电场中的电势能.解:在带电细线中任取一长度为dr 的线元,其上所带的电荷元为dq=λdr,据(7-23)式带电球面在电荷元处产生的电势为rQ V 04πε=电荷元的电势能为: rdrQ dW 04πελ=细线在带电球面的电场中的电势能为:习题7-13图r习题7-14图===⎰⎰LLr dr Q dW W 204πελ2ln 40πελQ*7-15 半径为R 的平均带电圆盘,带电量为Q.过盘心垂直于盘面的轴线上一点P 到盘心的距离为L.试求P 点的电势并运用电场强度与电势的梯度关系求电场强度.解:P 到盘心的距离为L,p 点的电势为⎰+=RP Lr rdrV 022042πεπσ)(222220220L L R L r R -+=+=εσεσ 圆盘轴线上随意率性点的电势为⎰+=Rxr rdrx V 022042)(πεπσ)(22222200220x x R RQ x r R -+=+=πεεσ运用电场强度与电势的梯度关系得:i x R xR Q i dx dV x E)1(2)(22220+-=-=πε P 到盘心的距离为L,p 点的电场强度为:i L R LR Q L E)1(2)(22220+-=πε7-16 两个齐心球面的半径分离为R 1和R 2,各自带有电荷Q 1和Q 2.求:(1)各区城电势散布,并画出散布曲线;(2)两球面间的电势差为若干?解:(1)据(7-23)式的结论得各区城电势散布为),( )(411221101R r R Q R Q V ≤+=πε );( )1(41212102R r R R r Q V ≤≤+=πε ).( 420213R r rQ Q V ≥+=πε(2)两球面间的电势差为p习题7-15图习题7-16图==⎰dr rQ V R R 21201124πε )11(42101R R Q -πε 7-17 一半径为R 的无穷长带电圆柱,其内部的电荷平均散布,电荷体密度为ρ,若取棒概况为零电势,求空间电势散布并画出电势散布曲线. 解: 据高斯定理有R r ≤时:22ερππl r rl E S d E S==⋅⎰ n e r E 02ερ=→ R r =时,V=0,则 R r ≤时:⎰=R r rdr V 02ερ)(4220r R -=ερR r >时:022ερππlR rl E S d E S==⋅⎰ n e r R E 022ερ=→ ⎰=Rrr dr R V 022ερrR R ln 202ερ= 空间电势散布并画出电势散布曲线大致如图.7-18 两根很长的同轴圆柱面半径分离为R 1.R 2,带有等量异号的电荷,两者的电势差为U,求:(1)圆柱面单位长度带有若干电荷?(2)两圆柱面之间的电场强度.解:设圆柱面单位长度带电量为λ,则两圆柱面之间的电场强度大小为E λ=习题7-10图r由上式可得:120ln 2R R U=πελ 所以n e r E 02πελ=)( ln 2112R r R e rR R Un <<⋅= 7-19 在一次典范的闪电中,两个放电点间的电势差约为109V,被迁徙的电荷约为 30库仑,假如释放出来的能量都用来使00C 的冰熔化成00C 的水,则可熔化若干冰?(冰的熔 ×105J ﹒kg -1)解:两个放电点间的电势差约为109V,被迁徙的电荷约为30库仑,其电势能为J W p 91030⨯=上式释放出来的能量可熔化冰的质量为:=⨯⨯=∆591034.31030m ×104kg 7-20 在玻尔的氢原子模子中,电子沿半径为a 的玻尔轨道上绕原子核作圆周活动.(1)若把电子从原子中拉出来须要战胜电场力作若干功?(2)电子在玻尔轨道上活动的总能量为若干?解:电子沿半径为a 的玻尔轨道上绕原子核作圆周活动,其电势能为aeeW p 04πε-=(1)把电子从原子中拉出来须要战胜电场力作功为:ae W W p 024πε=-=外(2)电子在玻尔轨道上活动的总能量为:k p E W W +=221mv W p += →a v m a e 22024=πε 2mv ae 024πε=221mv E k =∴ae 028πε=电子的总能量为:221mv W W p +=a e 024πε-=a e 028πε+ae 028πε-=第八章 静电场中的导体与电介质8-1 点电荷+q 处在导体球壳的中间,壳的表里半径分离为R l 和R 2,试求,电场强度和电势的散布.解:静电均衡时,球壳的内球面带-q.外球壳带q 电荷 在r<R 1的区域内rr q ˆ4E 201πε=,)111(42101R R r qU +-=πε 在R 1<r<R 2的区域内,02=E .,4202R q U πε=在r>R 2的区域内:.ˆ4E 203r r πεq=.403rq U πε= 8-2 把一厚度为d 的无穷大金属板置于电场强度为E 0的匀强电场中,E 0与板面垂直,试求金属板两概况的电荷面密度.解:静电均衡时,金属板内的电场为0,金属板概况上电荷面密度与紧邻处的电场成正比 所以有,001E εσ-=.002E εσ=8-3 一无穷长圆柱形导体,半径为a ,单位长度带有电荷量λ1,其外有一共轴的无穷长导体圆简,表里半径分离为b 和c,单位长度带有电荷量λ2,求(1)圆筒表里概况上每单位长度的电荷量;(2)求电场强度的散布.解:(1)由静电均衡前提,圆筒表里概况上每单位长度的电荷量为;,21λλλ+-(2)在r<a 的区域内:E=0R 2R 1习题 8-1图q-q qE 0E 0习题 8-2图σ1 σ2在a<rb 的区域内:E r012πελ=e n在r>b 的区域内:E r0212πελλ+=e n8-4 三个平行金属板A.B 和C,面积都是200cm 2,A.B 相距,A.C 相距,B.C 两板都接地,如图所示.假如A 板带正电×10-7C,略去边沿效应(1)求B 板和C 板上感应电荷各为若干?(2)以地为电势零点,求A 板的电势.解:(1)设A 板两侧的电荷为q 1.q 2,由电荷守恒 道理和静电均衡前提,有A q q q =+21(1) 1q qB -=,2q qC -=(2)依题意V AB =V AC ,即101d S q ε=202d Sq ε112122q q d dq ==→代入(1)(2)式得 q 1=×10-7C,q 2×10-7C,q B ×10-7C,q C =-q 2×10-7C,(2)101d S q U A ε==202d S q ε==⨯⨯⨯⨯⨯⨯----312471021085810200102.×103V 8-5 半径为R 1=l.0cm 的导体球带电量为×10-10C ,球外有一个表里半径分离为R 2=和R 3=的齐心导体球壳,壳带有电量Q=11×10-10C ,如图所示,求(1)两球的电势;(2)用导线将两球衔接起来时两球的电势;(3)外球接地时,两球电势各为若干?(以地为电势零点)解:静电均衡时,球壳的内球面带-q.外球壳带q+Q 电荷 (1))(4132101R Qq R q R q U ++-=πε代入数据 )41113111(101085.814.34100.1212101++-⨯⨯⨯⨯⨯=---UA BC习题 8-4图d 1d 2q+Q=×102V2024R Qq U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=×102V(2)用导线将两球衔接起来时两球的电势为2024R Q q U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=×102V (3)外球接地时,两球电势各为)(412101R q R q U -=πε)3111(101085.814.34100.1212101-⨯⨯⨯⨯⨯=---U =60V 02=U8-6 证实:两平行放置的无穷大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小等,符号雷同.假如两金属板的面积同为100cm 2,带电量分离为Q A =6×10-8 C 和Q B =4×10-8C,略去边沿效应,求两个板的四个概况上的电面密度.证:设A 板带电量为Q A .两侧的电荷为q 1.q 2, B 板板带电量为Q B.两侧的电荷为q 3.q 4.由电荷守恒有A Q q q =+21(1)B Q q q =+43(2)在A 板与B 板内部取两场点,金属板内部的电场为零有020122εεS q S q -0220403=--εεS qS q ,得04321=---q q q q (3) 020122εεS q S q +0220403=-+εεS qS q ,得04321=-++q q q q (4) 联立上面4个方程得:241B A Q Q q q +==,232BA Q Q q q -=-= 即相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小等,符号2习题 8-6图q 1 q 4雷同,本题得证.假如两金属板的面积同为100cm 2,带电量分离为Q A =6×10-8 C 和Q B =4×10-8C,则=⨯⨯⨯+==--844110101002)46(σσ×10-6C/m 2, =⨯⨯⨯-=-=--843210101002)46(σσ×10-6C/m 2 8-7 半径为R 的金属球离地面很远,并用细导线与地相联,在与球心相距离为D=3R 处有一点电荷+q,试求金属球上的感应电荷.解:设金属球上的感应电荷为Q,金属球接地 电势为零,即04400=+DQ Rq πεπε3Rq q Q D =-=-8-8 一平行板电容器,南北极板为雷同的矩形,宽为a,长为b,间距为d,今将一厚度为t .宽度为a 的金属板平行地向电容器内拔出,略去边沿效应,求拔出金属板后的电容量与金属板拔出深度x 的关系.解:设如图左边电容为C 1,右边电容为C 2d x b a C )(01-=εtd ax C -=02ε阁下电容并联,总电容即金属板后的电容量与金属板拔出深度x 的关系,为d x b a C C C )(021-=+=εtd ax-+0ε=)(0td txb d a -+ε 8-9 收音机里的可变电容器如图(a )所示,个中共有n 块金属片,相邻两片的距离均为d,奇数片联在一路固定不动(叫定片)偶数片联在起而可一同迁移转变(叫动片)每片的外形如图(b )所示.求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.解:当动片转到使两组片重叠部分的角度t习题 8-8图为θ时,电容器的电容的有用面积为1802)(2122⨯-=θπr r S 360)(2122θπr r -=此构造相当有n-1的电容并联,总电容为dS n C 0)1(ε-==d r r n 360)()1(21220--θπε8-10 半径都为a 的两根平行长直导线相距为d (d>>a ),(1)设两直导线每单位长度上分离带电十λ和一λ求两直导线的电势差;(2)求此导线组每单位长度的电容.解:(1)两直导线的电电场强度大小为rE 022πελ⨯= 两直导线之间的电势差为⎰=r dr V 0πελ⎰-=ad ar dr 0πελaa d -=ln 0πελ (2)求此导线组每单位长度的电容为VC λ==aa d -ln0πε8-11 如图,C 1=10μF,C 2=5μF,C 3=5μF,求(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每个电容器上的电荷量和电压;(3)假如C 1被击穿,问C 3上的电荷量和电压各是若干?解:(1)AB 间的电容为20155)(321213⨯=+++=C C C C C C C =μF;(2)在AB 间加上100V 电压时,电路中的总电量就是C 3电容器上的电荷量,为C CV q q 4631073.31001073.3--⨯=⨯⨯===C C q 10151073.3642121⨯⨯=+=--(a)(b)习题 8-9图AC 1C 2 oV V 75251003=-=C V C q 46111105.2251010--⨯=⨯⨯== C V C q 462221025.125105--⨯=⨯⨯==(3)假如C 1被击穿,C 2短路,AB 间的100V 电压全加在C 3上,即V 3=100V , C 3上的电荷量为C V C q 46333100.5100105--⨯=⨯⨯==8-12 平行板电容器,南北极间距离为l.5cm ,外加电压39kV ,若空气的击穿场强为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为的玻璃拔出电容器中与两板平行,若玻璃的相对介电常数为7,击穿场强为100kV/cm ,问此时电容器是否会被击穿?成果与玻璃片的地位有无关系?解:(1)未加玻璃前,南北极间的电场为cm kV cm kV E /30/265.139<==不会击穿(2)加玻璃后,南北极间的电压为3973.02.1=+EE cm kV cm kV E /30/31>=→ 空气部分会击穿,此后,玻璃中的电场为cm kV cm kV E /100/1303.039>==,玻璃部分也被击穿.成果与玻璃片的地位无关. 8-13 一平行板电容器极板面积为S ,两板间距离为d,其间充以相对介电常数分离为εr1.εr2,的两种平均电介质,每种介质各占一半体积,如图所示.若疏忽边沿效应,求此电容器的电容.解:设如图左边电容为C 1,右边电容为C 2d S C r 2/101εε= dS C r 2/202εε=阁下电容并联,总电容为V习题 8-12图习题 8-13图=+=21C C C +d S r 2/10εεdS r 2/20εε)2(210r r d S εεε+=8-14 平行板电容器南北极间充满某种介质,板间距d 为2mm,电压600V ,如武断开电源后抽出介质,则电压升高到1800V .求(1)电介质相对介电常数;(2)电介质上极化电荷面密度;(3)极化电荷产生的场强.解:设电介质抽出前后电容分离为C 与C /0022002253620050035550(1),1800,3600600(2)310/210(1) 5.3110/1800(3),910/210910/310/610/r r r r S SC C Q CU C U d d S S U V U U d d U V U V E V m d mD E E C m U VE E E E V m d mE E E V m V m V εεεεεεεσεεε---'''===='∴===='===⨯⨯∴=-=-=⨯''=+===⨯⨯'∴=-=⨯-⨯=⨯m0022002253620050035550(1),1800,3600600(2)310/210(1) 5.3110/1800(3),910/210910/310/610/r r r r S SC C Q CU C U d d S S U V U U d d U V U V E V m d mD E E C m U VE E E E V m d mE E E V m V m V εεεεεεεσεεε---'''===='∴===='===⨯⨯∴=-=-=⨯''=+===⨯⨯'∴=-=⨯-⨯=⨯m8-15 圆柱形电容器是由半径为R 1的导体圆柱和与它共轴的导体圆筒构成.圆筒的半径为R 2,电容器的长度为L,其间充满相对介电常数为εr 的电介质,设沿轴线偏向单位长度上圆柱的带电量为+λ,圆筒单位长度带电量为-λ,疏忽边沿效应.求(1)电介质中的电位移和电场强度;(2)电介质极化电荷面密度. 解:0110220122,22(1)(1),22rr r r r ds D rl lD E r r P D E P D E R R πλλλππεεελελσεσεεπεπ⋅=⋅=∴==--==-===-=⎰取同轴圆柱面为高斯面,由介质中的高斯定理可得D8-16 半径为R 的金属球被一层外半径为R /的平均电介质包裹着,设电介质的相对介电常数为εr ,金属球带电量为Q,求(1;(3)金属球的电势. 解:12122121222000012100220021(1)4,44411(2)()444(3)r r R R rr R R Q D ds D r Q D D r D D Q QE E r r Q QU E dl E dl r R R Q U E dl rU E dl E ππεεεπεεπεπεεπεπε'∞'∞'∞⋅=⋅=∴==∴=====⋅+⋅=-+''=⋅=⋅+⎰⎰⎰⎰⎰取同心高斯球面,由介质的高斯定理得介质层内的电势介质层外的电势=金属球的电势101011()44R R r Q Qdl R R R πεεπε'⋅=-+''⎰8-17 球形电容器由半径为R 1的导体球和与它齐心的导体球壳构成,球壳内半径为R 2,其间有两层平均电介质,分界面半径为r,电介质相对介电常数分离为εr1.εr2,如图所示.求(1)电容器的电容;(2)当内球带电量为+Q 时各介质概况上的约束电荷面密度. 解:习题 8-16图21221221212220102010221022011021211221221(1)4,4,441111()()444()(r r r r rR R rr r r r r r r Q D ds D r Q D D r D D Q QE E r r Q Q U E dl E dl r R R rR R r QC U R R r R R ππεεεεπεεπεεπεεπεεπεεεεεεε⋅=⋅=∴==∴====∴=⋅+⋅=-+-∴==-+-⎰⎰⎰取同心高斯球面,由介质的高斯定理得1110112211112342221222)11(1)(1),(1)44111(1),(1),(1)444r r r r r r Q Q D E R R Q Q Q r r R σεσεεππσσσεεεπππ=-=-∴=--=-=--=-8-18 一平行板电容器有两层介质(如图),εr1=4,εr2=2,厚度为d 1=,d 2=,极板面积S=40cm 2,南北极板间电压为200V .(1)求每层电介质中的能量密度;(2)盘算电容器的总能量;(3)盘算电容器的总电容.解:02112210122121122223110101122232202022020112210102121/221(1)/43350,15011() 1.110/,2211() 2.210/22(2)r r r r e r r e r r r r r r SU Q C d d S U Q C d d U V U VU E J m d U E J m d S SC C d d C S S C C d εεεεεεωεεεεωεεεεεεεεεεεε--⨯=====⨯∴==∴===⨯===⨯==++227002020*******0010212121122200 3.51022(3)2 1.7910r r r r W CU d S SC C d d C FS SC C d d εεεεεεεεεεε--=∴==⨯⨯=⨯====⨯++8-19 平板电容器的极板面积S=300cm 2南北极板相距d 1=3mm,在南北极板间有一个与地绝缘的平行金属板,其面积与极板的雷同,厚度d 1=1mm.当电容器被充电到600V 后,拆去电源,然后抽出金属板,问(1)电容器间电场强度是否变更;(2)抽出此板需作若干功?解:R 1 R 2r习题 8-17图习题 8-18图11531115322(1),600 3.010/(31)103,21.5600 3.010/3102,22SSQ CU Ud d d d U VE V m d d mSUSd d Qd UU U S d d d dU V E V m E d m Q QW W C C εεεεε--==--===⨯--⨯-''==='-'⨯'===⨯=⨯'=='00000未拆电源前,C=拆去电源并抽出金属板后,C ==C 所以电场强度没有发生变化。

大学物理7章作业

大学物理7章作业

第七章机械波一。

选择题1。

机械波的表示式为(SI),则(A)其振幅为3m(B)其波速为10m/s (C)其周期为1/3s (D)波沿x轴正向传播2。

一平面简谐波沿x轴正向传播,时波形图如图示,此时处质点的相位为(A) 0 (B) π(C)π/2 (D) - π/23. 频率为100Hz、波速为300m/s的简谐波,在传播方向上有两点同一时刻振动相位差为π/3,则这两点相距(A) 2m(B)21。

9m(C) 0.5m(D)28。

6m4。

一平面简谐波在介质中传播,某瞬时介质中某质元正处于平衡位置,此时它的能量为(A) 动能最大,势能为零 (B)动能为零,势能最大(C) 动能为零,势能为零(D)动能最大,势能最大5. 一平面简谐波在弹性介质中传播,下述各结论哪个是正确的?(A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒(B) 介质质元的振动动能和弹性势能做周期性变化,但二者的相位不相同(C) 介质质元的振动动能和弹性势的相位在任一时刻都相同,但二者的数值不相等(D)介质质元在其平衡位置处弹性势能最大6。

两相干波源S1、S2发出的两列波长为λ的同相位波列在P点相遇,S1到P点的距离是r1,S2到P点的距离是r2,则P点干涉极大的条件是(A)(B)(C)(D)7. 两相干波源S1和S2相距λ/4(λ为波长),S1的相位比S2的相位超前,在S1、S2连线上,S1外侧各点(例如P点)两波干涉叠加的结果是(A) 干涉极大(B) 干涉极小(C)有些点干涉极大,有些点干涉极小(D)无法确定8。

在波长为λ的驻波中,任意两个相邻波节之间的距离为(A) λ (B) 3λ/4 (C) λ/2(D)λ/4二。

填空题9。

一声波在空气中的波长是0.25m,传播速度时340m/s,当它进入另一种介质时,波长变成了0。

37m,则它在该介质中的传播速度为__________________。

10. 平面简谐波沿x轴正向传播,波动方程为,则处质点的振动方程为_________________,处质点与处质点振动的相位差为_______。

大学物理电磁学第七章习题

大学物理电磁学第七章习题

第七章 电磁感应和暂态过程一、选择题1、一导体圆线在均匀磁场中运动,能使其中产生感应电流的一种情况是()A 、线圈绕自身直径轴转动,轴与磁场方向平行。

B 、线圈绕自身直径轴转动,轴与磁场方向垂直C 、线圈平面垂直于磁场并沿垂直于磁场方向平移。

D 、线圈平面平行于磁场并沿垂直磁场方向平移。

答案:B 2、一闭合正方形线圈放在均匀场中,绕通过其中心且与一边平行的转轴OO`转动,转轴与磁场方向垂直,转动角速度为ω,如图所示,用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?()A 、把线圈的匝数增加到原来的两倍。

B、把线圈的面积增加到原来的两倍,而形状不变C 、把线圈切割磁力线的两条边增长到原来的两倍D 、把线圈的角速度ω增大到原来的两倍 答案:D 3、两根无限长平行直导线载有大小相等方向相反的电流I,I 以dI/dt 的变化率增长,A 、线圈中无感应电流 B 、线圈中感应电流为顺时针方向C 、线圈中感应电流为逆时针方向D 、线圈感应电流方向不确定 答案:B 4、一块铜板放在磁感应强度正在增大的磁场中,铜板中出现涡流(感应电流),则涡流将() A 、加速铜板中磁场的增加 B 、减缓铜板中磁场的增加C 、对磁场不起作用D 、使铜板中磁场反向 答案:B 5、一无限长直导体薄板宽为l ,板面与Z 轴垂直,板的长度方向沿Y 轴,板的两侧与一个伏特计相接,如图,整个系统放在磁感应强度为B 的均匀磁场中,B的方向沿Z 轴正方向,如果伏特计与导体平板均以速度v向 Y 轴正方向移动,则伏特计指示的电压值为() A 、0 B 、vBl 21 C 、vBl D 、vBl2 答案:A6、半径为a 的圆线圈置于磁场强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角60=α时,线圈中已通过的电量与线圈面积及转动的时间的关系是()A 、与线圈面积成正比,与时间无关B 、与线圈面积成正比,与时间成正比C 、与线圈面积成反比,与时间成正比D 、与线圈面积成反比,与时间无关 答案:A 7、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量时间的变化率相等,则() A 、铜环中有感应电动势,木环中无感应电动势 B 、铜环中感应电动势大,木环中感应电动势小C 、铜环中感应电动势小,木环中感应电动势大D 、两环中感应电动势相等 答案:D 8、在无限大长的载流直导线附近 放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流() A 、以情况Ⅰ中为最大 B 、以情况Ⅱ中为最大C 、以情况Ⅲ中为最大D 、在情况Ⅰ和Ⅱ中相同 答案:B9、在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直,今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流I (如图),可选择下列哪一个方法?()A 、把线圈在自身平面内绕圆心旋转一个小角度B 、把线圈绕通过其直径的OO`轴转一个小角度C 、把线圈向上平移D 、把线圈向右平移 答案:C10、 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B欲使圆线环中产生逆时针方向的感应电流,应使()A 、线环向右平移B 、线环向上平移C 、线环向左平移D 、磁场强度减弱 答案:C 11、 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流I A 、载流螺线管向线圈靠近 B 、载流螺线管离开线圈C 、载流螺线管中电流增大D 、载流螺线管中插入铁芯 答案:B12、 在一通有电流I 的无限长直导线所在平面内,有一半径为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且a 》r,当直导线的电流被切断后,沿着导线环流过的电量约为()A 、⎪⎭⎫ ⎝⎛+-r a a R Ir 11220πμ B 、a ra R Ir +ln 20πμ C 、aRIr 220μ D 、rRIa 220μ13、 如图所示,一矩形线圈,放在一无限长载流直导线附近,开始时线圈与导线在同一平面内,矩形的长边与导线平行,若矩形线圈以图(1)、(2)、(3)、(4)A 、以图(1)所示方式运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择题
1.
机械波的表示式为 ^ 7 - . 。

1 (Sl),贝U (A)
其振幅为3m (B ) 其波速为10m∕s (C )其周期为1∕3s (D ) 波沿X 轴正向传播
2. 一平面简谐波沿X 轴正向传
播, 此时。

丫门奇j 处质点的相位为
(A) 0
(B) π (C) Π2 (D) - Π2 3. 频率为100Hz 、波速为300m∕s 的简谐波,在传播方向上有两点同一时刻振动相位差为
Π3,则这两点相距
(A ) 2m
(B) 21.9m (C ) 0。

5m (D) 28.6m
4. 一平面简谐波在介质中传播,某瞬时介质中某质元正处于平衡位置,此时它的能量为
(A)动能最大,势能为零
(B ) 动能为零,势能最大 (C)动能为零,势能为零 (D) 动能最大,势能最大
5. 一平面简谐波在弹性介质中传播,下述各结论哪个是正确的?
(A) 介质质元的振动动能增大时,其弹性势能减小,总机械能守恒
(B) 介质质元的振动动能和弹性势能做周期性变化,但二者的相位不相同
(C) 介质质元的振动动能和弹性势的相位在任一时刻都相同,但二者的数值不相等
(D) 介质质元在其平衡位置处弹性势能最大
6. 两相干波源$、Q 发出的两列波长为λ的同相位波列在P 点相遇,Sl 到P 点的距离是 r1,Q 第七章 机械波
V(Ill)
到P点的距离是匕,贝U P点干涉极大的条件是
(A) ]—一— -
(B) ::^ _、_ _ _
7. 两相干波源S i和S2相距λ∕4 (λ为波长),S i的相位比S2的相位超前。

,在S i、S2连线上,Sl外侧各点(例如P点)两波干涉叠加的结果是
(A) 干涉极大
(B) 干涉极小
(C) 有些点干涉极大,有些点干涉极小
(D) 无法确定
8. 在波长为λ的驻波中,任意两个相邻波节之间的距离为
(A)λ(B) 3 λ∕4(C)λ∕2(D) λ∕4
二。

填空题
9. 一声波在空气中的波长是0.25m,传播速度时340m∕s,当它进入另一种介质时,波长变成了0。

37m ,则它在该介质中的传播速度为________________________ 。

10.平面简谐波沿X轴正向传播,波动方程为y=λcosω
动方程为__________________ ,X =^L2处质点与X = LI处质点振动的相位差为 ________ .
11. 简谐波沿 X轴正向传播,传播速度为5m∕s ,原点O振动方程为
y= 20COS(J T¢+^(SI),则工二5m处质点的振动方程为____________________________ 。

12. 一平面简谐波周期为2s,波速为10m/s,A、B是同一传播方向上的两点,间距为 5m,则
A、B两点的相位差为 ___________________ .
13. Si、S2是两个相干波源,已知Sl初相位为吋2 ,若使S1S2连线中垂线上各点均干涉相
消,S2的初相位为 _________________ 。

14. 如图,波源Sl、S2发出的波在P点相遇,若P点的合振
幅总是极大值,则波源Sl的相位比S2的相位领先
计算题
15. 一横波沿绳子传播时的波动表式为y = 0.05cos(10二t-4二x) [SI].求:
(1)此波的振幅、波速、频率和波长;(2)绳子上各质点振动的最大速度和最大加速度
16.波源做简谐振动,振幅为0∙1m ,振动周期为0。

01s.以它经过平衡位置向正方向运动时为计时起点, 若此振动以匸二二[的速度沿直线传播,求距波源8m处P点的振动方程。

17.如图,一平面波在介质中以速度u = 20m s’沿X轴负方向传播,已知a点的振动表式为
y a=3cos4 Π[SI].( 1)以a为坐标原点写出波动方程;
(2)以与a点相距5m处的b点为坐标原点,写出波动方程。

(题17图)
18. 如图所示,已知;?」:[;)和,—心时的波形曲线分别为图中实线曲线I和虚线曲线U,波沿X轴正向传播•根据图中给出的条件,求:(1)波动方程;(2)P点质元的振动方程
19. 如图所示,两相干波源分别在 P、Q两点,它们发出频率为、••,波长为,,初相相同
的两列相干波,振幅分别为 A i和A2 ,设PQ=3T2,R为PQ连线上的一点•求:
(1) 自P、Q发出的两列波在R处的相位差;
(2)两波在R处干涉时的合振幅。


*
二.填空题
9. ( 503 m/s )
10. ( V ^ /1 LoS ω f 一 亠;二皆亠 G )
V tt / I Ul
11. ( V = 20 COS — ; J T
Ti )
12. ( ∏2 )
13. ( — ∏2 )
14. ( - 2 ∏3 )
三•计算题
15. 一横波沿绳子传播时的波动表式为 目=0.05cos (10二t -4二x)
[SI ].求:
(1) 此波的振幅、波速、频率和波长;
(2) 绳子上各质点振动的最大速度和最大加速度;
解:(1)波动方程
y - 0.05COSfloπt - 4πx) 可得振幅 A = (I a OSlll
频率 V = ω∕2π =
SHz
波长 2π∕2 = 4π1 2 = OSm
波速 W = AV = 0。

5x5 =2,
5m∕s (2)绳上各质点振动时的最大速度
V maX = WJ 4 = 0。

05 X 10π - LS7m∕s
绳上各质点振动时的最大加速度 第七章
机械波参考答案 一。

选择题
1. (C )
2. (C ) 3。

(C) 4. (D ) 5. (D )
8
.
6. (C)
7. (B ) (C )
V
= ω2A= O E o5x IOOn Z= 49.3m∕s2
maX
16. 波源做简谐振动,振幅为0.1m,振动周期为0。

01s。

以它经过平衡位置向正方向运动时为计时起点,若此振动以—;■■■■,:的速度沿直线传播,求距波源 8m处P点的振动方程。

解:波源振动方程为
y0= 0.1cos(200πt——)
简谐波的波动方程为
一肪胸代入,可得质点振动方程
V = = C 1LL :5:2—- m

17. 一平面波在介质中以速度U =20ms°沿X 轴负方向传播,已知 a 点的振动表式为 y a
=3cos4 Π [SI ]。

(1) 以a 为坐标原点写出波动方程;
(2) 以与a 点相距5m 处的b 点为坐标原点,写出波动方程.
解:(1)已知 A= 3m ,二:S 1, u.> — 4]1 ≥ ’
因波沿X 轴负方向传播,以a 点为坐标原点的波动方程为
(2)以a 点为坐标原点时,b 点的坐标为丫二E Jl 口,代入上式得b 点的振动方程为
y i = 3cos4π^t+ 专)=3cos(4πt+τr)
若以b 点为坐标原点,则波动方程为
18. 如图所示,已知〕一和::_ ;Z 时的波形曲线分别为图中实线曲线I 和虚线曲线U , 波沿X 轴正向传播•根据图中给出的条件,求:(1)波动方程;(2) P 点质元的振动方程
(题17图)
-
(Kl
(题IJi

:(1)设波动方程为
y = Λcos[ω(t-—)+φ) Ir
由图知A= 0。

1m,λ 4m
又时,原点处质点的位移鑼,速度%V,故该质点的初相
φ0= ∏∕2
波动方程为
19. 如图所示,两相干波源分别在 P、Q两点,它们发出频率为;,波长为,,初相相同的两列相干波,振幅分别为 A i和A2 ,设PQ=3∙∕2,R为PQ连线上的一点•求:
(1)自P、Q发出的两列波在R处的相位差;
(2)两波在R处干涉时的合振幅.
(题M图)

∆φ = —∆r = 3ττ
(2)两波在R处的振动方向相同,频率相同,相位差'屮二?”,贝U合振幅为
y = 0.1cos
解:(1)两列波的初相位相同,在R处的相位差为
(2)将L二代入波动方程,得点质元振动方程为
+ A[ + 2A1A2cos3π = ∖A i-A2∖。

相关文档
最新文档