人教版七年级上册数学期末质量评估试卷(有答案)
人教版七年级上册数学期末考试试卷带答案

人教版七年级上册数学期末考试试题一、单选题1.13-的相反数是()A .13B .13-C .3D .-32.将数据“2684亿”用科学记数法表示()A .32.68410⨯B .112.68410⨯C .122.68410⨯D .72.68410⨯3.根据等式的性质,下列变形正确的是()A .如果23x =,那么23x a a =B .如果x y =,那么55x y-=-C .如果x y =,那么22x y-=-D .如果162x =,那么3x =4.已知单项式3122m xy +与133n x y +是同类项,则m+n 的值是()A .3B .−3C .6D .−65.下列说法不正确的是()A .两点之间,线段最短B .两点确定一条直线C .连结两点的线段叫做这两点的距离D .同角的补角相等6.如图是一个正方体的展开图,把展开图折叠成小正方体后,有“祝”字一面的相对面上的字是()A .新B .年C .快D .乐7.在解方程123123x x -+-=时,去分母正确的是()A .3(1)431x x --+=B .31436x x --+=C .31431x x --+=D .3(1)2(23)6x x --+=8.一件夹克衫先按成本价提高70%标价,再将标价打7折出售,结果获利38元.设这件夹克衫的成本价是x 元,那么依题意所列方程正确的是()A .70%(1+70%)x =x+38B .70%(1+70%)x =x ﹣38C .70%(1+70%x )=x ﹣38D .70%(1+70%x )=x+389.已知线段AB =6cm ,在直线AB 上画线段BC ,使BC =2cm ,则线段AC 的长为()A .4cmB .8cmC .6cmD .8cm 或4cm10.用同样大小的黑色棋子按如图所示的规律摆放,第1个图形有6颗棋子,第2个图形有9颗棋子,第3个图形有12颗棋子,第4个图形有15颗棋子……,以此类推,第()个图形有2022颗棋子.A .672B .673C .674D .675二、填空题11.单项式323x y z π-的系数是____________,次数是_______________.12.计算:15°37′+42°51′=__________.13.若方程(a ﹣4)x |a |﹣3﹣7=0是一个一元一次方程,则a 等于______.14.已知,a -b=2,那么2a -2b+5=_________.15.上午9点30分,时钟的时针和分针成的角为_________.16.为鼓励节约用电某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分每度电价按b 元收费.若某户居民在一个月内用电180度,则这个月应缴纳电费________元.(用含a ,b 的代数式表示)17.按照下图操作,若输入x 的值是9,则输出的值是____.18.如图,OA 的方向是北偏东15°,OB 的方向是北偏西40°,若AOC AOB ∠=∠,则OC 的方向是______________.三、解答题19.计算:(1)(﹣12)×(﹣3754126-+)(2)()3233524-+---÷;20.解方程:(1)2(3x ﹣5)﹣3(4x ﹣3)=0(2)321123x x -+-=21.先化简,在求值:22113122323a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中2a =-,23b =.22.如图,已知A 、B 、C 、D 四点,根据下列语句画图:(1)画直线AB .(2)画射线AD 、BC ,交于点P .(3)在平面内找到一点O ,使点O 到A 、B 、C 、D 四点距离最短.23.整理一批图书,由一个人做要40h 完成,现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?24.如图,已知AOE ∠是平角,20DOE ∠=︒,OB 平分AOC ∠,且:2:3COD BOC ∠∠=,求BOC ∠的度数.25.如图,已知线段AB =40厘米,E 为AB 的中点,C 在EB 上,F 为CB 的中点,且FB =6厘米,求CE 的长.26.有理数a 、b 、c 在数轴上的位置如图所示,化简:|a+c|﹣|c ﹣2b|+|a+2b|27.已知点O 是直线AB 上一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.①若60AOC ∠=︒,求DOE ∠的度数.②若AOC α∠=,则DOE ∠=_________(用含α的式子表示).(2)将图1中的DOC ∠绕点O 顺时针旋转至图2的位置,直接写出DOE ∠和AOC ∠的度数之间的关系.参考答案1.A【分析】根据相反数的定义即可解答.【详解】解:13-的相反数为13.故选:A .【点睛】本题考查了相反数,熟记相关定义是解答本题的关键.2.B【分析】根据科学记数法的表示方法写出即可.【详解】解:2684亿=268400000000=112.68410⨯.故选:B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C【分析】根据等式的基本性质解决此题.【详解】解:A 、如果23x =,且a 0≠,那么23x a a=,故该选项不符合题意;B 、如果x y =,那么55x y -=-,故该选项不符合题意;C 、如果x y =,那么22x y -=-,故该选项符合题意;D 、如果162x =,那么12x =,故该选项不符合题意;故选:C .【点睛】本题主要考查等式的基本性质,熟练掌握等式的基本性质是解决本题的关键.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.4.A【分析】由同类项的定义可求得m 和n 的值,再代入计算即可求解.【详解】解:∵3122m x y +与133n x y +是同类项,∴n+1=3,1+2m=3,∴m=1,n=2,∴m+n=1+2=3.故选:A.【点睛】本题考查了同类项,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.注意只有同类项才能合并使它们的和是单项式.5.C【分析】利用线段公理、两点间的距离的定义、确定直线的条件及补交的性质分别判断,即可确定正确的选项.【详解】解:A.两点之间,线段最短,正确;B.两点确定一条直线,正确;C.连接两点的线段的长度叫做这两点之间的距离,故不正确;D.同角的补交相等,正确;故选:C.【点睛】本题考查的是线段公理、两点间的距离的定义、确定直线的条件及补角的性质等的理解.6.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:“祝”与“年”是相对面,“快”与“新”是相对面,“您”与“乐”是相对面.故选B.7.D【分析】方程两边乘以6去分母得到结果,即可作出判断.【详解】去分母得:3(x−1)−2(2x+3)=6,故选:D.【点睛】此题考查了解一元一次方程,解方程去分母时注意右边的1不要忘了乘以6.8.A【分析】设这件夹克衫的成本价是x元,根据售价=成本+利润,即可得出关于x的一元一次方程,此题得解.【详解】解:设这件夹克衫的成本价是x元,依题意,得:70%(1+70%)x=x+38,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.D【分析】分情况讨论,点C 在线段AB 上或点C 在线段AB 的延长线上.【详解】解:当点C 在线段AB 上,∵AB=6cm ,BC=2cm ,∴AC=AB-BC=6-2=4(cm );当点C 在线段AB 的延长线上,∵AB=6cm ,BC=2cm ,∴AC=AB+BC=6+2=8(cm );综上,线段AC 的长为4cm 或8cm .故选:D .【点睛】本题考查两点间的距离,注意根据题意,分情况讨论,要画出正确的图形,结合图形进行计算.10.B【分析】观察图形,根据给定图形中棋子颗数的变化,找出变化规律:第n 个图形有(3n +3)颗棋子,然后计算即可.【详解】解:观察图形,可知:第1个图形有6=3×2颗棋子,第2个图形有9=3×3颗棋子,第3个图形有12=3×4颗棋子,第4个图形有15=3×5颗棋子,……,∴第n 个图形有3×(n +1)=(3n +3)颗棋子,当3n +3=2022时,解得:n =673,故选:B .【点睛】本题考查了规律型:图形的变化类,根据给定图形中棋子颗数的变化情况,找出变化规律是解题的关键.11.3π-六【分析】根据单项式系数及次数的定义进行解答即可.【详解】∵单项式323x y zπ-的数字因数是3π-,所有字母指数的和3216=++=,∴此单项式的系数是3π-,次数是六.故答案为(1).3π-(2).六【点睛】考查单项式的系数以及次数,单项式中的数字因数就是单项式的系数,单项式中所有字母的指数的和就是单项式的次数.12.58°28′【分析】根据角度的计算规则进行计算即可.【详解】∵37′+51′=88′=1°28′∴15°37′+42°51′=58°28′.故答案为:58°28′.【点睛】本题考查对角的认识,重点考查60′=1°需要注意进位.13.-4【分析】根据一元一次方程的定义进行计算即可.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0)【详解】解:由题意得:|a|-3=1且a-4≠0,∴a=±4且a≠4,∴a=-4,故答案为:-4.【点睛】本题考查了一元一次方程的定义,绝对值,熟练掌握一元一次方程的定义是解题的关键.14.9【详解】解:∵a -b=2,∴2a -2b+5=2(a -b )+5=2×2+5=9.故答案为:9.15.105°【详解】解:9:30,时针和分针中间相差35.个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴9:30分针与时针的夹角是35.×30°=105°.故答案为:105°.16.100a+80b【分析】因为180>100,所以其中100度是每度电价按a元收费,多出来的80度是每度电价按b元收费.【详解】解:100a+(180-100)b=100a+80b.故答案为(100a+80b).【点睛】本题考查了列代数式,解决问题的关键是读懂题意,理解收费标准.17.193【详解】根据题意得,(9+5)2-3=196-3=193,故答案为193.18.北偏东70°.【分析】根据角的和差,方向角的表示方法,可得答案.【详解】解:如图,由题意可知∵∠BOD=40°,∠AOD=15°,∴∠AOC=∠AOB=∠AOD+BOD=55°,∴∠COD=∠AOC+∠AOD=15+55=70°,故答案为:北偏东70°.【点睛】本题考查了方向角,利用角的和差得出∠COD是解题关键.19.(1)6(2)5-【解析】(1)解:原式375 1212124126 =⨯+⨯-⨯9710 =+-6=;(2)解:原式9284=-++÷922=-++5=-.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.20.(1)16x =-(2)17x =-【分析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.(1)解:去括号得:6x-10-12x+9=0,移项得:6x-12x=10-9,合并得:-6x=1,解得:16x =-;(2)去分母得:3(x-3)-2(2x+1)=6,去括号得:3x-9-4x-2=6,移项得:3x-4x=6+9+2,合并得:-x=17,解得:17x =-.【点睛】此题考查了解一元一次方程,掌握解题步骤是解题的关键,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.21.23a b -+;469【分析】通过去括号,合并同类项,化简代数式,后代入计算.【详解】解:原式22123122323a ab a b =-+-+2221321232233a a a b b a b ⎛⎫⎛⎫=--++=-+ ⎪ ⎪⎝⎭⎝⎭当2a =-,23b =,原式()22432639⎛⎫=-⨯-+= ⎪⎝⎭.【点睛】本题考查了整式的加减中化简求值,熟练去括号,正确合并同类项是解题的关键.22.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线的定义得出答案;(2)利用射线的定义得出答案;(3)连接AC 、BD ,其交点即为点O .【详解】解:(1)如图所示,直线AB 即为所求.(2)如图所示,射线AD 、BC 即为所求.(3)如图所示,点O 即为所求.【点睛】考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知:直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.23.应安排2人先做4h .【分析】设安排x 人先做4h ,然后根据先后两个时段的工作量之和等于总工作量,可列方程求解.【详解】解:设安排x 人先做4h ,由题意得:48(2)14040x x ++=解得2x =,∴应安排2人先做4h ,答:应安排2人先做4h .【点睛】本题主要考查了一元一次方程的应用,解题的关键在于准确理解题意列出方程求解.24.BOC ∠=60︒【分析】由角平分线解得12BOC AOC ∠=∠,设=23COD x BOC x ∠∠=,,根据平角为180°列一元一次方程,解此方程即可解答.【详解】解:OB Q 平分AOC∠12AOB BOC AOC ∴∠=∠=∠由:2:3COD BOC ∠∠=,设=23COD x BOC x∠∠=,180AOC COD DOE ∠+∠+∠=︒Q 6220180x x ∴++︒=︒解得20x ∴=︒360BOC x ∴∠==︒.【点睛】本题考查角的和差,涉及角平分线的性质、平角定义、一元一次方程的应用等知识,是基础考点,掌握相关知识是解题关键.25.8厘米【详解】解:∵E 为AB 的中点,线段AB =40厘米,∴EB=20厘米,∵F 为CB 的中点,且FB =6厘米,∴CB=2FB=12厘米,∴CE=EB-CB=20-12=8厘米.答:CE 的长为8厘米.26.0【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:由数轴上点的位置得:b <a <0<c ,且|b|>|c|>|a|,∴a+c >0,c-2b >0,a+2b <0,则原式=a+c-(c-2b )-a-2b=a+c-c+2b-a-2b=0.【点睛】此题考查了整式的加减,以及数轴,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.27.(1)①30°;②12α(2)12DOE AOC ∠=∠【分析】(1)①首先求得∠COB 的度数,然后根据角平分线的定义求得∠COE 的度数,再根据∠DOE=∠COD-∠COE 即可求解;②解法与①相同,把①中的60°改成α即可;(2)把∠AOC 的度数作为已知量,求得∠BOC 的度数,然后根据角的平分线的定义求得∠COE 的度数,再根据∠DOE=∠COD-∠COE 求得∠DOE ,即可解决.(1)解:①∵60AOC ∠=︒,∴180BOC AOC∠=︒-∠18060=︒-︒120=︒∵OE 平分BOC ∠,∴1602COE BOC ∠=∠=︒,又∵90COD ∠=︒,∴30DOE COD COE ∠=∠-∠=︒.②同①∠DOE=∠COD-∠COE=∠COD-12COB∠=90°-12(180°-α)=90°-90°+12α=12α即:12DOE α∠=.故答案为:12α.(2)解:12DOE AOC ∠=∠.理由如下:∵OE 平分BOC ∠,∴12COE BOC∠=()11802AOC =︒-∠1902AOC=︒-∠∴DOE COD COE∠=∠-∠90COE=︒-∠190902AOC ⎛=︒⎫ ⎪⎝︒-∠⎭-12AOC =∠。
人教版七年级数学上册 期末测试 试卷10套(含答案)

七年级(上)期末数学试卷一、选择题(每题3分,共45分)1.如图中的平面展开图与标注的立体图形不相符的是()A.长方体B.正方体C.圆柱体D.三棱锥2.下列计算正确的是()A.﹣3﹣(﹣2)=﹣1 B.﹣3﹣2=﹣1 C.﹣3÷2×2=﹣D.﹣(﹣1)2=1 3.如图是由五个正方体搭成的立体模型,从上面看到的形状图是()A.B.C.D.4.如果x=y,a为有理数,那么下列等式不一定成立的是()A.1﹣y=1﹣x B.x2=y2C.=D.ax=ay5.小明在解方程5a﹣x=13(x为未知数)时,误将﹣x看作+x,得方程的解为x=﹣2,那么原方程的解为()A.x=2 B.x=0 C.x=﹣3 D.x=16.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线;(2)AB+BD>AD;(3)射线AC和射线AD是同一条射线;(4)三条直线两两相交时,一定有三个交点.A.1个 B.2个 C.3个 D.4个7.如图,一个直角三角板ABC绕其直角顶点C旋转到△DCE的位置,若∠BCD=30°,下列结论错误的是()A.∠ACD=120° B.∠ACD=∠BCEC.∠ACE=120°D.∠ACE﹣∠BCD=120°8.有理数a等于它的倒数,有理数b等于它的相反数,则a2017+b2017的值是()A.﹣1 B.1 C.0 D.±19.如图,已知∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,则∠MON 的度数是()A.βB.(α﹣β)C.α﹣βD.α10.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识11.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.12.“两数和的平方”用代数式表示是()A.(a+b)2B.a2+b2C.a2+b D.a+b213.一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是()A.18千米/时B.15千米/时C.12千米/时D.20千米/时14.为做一个如图所示的试管架,在一根长为acm的木条上钻了4个圆孔,每个孔的直径为2cm,则x等于()A.cm B.cm C.cm D.cm15.用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是()A.10cm2B.12cm2C.14cm2D.16cm2二、填空题(每题3分,共18分)16.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为吨.17.若a﹣3b=4,则8﹣2a+6b的值为.18.如图,四个有理数在数轴上的对应点分别是M、N、P、Q,若点M,Q表示的有理数互为相反数,则图中表示绝对值最小的数的点是.19.定义一种新运算“☆”,规定:a☆b=a﹣3b,则12☆(﹣1)=.20.圆心角是60°的扇形的半径为6,则这个扇形的面积是.21.观察下列各式:22﹣1=1×332﹣1=2×442﹣1=3×552﹣1=4×6请你猜想规律,用含自然数n(n≥2)的等式表示出来:.三、解答题(共7小题,满分57分)22.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7).23.解方程(1)3﹣(5﹣2x)=x(2)﹣1=2+.24.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.25.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为,BD的长度为.26.望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=%,n=%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?27.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.28.今年某网上购物商城在“双11购物节”期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的标价为200元,按活动规定实际付款元.(2)小丽第2次购物实际花费了490元,第2次所购商品的标价为多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?参考答案与试题解析一、选择题(每题3分,共45分)1.如图中的平面展开图与标注的立体图形不相符的是()A.长方体B.正方体C.圆柱体D.三棱锥【考点】几何体的展开图.【分析】分析四个选项,发现D中的平面展开图为三棱柱的展开图,不是三棱锥的展开图,由此即可得出结论.【解答】解:根据立体图形与平面展开图对照四个选项,发现D中的平面展开图为三棱柱的展开图,不是三棱锥的展开图.故选D.2.下列计算正确的是()A.﹣3﹣(﹣2)=﹣1 B.﹣3﹣2=﹣1 C.﹣3÷2×2=﹣D.﹣(﹣1)2=1【考点】有理数的混合运算.【分析】根据有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,求出每个算式的值是多少,即可判断出哪个算式的计算正确.【解答】解:∵﹣3﹣(﹣2)=﹣1,∴选项A正确;∵﹣3﹣2=﹣5,∴选项B不正确;∵﹣3÷2×2=﹣3,∴选项C不正确;∵﹣(﹣1)2=﹣1,∴选项D不正确.故选:A.3.如图是由五个正方体搭成的立体模型,从上面看到的形状图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是一个正方形,故选:C.4.如果x=y,a为有理数,那么下列等式不一定成立的是()A.1﹣y=1﹣x B.x2=y2C.=D.ax=ay【考点】等式的性质.【分析】A、等式两边先同时乘﹣1,然后再同时加1即可;B、根据乘方的定义可判断;C、根据等式的性质2判断即可;D、根据等式的性质2判断即可.【解答】解:A、∵x=y,∴﹣x=﹣y.∴﹣x+1=﹣y+1,即1﹣y=1﹣x,故A一定成立,与要求不符;B、如果x=y,则x2=y2,故B一定成立,与要求不符;C、当a=0时,无意义,故C不一定成立,与要求相符;D、由等式的性质可知:ax=ay,故D一定成立,与要求不符.故选:C.5.小明在解方程5a﹣x=13(x为未知数)时,误将﹣x看作+x,得方程的解为x=﹣2,那么原方程的解为()A.x=2 B.x=0 C.x=﹣3 D.x=1【考点】一元一次方程的解.【分析】把x=﹣2代入方程5a+x=13中求出a的值,即可求出原方程的解.【解答】解:把x=﹣2代入方程5a+x=13中得:5a﹣2=13,解得:a=3,方程为15﹣x=13,解得:x=2,故选A6.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线;(2)AB+BD>AD;(3)射线AC和射线AD是同一条射线;(4)三条直线两两相交时,一定有三个交点.A.1个 B.2个 C.3个 D.4个【考点】直线、射线、线段.【分析】利用直线,射线及线段的定义判定即可.【解答】解:(1)直线BA和直线AB是同一条直线;正确,(2)AB+BD>AD;正确(3)射线AC和射线AD是同一条射线;正确,(4)三条直线两两相交时,一定有三个交点,还可能有一个,故不正确.共3个说法正确.故选:C.7.如图,一个直角三角板ABC绕其直角顶点C旋转到△DCE的位置,若∠BCD=30°,下列结论错误的是()A.∠ACD=120° B.∠ACD=∠BCEC.∠ACE=120°D.∠ACE﹣∠BCD=120°【考点】角的计算.【分析】依据题意题意可知∠ACB=∠DCE=90°,然后依据图形间角的和差关系求解即可.【解答】解:A、∵∠ACB=90°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=120°,故A 与要求不符;B、∵∠DCE=90°,∠BCD=30°,∴∠BCE=∠DCE+∠BCD=120°,∴∠ACD=∠BCE,故B与要求不符;C、∵∠ACE=360°﹣90°﹣90°﹣30°=150°,故C错误,与要求相符;D、∵∠ACE﹣∠BCD=150°﹣30°=120°,故D与要求不符.故选:C.8.有理数a等于它的倒数,有理数b等于它的相反数,则a2017+b2017的值是()A.﹣1 B.1 C.0 D.±1【考点】代数式求值.【分析】首先根据a和b的特点求得a和b的值,然后代入求解即可.【解答】解:∵有理数a等于它的倒数,有理数b等于它的相反数,∴a=1或﹣1,b=0,则a2017+b2017=1或﹣1.故选D.9.如图,已知∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,则∠MON 的度数是()A.βB.(α﹣β)C.α﹣βD.α【考点】角的计算.【分析】求出∠AOC,根据角平分线定义求出∠NOC和∠MOC,相减即可求出答案.【解答】解:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠NOC=∠BOC=,∠MOC=∠AOC=,∴∠MON=∠MOC﹣∠NOC=﹣=.故选D.10.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、了解一批圆珠笔的寿命适宜采用抽样调查方式,A错误;B、了解全国九年级学生身高的现状适宜采用抽样调查方式,B错误;C、检查一枚用于发射卫星的运载火箭的各零部件适宜采用普查方式,B正确;D、考察人们保护海洋的意识适宜采用抽样调查方式,D错误;故选:C.11.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.【考点】由实际问题抽象出一元一次方程.【分析】根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.【解答】解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选C.12.“两数和的平方”用代数式表示是()A.(a+b)2B.a2+b2C.a2+b D.a+b2【考点】列代数式.【分析】两数和的平方是先求和,再把和进行平方.【解答】解:“两数和的平方”用代数式表示(a+b)2.故选A.13.一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是()A.18千米/时B.15千米/时C.12千米/时D.20千米/时【考点】一元一次方程的应用.【分析】本题求的是速度,时间比较明确,那么一定是根据路程来列等量关系.本题的等量关系为:逆水速度×逆水时间=顺水速度×顺水时间.【解答】解:设轮船在静水中的速度是x千米/时,则3(x﹣3)=2(x+3)解得:x=15,故选B14.为做一个如图所示的试管架,在一根长为acm的木条上钻了4个圆孔,每个孔的直径为2cm,则x等于()A.cm B.cm C.cm D.cm【考点】一元一次方程的应用.【分析】读图可得:5x+四个圆的直径=acm.由此列出方程,用含a的代数式表示x即可.【解答】解:由题意可得,5x=a﹣2×4,则x=cm.故选:D.15.用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是()A.10cm2B.12cm2C.14cm2D.16cm2【考点】一元一次方程的应用.【分析】可设A长方形的长是xcm,则B长方形的宽是(4﹣x)cm,B长方形的长是(8﹣x)cm,根据大正方形周长为32cm,列出方程求解即可.【解答】解:设A长方形的长是xcm,则B长方形的宽是(4﹣x)cm,B长方形的长是(8﹣x)cm,依题意有4[(4﹣x)+(8﹣x)]=32,解得x=4,(4﹣x)(8﹣x)=(4﹣2)×(8﹣2)=2×6=12.故B种长方形的面积是12cm2.故选:B.二、填空题(每题3分,共18分)16.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.17.若a﹣3b=4,则8﹣2a+6b的值为0.【考点】代数式求值.【分析】根据a﹣3b=4,对式子8﹣2a+6b变形,可以建立﹣3b=4与8﹣2a+6b 的关系,从而可以解答本题【解答】解:∵a﹣3b=4,∴8﹣2a+6b=8﹣2(a﹣3b)=8﹣2×4=8﹣8=0,故答案为:0.18.如图,四个有理数在数轴上的对应点分别是M、N、P、Q,若点M,Q表示的有理数互为相反数,则图中表示绝对值最小的数的点是N.【考点】有理数大小比较;数轴;相反数;绝对值.【分析】首项根据点M,Q表示的有理数互为相反数,可得点M,Q表示的有理数的绝对值相等,所以点M,Q的中点即是原点;然后根据图示,可得点N和点M之间的距离大于点P和点Q之间的距离,所以点N离原点最近,所以图中表示绝对值最小的数的点是N,据此解答即可.【解答】解:因为点M,Q表示的有理数互为相反数,所以点M,Q的中点即是原点;因为点N和点M之间的距离大于点P和点Q之间的距离,所以点N离原点最近,所以图中表示绝对值最小的数的点是N.故答案为:N.19.定义一种新运算“☆”,规定:a☆b=a﹣3b,则12☆(﹣1)=9.【考点】有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=6+3=9,故答案为:920.圆心角是60°的扇形的半径为6,则这个扇形的面积是6π.【考点】扇形面积的计算.【分析】根据扇形的面积公式S=计算,即可得出结果.【解答】解:该扇形的面积S==6π.故答案为:6π.21.观察下列各式:22﹣1=1×332﹣1=2×442﹣1=3×552﹣1=4×6请你猜想规律,用含自然数n(n≥2)的等式表示出来:n2﹣1=(n﹣1)(n+1).【考点】规律型:数字的变化类.【分析】通过观察,等式实际上为等差数列的推导,根据规律即可得出答案.【解答】解:观察下列各式:22﹣1=1×3=(2+1)(2﹣1),32﹣1=2×4=(3+1)(3﹣1),42﹣1=3×5=(4+1)(4﹣1),52﹣1=4×6=(5+1)(5﹣1),∴当第一个数为n(n≥2)时,得:n2﹣1=(n﹣1)(n+1).故答案为:n2﹣1=(n﹣1)(n+1).三、解答题(共7小题,满分57分)22.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7).【考点】有理数的混合运算.【分析】(1)利用乘法的分配律和有理数的混合运算法则进行计算即可;(2)根据有理数去括号的法则、有理数的加减乘除的计算法则进行计算即可.【解答】解:(1)=4﹣=4﹣4﹣3﹣2=﹣5;(2)=﹣1﹣=﹣1﹣=﹣1﹣=.23.解方程(1)3﹣(5﹣2x)=x(2)﹣1=2+.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3﹣5+2x=x,移项合并得:x=2;(2)去分母得:2x+2﹣4=8+2﹣x,移项合并得:3x=12,解得:x=4.24.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值以及偶次方的性质得出a,b的值,再利用整式加减运算法则化简求出原式,进而代入a,b的值求出答案.【解答】解:∵|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,解得:a=﹣1,b=,∴3a2﹣4ab+[a2﹣2(a2﹣3ab)]=3a2﹣4ab+a2﹣2a2+6ab,=2a2+2ab,将a,b的值代入上式可得:原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.25.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为12,BD的长度为18.【考点】两点间的距离;直线、射线、线段.【分析】(1)根据题意画出图形即可;(2)由AC=2AB,AD=AC,以及DB=AD+AB求解即可.【解答】解:(1)如图所示;(2)∵AB=BC,∴AC=2AB=2×6=12.∵AD=AC=12,∴BD=AD+AB=12+6=18.故答案为:12;18.26.望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=26%,n=14%,这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可以求得调查的学生数和m、n的值;(2)根据(1)和扇形统计图可以求得C类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C类学生的人数.【解答】解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C类学生约有240人.27.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是北偏东70°;(2)若射线OE平分∠COD,求∠AOE的度数.【考点】方向角.【分析】(1)先求出∠AOB=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOB=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COD的度数,根据射线OE平分∠COD,即可求出∠COE=35°再利用∠AOC=55°求出答案即可.【解答】解:(1)∵OB的方向是北偏西40°,OA的方向是北偏东15°,∴∠NOB=40°,∠NOA=15°,∴∠AOB=∠NOB+∠NOA=55°,∵∠AOB=∠AOC,∴∠AOC=55°,∴∠NOC=∠NOA+∠AOC=70°,∴OC的方向是北偏东70°;故答案为:北偏东70°;(2)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.又∵射线OD是OB的反向延长线,∴∠BOD=180°.∴∠COD=180°﹣110°=70°.∵∠COD=70°,OE平分∠COD,∴∠COE=35°.∵∠AOC=55°.∴∠AOE=90°.28.今年某网上购物商城在“双11购物节”期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的标价为200元,按活动规定实际付款180元.(2)小丽第2次购物实际花费了490元,第2次所购商品的标价为多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?【考点】一元一次方程的应用.【分析】(1)根据实际花费=标价×0.9,代入数据即可得出结论;(2)由500×0.9=450(元)、490>450,即可得出第2次购物超过500元,设第2次所购商品的标价为x元,根据实际花费=500×0.9+0.8×超过500元的部分即可得出关于x的一元一次方程,解之即可得出结论;(3)将两次所购商品标价相加算出实际花费,与前两次实际花费比较后即可得出结论.【解答】解:(1)200×0.9=180(元).故答案为:180.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元.设第2次所购商品的标价为x元,根据题意得:500×0.9+0.8(x﹣500)=490,解得:x=550.答:第2次所购商品的标价为550元钱.(3)200+550=750(元),500×0.9+×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.七年级(上)期末数学试卷一、填空题(本大题共8个小题,每小题3分,满分24分)1.引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果约为617000000条,这个数用科学记数法可表示为2.将如图所示的平面展开图折叠成正方体,则a对面的数字是.3.若x=﹣1是方程3x﹣m=﹣5的解,则m的值为.4.如果单项式3a m b3与﹣a2b n是同类项,那么m﹣n=.5.若|3a+6|+(b﹣3)2=0,则a b=.6.如图,甲船从A点出发向北偏东72°25′方向航行50km至点B,则钝角∠BAC 的度数为.7.用火柴棍象如图这样搭三角形,则搭2017个这样的三角形需要根火柴棍.8.已知线段AB=10cm,C是直线AB上一点,且BC=6cm,E是AC的中点,则线段CE的长为cm.二、选择题(本大题共10个小题,每小题3分,满分30分)9.﹣3的相反数是()A.﹣ B.3 C.D.﹣310.如图所示的几何体,从正面看到所得的图形是()A.B.C.D.11.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.线段的中点定义 D.直线可以向两边延长12.一天,昆明的最高气温为6℃,最低气温为﹣4℃,那么这天的最高气温比最低气温高()A.10℃B.﹣10℃C.2℃D.﹣2℃13.下列计算正确的是()A.3x2+2x3=5x5B.2x+3y=5xyC.6x2﹣2x2=4 D.2x2y+3yx2=5x2y14.下列说法正确的是()A.单项式xy的系数是,次数是1B.单项式﹣πa2b3的系数是﹣,次数是6C.单项式x2的系数是1,次数是2D.多项式2x3﹣3x2y2+x﹣1叫三次四项式15.已知一个角的余角比它的补角的还少10°,则这个角的度数是()A.120°B.90°C.60°D.30°16.减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+417.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A. +=1 B. +=1 C. +=1 D. +=118.某商店有2个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,在这笔买卖中,这家商店()A.赚了10元B.赔了10元C.不赔不赚D.赚了8元三、解答题:(共66分)19.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.﹣,0,﹣2.5,﹣3,1.20.计算:(1)﹣9﹣(﹣8)+(﹣12)﹣6(2)(﹣12)×(﹣+)(3)﹣22×4﹣(﹣2)2÷4.21.先化简,再求值:2x2+y2+(2y2﹣3x2)﹣2(y2﹣2x2),其中x=﹣1,y=2.22.解下列方程(1)5﹣3(2x﹣1)=x(2)+1=.23.如图,一个直角三角形ABC的直角边BC=a,AC=b,三角形内部圆的半径为r.(1)用含a、b、r的式子表示阴影部分面积(结果保留π);(2)当a=10,b=6,r=2时,计算阴影部分的面积.(π取3.14,结果精确到0.1)24.2016年7月,台风“莫利娅”登陆,给我国福建,浙江等省造成严重影响,为民排忧解难的解放军叔叔驾驶冲锋舟沿一条东西方向的河流营救灾民,早晨从A地出发,来回营救灾民,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米):+16,﹣4,+8,﹣8,+14,﹣7,﹣11.(1)B地在A地的东面还是西面?与A地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?25.制作一张桌子需要一个桌面和四个桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?26.如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC的角平分线,若∠AOC=70°.(1)求∠BOD的度数.(2)试判断OE是否平分∠BOC,并说明理由.27.安宁市的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,若经粗加工后销售,每吨利润可达4500元;若经精加工后销售每吨获利7500元.当地一家农产品企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了四种可行方案:方案一:全部直接销售;方案二:全部进行粗加工;方案三:尽可能多地进行精加工,没有来得及进行精加工的直接销售;方案四:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.请通过计算以上四个方案的利润,帮助企业选择一个最佳方案使所获利润最多?参考答案与试题解析一、填空题(本大题共8个小题,每小题3分,满分24分)1.引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果约为617000000条,这个数用科学记数法可表示为 6.17×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数【解答】解:将617000000用科学记数法表示为:6.17×108.故答案为:6.17×108.2.将如图所示的平面展开图折叠成正方体,则a对面的数字是﹣1.【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上a对面的数字是﹣1.故答案为:﹣1.3.若x=﹣1是方程3x﹣m=﹣5的解,则m的值为2.【考点】一元一次方程的解.【分析】把x=﹣1代入方程得到一个关于m的方程,解方程求得m的值.【解答】解:把x=﹣1代入方程得﹣3﹣m=﹣5,解得m=2.故答案是:2.4.如果单项式3a m b3与﹣a2b n是同类项,那么m﹣n=﹣1.【考点】同类项.【分析】同类项是指相同字母的指数要相等,然后列出等式即可求出m与n的值.【解答】解:由题意可知:m=2,n=3,∴m﹣n=2﹣3=﹣1,故答案为:﹣15.若|3a+6|+(b﹣3)2=0,则a b=﹣8.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,3a+6=0,b﹣3=0,解得a=﹣2,b=3,所以,a b=(﹣2)3=﹣8.故答案为:﹣8.6.如图,甲船从A点出发向北偏东72°25′方向航行50km至点B,则钝角∠BAC 的度数为107°35′.【考点】方向角;度分秒的换算.【分析】根据方向角和角的和差,可得答案.【解答】解:∠BAC=180°﹣72°25′=107°35′,故答案为:107°35′.7.用火柴棍象如图这样搭三角形,则搭2017个这样的三角形需要2035根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点【解答】解:根据题意可知,每增加一个三角形就增加了2根火柴棍,所以搭n 个三角形需要2n+1根火柴棍.所以搭2017个这样的三角形需要2×2017+1=2035.故答案为:4035.8.已知线段AB=10cm,C是直线AB上一点,且BC=6cm,E是AC的中点,则线段CE的长为2或8cm.【考点】两点间的距离.【分析】根据线段的和差,可得AC,根据线段中点的性质,可得答案.【解答】解:①AC=AB+BC=10+6=16cm,点E是线段AC的中点,得CE=AC=8cm.②AC=AB﹣BC=10﹣6=4cm,点E是线段AC的中点,得CE=AC=2cm.故答案为:2或8.二、选择题(本大题共10个小题,每小题3分,满分30分)9.﹣3的相反数是()A.﹣ B.3 C.D.﹣3【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故选:B.10.如图所示的几何体,从正面看到所得的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,故选:A.11.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.线段的中点定义 D.直线可以向两边延长【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,可得答案.【解答】解:要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是两点确定一条直线,。
2023年人教版七年级数学上册期末试卷(及答案)

2023 年人教版七年级数学上册期末试卷(考试时间:90分钟,满分:100分)一、选择题(每题2分,共10题,计20分)1. 若a、b是实数,且a > b,则下列哪个不等式成立?A. a + b > 2aB. a b < 0C. a^2 > b^2D. a/b > 12. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是多少?A. 16cmB. 18cmC. 20cmD. 22cm3. 若一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的体积是多少?A. 60cm^3B. 80cm^3C. 120cm^3D. 150cm^34. 若一个数列的前三项分别是2、4、6,则这个数列的通项公式是?A. an = 2nB. an = 2n + 1C. an = 2n 1D. an = 2n + 25. 若一个圆的半径为5cm,则它的面积是多少?A. 25πcm^2B. 50πcm^2C. 100πcm^2D. 200πcm^26. 若一个平行四边形的底边长为8cm,高为5cm,则它的面积是多少?A. 40cm^2B. 48cm^2C. 56cm^2D. 64cm^27. 若一个直角三角形的两条直角边长分别为3cm、4cm,则它的斜边长是多少?A. 5cmB. 6cmC. 7cmD. 8cm8. 若一个正方形的边长为6cm,则它的面积是多少?A. 36cm^2B. 48cm^2C. 60cm^2D. 72cm^29. 若一个等差数列的首项为3,公差为2,则它的第5项是多少?A. 9B. 11C. 13D. 1510. 若一个圆的直径为10cm,则它的半径是多少?A. 5cmB. 7cmC. 9cmD. 11cm二、填空题(每题2分,共10题,计20分)1. 若一个数的绝对值为5,则这个数可能是______或______。
2. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______cm^3。
人教版(2024)2024-2025学年七年级数学上册期末质量评价(含答案)

人教版(2024)七年级数学上册期末质量评价时间:120分钟满分:120分班级:________姓名:________分数:________一、单项选择题(本大题共12小题,每小题3分,共36分)1.0的相反数是()A.1B.2C.0D.不存在2.某市常住人口约为1 050 000人,1 050 000用科学记数法表示为()A.1.05×106B.1.05×107C.0.105×108D.10.5×1053.下面合并同类项正确的是()A.2a+3b=5abB.2pq-4pq=-2pqC.4m3-m3=3D.-7x2y+2x2y=-9x2y4.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱5.解方程2x+1=4-x时,下列移项正确的是()A.2x+x=4-1B.2x-x=4+1C.1-4=-x+2xD.2x+x=4+16.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为()A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)7.如图,已知线段AB=10 cm,M是AB中点,点N在AB上,NB =2 cm,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm8.下列选项中,计算结果最小的是()A.6+(-3)B.6-(-3)C.6×(-3)D.6÷(-3)9.若数轴上表示-2和3的两点分别是点A和B,则点A和点B之间的距离是()A.-5B.-1C.1D.510.下列说法中,正确的是()A.x不是整式B.多项式x2+y2-1是整式C.单项式-2πab的系数是-2D.多项式ab2-2πb3+1是四次三项式11.当x=2时,代数式ax3+bx+1的值为3,那么当x=-2时,代数式ax3+bx+1的值是()A.1B.-1C.3D.212.古代名著《孙子算经》中有一题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其译文为:每3人共乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,设有x辆车,则根据题意,可列出方程为()A.3(x+2)=2x-9B.3(x+2)=2x+9C.3(x-2)=2x+9D.3(x-2)=2x-9二、填空题(本大题共6小题,每小题2分,共12分)13.若收入110元记作+110元,则支出350元记作元.14.已知∠α与∠β互余,且∠α=31°18′22″,则∠β=.15.对非零有理数a,b,定义运算:a★b=(a-b)÷a2-b,则(-1)★3=.16.如图,数轴上点A表示的数为1,点B表示的数为-3,则线段AB中点表示的数为.17.若方程x +5=7-2(x -2)的解也是方程6x +3k =14的解,则常数k = .18.有一列数:a 1,a 2,a 3,a 4,…,a n -1,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,….当a n =2 021时,n 的值为 .三、解答题(本大题共8小题,共72分) 19.(6分)计算:(1)-32+(23-12+58)×(-24);(2)|3-7|+(-1)2 024÷14+(-2)3.20.(6分)解下列方程: (1)3(x -4)=12;(2)x -34-2x +12=1.21.(10分)请用尺规完成下列作图(只保留作图痕迹,不要求写出作法) (1)连接AB ,作射线BC ;(2)在射线BC 上取一点D ,使CD =AB ; (3)若BC =6,AB =8,求BD 的长.题图22.(10分)先化简,再求值:3a 2b -[2ab 2-2(-a 2b +ab 2)],其中a =-4,b =12.23.(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,经了解,已知某快递公司的收费标准为:寄出的物品不超过3 kg ,收费10元;超过3 kg 的部分每千克加收1.5元,该快递公司某天上午一共接到7单快递业务,具体快件重量(以3 kg 为标准重量,超过的记为正,不足的记为负)如下:(1)该快递公司这天上午共寄出物品多少千克?(2)已知快递公司寄出一单快递的平均费用为每千克0.8元,请问该快递公司这天上午可以盈利多少元?24.(10分)某中学计划加工一批校服,现有甲、乙两个工厂能加工这批校服.已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件,且单独加工完这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件(列一元一次方程解决此问题);(2)若先由甲、乙两个工厂按原来的速度合作一段时间后,乙厂引进了新设备,使乙厂每天的加工效率提高了25%,剩下的部分由乙厂单独完成.如果乙厂全部工作时间是甲厂全部工作时间的2倍还多4天,那么乙厂全部工作时间是多少天?25.(10分)如图,已知线段AB 上有两点C ,D ,且AC =BD ,M ,N 分别是线段AC ,AD 的中点.若AB =a cm ,AC =BD =b cm ,且a ,b 满足(a -10)2+⎪⎪⎪⎪⎪⎪b 2-4=0. (1)求线段AB ,AC 的长度; (2)求线段MN 的长度.26.(10分)【动手实践】在数学研究中,观察、猜想、实验验证、得出结论,是我们常用的几何探究方式.请利用一副含有45°角的直角三角板ABC和含有30°角的直角三角板BDE尝试完成探究.【实验操作】(1)若边BA和边BE重合摆成图①的形状,则∠CBD=;(2)保持三角板ABC不动,将45°角的顶点与三角板BDE的60°角的顶点重合,然后摆动三角板BDE,请问:当∠ABE为多少度时,∠CBD=90°.请说明理由;(∠ABE<180°)【拓展延伸】(3)试探索:保持三角板ABC不动,将45°角的顶点与三角板BDE的60°角的顶点重合,然后摆动三角板BDE,使得∠ABD与∠ABE 中其中一个角是另一个角的两倍,请直接写出所有满足题意的∠ABE 的度数.(∠ABE<180°)。
人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.下列四个有理数中,绝对值最小的数是()A.-5B.0C.4D.-92.温度由﹣13℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃3.数据202万用科学记数法表示为()A.2.02×105B.0.202×107C.20.2×105D.2.02×1064.已知||1(2)312m m x--+=是关于x 的一元一次方程,则m 的值为()A.1m =B.2m =C.2m =-D.2m =±5.下列方程中,与13x x -=-+的解相同的是()A.20x +=B.230x -=C.22x x-=D.20x -=6.陈老师做了一个周长为()24a b +的长方形教具,其中一边长为()a b -,则另一边长为A.3b B.5a b +C.2a D.35a b-7.如图,点A,O,B 在一条直线上,OE⊥AB 于点O,如果∠1与∠2互余,那么图中相等的角有()A.6对B.5对C.4对D.3对8.若代数式2243(251)ax x y x bx y +-+--+-的值与x 的取值无关,则a b +的值为A.6B.-6C.2D.-29.如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD=2,则线段AB 的长是()A.10B.15C.20D.2510.一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2022次落下时,落点处表示的数为()A.-2022B.2022C.-1011D.1011二、填空题11.若点A、B、C、D 在数轴上的位置如图所示,则-3的相反数所对应的点是_________.12.计算:11||32-=_________.13.点A、B 在数轴上,若数轴上点A 表示-1,且AB=2,则点B 表示的数是_______.14.某企业对应聘人员进行专业考试,试题由50道不定项选择题组成,评分标准规定:每道题全选对得4分,不选得0分,选错或正确选项不全倒扣2分.已知某人有4道题未选,得了172分,则这个人全选对了_________道题.15.如图,将边长为m 的正方形纸片沿虚线剪成两块正方形和两块长方形,若拿掉边长为n 的小正方形后,再把剩下的三块图形拼成一块长方形,则这块长方形周长为_________.16.有一组数:(1,1,0),(2,4,7),(3,9,26),(4,16,63),…,按照其中的规律,第n 组数为_________.17.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=_____.18.如图,将一副三角尺的直角顶点O 重合在一起.若∠COB 与∠DOA 的比是2:7,OP 平分∠DOA,则∠POC=_________度.三、解答题19.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+320.解方程:(1)2121136x x +--=(2)1(35)2(5)2x x x --=+.21.先化简,再求值:2222734(2)2(32)a ab b b ab a ab --+---,其中2a =-,2b =.22.某同学在黑板上正确解答了一道整式的计算题,但被另一位同学不慎擦掉了算式中的一部分,如图所示:22(475)351x x x x +-+=--+.(1)求被擦掉的多项式;(2)若12x =-,求被擦掉多项式的值.23.已知x,y 为有理数,现规定一种新运算“⊗”,满足2021x y xy ⊗=-.(1)求(25)(4)⊗⊗-的值;(2)记()P a b c =⊗-,Q a b a c =⊗-⊗,请猜想P 与Q 的数量关系,并说明理由.24.如图,已知A、B 两点在数轴上,点A 表示的数为a,点B 表示的数为b,且a、b 满足2++-=,点P以每秒4个单位长度的速度从点A向右运动.点Q以每秒3个单(20)|60|0a b位长度的速度从点O向右运动(点P、点Q同时出发).(1)分别求出点A、B在数轴上对应的数;(2)经过几秒时,点P、点Q分别到原点O的距离相等?(3)当点P运动到什么位置时,恰好使AP=2BQ?25.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.26.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOC=70°,∠COE=50°,求∠BOD的度数;(2)如果∠AOE=160°,求∠BOD的度数;(3)如果OM平分∠AOE,∠COD:∠BOC=2:3,∠COM=15°,求∠BOD的度数.参考答案1.B【分析】根据负数的绝对值为负数的相反数,正数的绝对值是其本身,即可求解.【详解】解:55-=,00=,44=,99-=,且9540>>>,所以绝对值最小的数是0.故选:B.【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义即可求解.2.B【分析】根据题意列出算式,计算即可出值.【详解】解:由题意得上升后的温度为:﹣13+8=﹣5℃,故选:B.【点睛】本题考查有理数的加法,熟练掌握运算法则是解题的关键.3.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:202万62020000 2.0210==⨯.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C【分析】根据一元一次方程的定义可得到一个关于m 的方程,即可求出m 的值.【详解】解:根据一元一次方程的定义,可得:||11m -=,且20m -≠,可解得2m =-,故选:C.【点睛】本题主要考查一元一次方程的定义,解题的关键是掌握注意x 的系数不等于0.5.D【分析】先求出13x x -=-+的解为2x =,然后再分别求出每个选项中方程的解,即可求解.【详解】解:13x x -=-+,移项合并同类项得:24=x ,解得:2x =,A、20x +=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;B、230x -=,解得:32x =,与13x x -=-+的解不相同,故本选项不符合题意;C、22x x -=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;D、20x -=,解得:2x =,与13x x -=-+的解相同,故本选项符合题意;故选:D【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.6.A【分析】根据长方形周长公式表示另一边长即可.【详解】解:由题意得,另一边长为()2432a b a b b +--=故选:A.【点睛】此题考查了代数式的问题,解题的关键是掌握长方形周长公式.7.B【分析】根据互余的性质得出相等的角即可得出答案.【详解】解:图中相等的角有1,2,,,COA BOD AOE BOE COD BOE COD AOE ∠=∠∠=∠∠=∠∠=∠∠=∠,共5对故选:B.【点睛】此题考查了找等角的问题,解题的关键是掌握互余的性质.8.D【分析】已知多项式合并后,根据结果与x 的取值无关,求出a 与b 的值,代入计算即可求出值.【详解】解:2243(251)ax x y x bx y +-+--+-2243251ax x y x bx y =+-+-+-+2(2)(4)64a xb x y =-++-+由结果与x 的取值无关,得到a﹣2=0,b+4=0,解得:a=2,b=-4,242a b +=-=-,故选:D.【点睛】此题考查了整式的值与字母无关问题,熟练掌握整式运算法则是解本题的关键.9.C【分析】设AC=2x,则BC=3x,利用线段中点的性质表示出CD,列出方程即可解决.【详解】解:设AC=2x,则BC=3x,∴AB=AC+BC=5x,∵点D 是AB 的中点,∴AD=12AB=2.5x,∴CD=AD −AC=2.5x −2x=0.5x,∵CD=2,∴0.5x=2,∴x=4,∴AB=5x=20,故选:C.【点睛】本题考查了两点间距离,根据题目的已知并结合图形分析是解题的关键.10.C【分析】根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,当它跳第偶数次落下时,落点处表示的数为2n -,所以当它跳第2022次落下时,落点处表示的数为202221011-÷=-.故选:C【点睛】本题主要考查了数字类规律题,数轴上两点间的距离,明确题意,准确得到规律是解题的关键.11.A【分析】先求出-3的相反数,再根据所得的结果在数轴上找到对应的点即可.【详解】解:∵-3的相反数是3∴-3的相反数3对应的点是A .故答案为:A【点睛】本题考查了相反数的定义,数轴上点所表示的数等知识,关键在于正确理解相反数的意义.12.16【分析】根据绝对值的性质可得1111||3223-=-,即可求解.【详解】解:11111||32236-=-=.故答案为:16【点睛】本题主要考查了绝对值的性质,有理数的加减运算,熟练掌握绝对值的性质,有理数运算法则是解题的关键.13.-3或1##1或-3【分析】分两种情况:当点B 在点A 的右边时,当点B 在点A 的左边时,即可求解.【详解】解:根据题意得:当点B 在点A 的右边时,点B 表示的数是()211+-=;当点B 在点A 的左边时,点B 表示的数是()123--=-;∴点B 表示的数是-3或1.故答案为:-3或1【点睛】本题主要考查了数轴上两点间的距离,利用分类讨论思想解答是解题的关键.14.44【分析】设这个人全选对了x 道题,那么做错了()504x --道题,根据得了172分,可列方程求解.【详解】解:设这个人全选对了x 道题,根据题意得,()42504172x x ---=,解得44x =.答:这个人全选对了44道题.故答案为:44.【点睛】本题考查一元一次方程的应用,关键设出全选对的题目数,表示出做错的题目数,以分数做为等量关系列方程求解.15.4m【分析】根据题意和矩形的性质列出代数式解答即可.【详解】解:新长方形的周长=2[(m+n)+(m﹣n)]=4m.【点睛】本题考查正方形、矩形等知识,解题的关键是理解题意,学会利用所学知识解决实际问题.16.(n ,2n ,31n -)【分析】根据题意可得第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现,第n 组数为(n ,2n ,31n -).故答案为:(n ,2n ,31n -)【点睛】本题主要考查了数字类的规律题,明确题意,准确得到规律是解题的关键.17.23【详解】∵x+5=7-2(x-2)∴x=2.把x=2代入6x+3k=14得,12+3k=14,∴k=23.18.20【分析】根据条件可知90AOB COD ∠=∠=︒,并且180COB DOA AOB COD ∠+∠=∠+∠=︒,再根据COB ∠与DOA ∠的比是2:7,可求DOA ∠,再根据角平分线的定义和角的和差关系即可求解.【详解】解:180COB DOA COB COA COB DOB AOB COD ∠+∠=∠+∠+∠+∠=∠+∠=︒ ,又COB ∠ 与DOA ∠的比是2:7,718014027DOA ∴∠=︒⨯=︒+,OP 平分DOA ∠,70DOP ∴∠=︒,20POC ∴∠=︒.故答案为:20.【点睛】本题考查了余角与补角,角平分线的定义,正确认识COB DOA ∠+∠AOB COD =∠+∠180=︒这一个关系是解题的关键,这是一个常用的关系,需熟记.19.(1)10;(2)﹣1;(3)0;(4)2.【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=32;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.222a b -,4-【分析】直接去括号进而合并同类项,再把已知数据代入得出答案.【详解】解:原式2222734264a ab b b ab a ab =--+--+,222a b =-,当2a =-,2b =时,原式222a b =-,22(2)22=--⨯,48=-,4=-.【点睛】此题主要考查了整式的加减——化简求值,解题的关键是正确去括号、合并同类项.22.(1)2724x x -+-(2)274-【分析】(1)设被擦掉的多项式为M,根据题意列出多项式并化简即可.(2)将12x =-代入求解即可.(1)解:设被擦掉的多项式为M,则()22351475M x x x x =--+--+22351475x x x x =--+-+-2724x x =-+-.(2)解:若12x =-,则2724M x x =-+-21172422⎛⎫⎛⎫=-⨯-+⨯-- ⎪ ⎪⎝⎭⎝⎭274=-.【点睛】此题考查了整式的加减运算及求值,解题的关键是掌握整式的加减运算及求值的方法、通过合并同类项将整式进行化简.23.(1)6023(2)2021P Q =-,理由见解析【分析】(1)根据新运算可得()()(25)(4)20114⊗-=⊗-⊗-,再次利用新运算,即可求解;(2)根据新运算可得()2021P a b c ab ac =⊗-=--,Q a b a c ab ac =⊗-⊗=-,即可求解.(1)解:()()()()2542520214⊗⊗-=⨯-⊗-)()()20114=-⊗-()()201142021=-⨯--6023=;(2)解:2021P Q =-,理由如下:∵()()20212021P a b c a b c ab ac =⊗-=--=--,()20212021Q a b a c ab ac ab ac =⊗-⊗=---=-,∴2021P Q =-.【点睛】本题主要考查了有理数的混合运算,整式的混合运算,理解新运算是解题的关键.24.(1)20-、60(2)207秒或20秒(3)28或220【分析】(1)根据绝对值和平方的非负性可得200a +=,600b -=,即可求解;(2)设经过x 秒时,点P、点Q 分别到原点O 的距离相等,分两种情况:当点P、Q 在点O 两侧时,当点P 与Q 重合时,即可求解;(3)设经过y 秒时,恰好使AP=2BQ.分两种情况:当点Q 在点B 的左侧时,当点Q 在点B 的右侧时,即可求解.(1)解:∵()220600a b ++-=(),且()2200a +≥(),600b -≥,∴200a +=,600b -=,∴20a =-,60b =,∴点A、B 在数轴上对应的数分别20-、60.(2)解:设经过x 秒时,点P、点Q 分别到原点O 的距离相等,当点P、Q 在点O 两侧时,依题意得:2043x x -=,解得:207x =;当点P 与Q 重合时,依题意得:4203x x -=,解得:20x =,∴经过207秒或20秒时,点P、Q 分别到原点O 的距离相等.(3)解:设经过y 秒时,恰好使AP=2BQ.当点Q 在点B 的左侧时,依题意得:()42603y y =-,解得:12y =,∴4122028⨯-=,当点Q 在点B 的右侧时,依题意得:()42360y y =-,解得60y =,∴46020220⨯-=,∴当点P 运动到28或220位置时,恰好使AP=2BQ.【点睛】本题主要考查了数轴上两点间的距离,动点问题,一元一次方程的应用,利用分类讨论和数形结合思想解答是解题的关键.25.(1)①如图所示,射线AC 即为所求,见解析;②如图所示,线段AB,BC,BD 即为所求,见解析;③如图所示,线段CF 即为所求,见解析;(2)根据两点之间,线段最短.【分析】(1)①连接AC 并延长即可;②连接AB,BC,BD 即可;③以点A 为圆心,BD 长为半径画弧交AC 于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC 即为所求;②如图所示,线段AB,BC,BD 即为所求;③如图所示,线段CF 即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.26.(1)60°(2)80°(3)75°【分析】(1)根据OB 平分∠AOC,OD 平分∠COE,可得35BOC ∠= ,25COD ∠= ,即可求解;(2)根据OB 平分∠AOC,OD 平分∠COE,可得∠COD=12∠COE ,∠BOC =12∠AOC,从而得到∠BOD==12(∠COE +∠AOC),即可求解;(3)设∠COD=2x,则∠BOC=3x,可得∠COE =2∠COD =4x,∠AOC=2∠BOC =6x,从而得到∠AOE=10x,进而得到∠EOM=12∠AOE=5x,再由∠COM=15°,可得到x=15°,即可求解.(1)解:∵OB 平分∠AOC,∠AOC=70°,∴1352BOC AOC ∠=∠= ,∵OD 平分∠COE,∠COE=50°,∴1252COD COE ∠=∠= ,∴∠BOD=∠BOC+∠COD=35°+25°=60°.(2)解:∵OB平分∠AOC,OD平分∠COE,∴∠COD=12∠COE,∠BOC=12∠AOC∴∠BOD=∠COD+∠BOC=12∠COE+12∠AOC=12(∠COE+∠AOC)=12∠AOE=80°.(3)解∵∠COD:∠BOC=2:3,∴设∠COD=2x,则∠BOC=3x,∵OB平分∠AOC,OD平分∠COE,∴∠COE=2∠COD=4x,∠AOC=2∠BOC=6x,∴∠AOE=10x,∵OM平分∠AOE,∴∠EOM=12∠AOE=5x,∵∠EOM-∠COE=∠COM=15°,∴5x-4x=15°,∴x=15°,∴∠BOD=∠COD+∠BOC=2x+3x=75°.。
最新人教版七年级数学(上册)期末试卷及答案(A4打印版)

最新人教版七年级数学(上册)期末试卷及答案(A4打印版)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 计算+ + + + +……+ 的值为()A. B. C. D.2.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 13. 在平面直角坐标系中, 点A(﹣3, 2), B(3, 5), C(x, y), 若AC∥x 轴, 则线段BC的最小值及此时点C的坐标分别为()A. 6, (﹣3, 5)B. 10, (3, ﹣5)C. 1, (3, 4)D. 3, (3, 2)4.将一副三角板和一张对边平行的纸条按如图摆放, 两个三角板的一直角边重合, 含30°角的直角三角板的斜边与纸条一边重合, 含45°角的三角板的一个顶点在纸条的另一边上, 则∠1的度数是()A. 15°B. 22.5°C. 30°D. 45°5.如图所示, 点P到直线l的距离是()线段PA的长度 B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度6.如图, 下列条件:中能判断直线的有()A. 5个B. 4个C. 3个D. 2个7. 把根号外的因式移入根号内的结果是()A. B. C. D.8. 的计算结果的个位数字是()A. 8B. 6C. 2D. 09.如图是一个切去了一个角的正方体纸盒, 切面与棱的交点A, B, C均是棱的中点, 现将纸盒剪开展成平面, 则展开图不可能是()B. C. D.10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的平方根是 .2.如图, DA⊥CE于点A, CD∥AB, ∠1=30°, 则∠D=________.3. 若点P(2x, x-3)到两坐标轴的距离之和为5, 则x的值为____________.4. 方程的解是_________.5. 为了开展“阳光体育”活动, 某班计划购买甲、乙两种体育用品每种体育用品都购买, 其中甲种体育用品每件20元, 乙种体育用品每件30元, 共用去150元, 请你设计一下, 共有________种购买方案.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解方程组:(1)32137x yx y+=⎧⎨-=-⎩(2)()45113812x y yx y⎧+=+⎪⎨+=⎪⎩2. 已知2a﹣1的平方根为±3, 3a+b﹣1的算术平方根为4, 求a+2b的平方根.3. 如图, AD平分∠BAC交BC于点D, 点F在BA的延长线上, 点E在线段CD 上, EF 与AC相交于点G, ∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上, 且∠EDH=∠C, 则∠F与∠H相等吗, 请说明理由.4. 如图, 已知AB∥CD, CN是∠BCE的平分线.(1)若CM平分∠BCD, 求∠MCN的度数;(2)若CM在∠BCD的内部, 且CM⊥CN于C, 求证: CM平分∠BCD;(3)在(2)的条件下, 连结BM, BN, 且BM⊥BN, ∠MBN绕着B点旋转, ∠BMC+∠BNC是否发生变化?若不变, 求其值;若变化, 求其变化范围.5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.6. 我校组织一批学生开展社会实践活动, 原计划租用45座客车若干辆, 但有15人没有座位;若租用同样数量的60座客车, 则多出一辆车, 且其余客车恰好坐满. 已知45座客车租金为每辆220元, 60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车, 要使每位学生都有座位, 应该怎样租用合算?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.B3.D4.A5.B6.B7、B8、D9、B10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、±2.2.60°3. 或4、.5.两6.2或-8三、解答题(本大题共6小题, 共72分)1.(1);(2)2.±33.略4.(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变, 理由略5、(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)240人, 原计划租用45座客车5辆;(2)租4辆60座客车划算.。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
新人教版七年级上册数学期末质量评估试卷(含答案)

新人教版七年级上册数学期末质量评估试卷(含答案)[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分)1.在实数-2,2,0,-1中,最小的数是( )A .-2B .2C .0D .-12.在0,-(-1),(-3)2,-32,-|-3|,-,a 2中,正数的324个数为( )A .1个B .2个C .3个D .4个3.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( )A .-3B .0C .3D .64.某同学在解方程3x -1=□x +2时,把□处的数字看错了,解得x =-1,则该同学把□看成了( )A .3B .13C .6D .-165.如图1,∠AOC 为直角,OC 是∠BOD 的平分线,且∠AOB =57.65°,则∠AOD 的度数是( )图1A.122°20′B.122°21′C.122°22′D.122°23′6.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( )A.不赚不赔B.赚9元C.赔18元D.赚18元7.下列结论正确的是( )A.直线比射线长B.过两点有且只有一条直线C.过三点一定能作三条直线D.一条直线就是一个平角8.为了参加社区文艺演出,某校组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队人数的3倍,设从舞蹈队中抽调了x人参加合唱队,则可列方程为( )A.3(46-x)=30+x B.46+x=3(30-x)C.46-3x=30+x D.46-x=3(30-x)9.如图2,数轴上的点A所表示的数为k,化简|k|+|1-k|的结果为( )图2A.1B.2k-1C.2k+1D.1-2k10.我国古代的“河图”是由3×3的方格构成(如图3所示),每个方格内各有数目不等的点图,每一行,每一列以及每一条对角线上的三个点图的点数之和都相等.那么P方格内所对应的点图是( )图3二、填空题(每小题4分,共24分)11.若a与b互为倒数,c与d互为相反数,则(-ab)2018-3(c+d)2 019=.12.全球每天发生雷电次数约为16 000 000次,将16 000 000用科学记数法表示是.13.已知关于x的方程2x-a-4=0的解是x=2,则a的值为.14.若|a|=4,|b|=3,且a<0<b,则a b的值为.15.按如图4的程序流程计算,若开始输入x的值为3,则最后输出的结果是.图416.在求1+3+32+33+34+35+36+37+38的值时,李敏发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①然后在①式的两边都乘3,得3S=3+32+33+34+35+36+37+38+39②②-①得,3S-S=39-1,即2S=39-1,所以S =.39-12得出答案后,爱动脑筋的张红想:如果把“3”换成字母a (a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2 017的值?如能求出,其正确答案是 .三、解答题(共66分)17.(8分)计算:(1)-32-|(-5)3|×2-18÷|-(-3)2|;(-25)(2)÷.(-34-59+712)13618.(8分)[2016·哈尔滨月考]解方程:(1)2x -(x +10)=5x +2(x -1); (2)-2=-.3x +123x -2102x +3519.(10分)某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?20.(10分)[2016·定州月考]如图5,已知直线AB ,CD 相交于点O ,OE 平分∠AOD ,FO ⊥AB ,垂足为O ,∠BOD =∠DOE .32图5(1)求∠BOF 的度数;(2)请写出图中与∠BOD 相等的所有的角.21.(10分)我们规定运算符号⊗的意义是:当a >b 时,a ⊗b =a -b ;当a <b 时,a ⊗b =a +b .(1)计算:6⊗1= ;(-3)⊗2= ;(2)棍据运算符号⊗的意义且其他运算符号意义不变的条件下:①计算:-14+15×-(32⊗23)÷(-7);[(-23)⊗(-35)]②若x ,y 在数轴上的位置如图6所示:图6a .填空:x 2+1 y (填“>“或“<”);b.化简:[(x2+x+1)⊗(x+y)]+[(y-x2)⊗(y+2)].22.(10分)某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物时,所有商品均可享受九折优惠;优惠二:交纳200元会费成为该超市的会员,所有商品可享受八折优惠.(1)若用x表示商品价格,请你用含x的式子分别表示两种购物方式优惠后所花的钱数.(2)当商品价格是多少元时,用两种方式购物后所花钱数相同?(3)若某人计划在该超市购买一台价格为2 700元的电脑,请分析选择哪种优惠方式更省钱.23.(12分)如图7,直线AB上有一点P,点M,N分别为线段PA,PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN的长度:①当P在AB之间(含A或B);②当P在A左边;③当P 在B 右边;你发现了什么规律?(3)如图8,若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①的值不变;PA -PB PC ②的值不变,请选择一个正确的结论并求其值.PA +PB PC参考答案期末质量评估试卷1.A 2.B 3.C 4.C 5.B 6.C 7.B 8.B 9.B 10.A 11.1 12.1.6×107 13.0 14.-64 15.23116.(a ≠0且a ≠1)a 2 017-1a -117.(1)-31 (2)-2618.(1)x =-. (2)x =.4371619.每天加工大齿轮的有20人,每天加工小齿轮的有64人.20.(1)∠BOF =90°. (2)图中与∠BOD 相等的所有的角为∠AOC ,∠COF .21.(1)5 -1 (2)①原式=-19. ②a.> b .原式=y +3.6722.(1)优惠一方式付费为0.9x 元,优惠二方式付费为(200+0.8x )元.(2)当商品价格是2 000元时,用两种方式购物后所花钱数相同.(3)选择优惠二方式更省钱.23.(1)MN =7. (2)①点P 在AB 之间,MN =7. ②点P 在A 左边,MN =7. ③点P 在B 右边,MN =7. 规律:无论点P 在什么位置,MN 的长度不变,为7.(3)选择②.设AC =BC =x ,PB =y .①==(在变化);PA -PB PC AB x +y 14x +y ②==2(定值).PA +PB PC2x +2yx +y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末质量评估试卷
[时间:90分钟 分值:120分]
一、选择题(每小题3分,共30分)
1.在实数-2,2,0,-1中,最小的数是( ) A .-2 B .2 C .0
D .-1
2.在0,-(-1),(-3)2,-32,-|-3|,-3
24
,a 2中,正数的个数为( )
A .1个
B .2个
C .3个
D .4个
3.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( ) A .-3 B .0 C .3
D .6
4.某同学在解方程3x -1=□x +2时,把□处的数字看错了,解得x =-1,则该同学把□看成了( )
A .3
B .13
C .6
D .-16
5.如图1,∠AOC 为直角,OC 是∠BOD 的平分线,且∠AOB =57.65°,则∠
AOD 的度数是( )
图1
A .122°20′
B .122°21′
C .122°22′
D .122°23′
6.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ) A.不赚不赔B.赚9元
C.赔18元D.赚18元
7.下列结论正确的是( )
A.直线比射线长
B.过两点有且只有一条直线
C.过三点一定能作三条直线
D.一条直线就是一个平角
8.为了参加社区文艺演出,某校组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队人数的3倍,设从舞蹈队中抽调了x人参加合唱队,则可列方程为( ) A.3(46-x)=30+x B.46+x=3(30-x)
C.46-3x=30+x D.46-x=3(30-x)
9.如图2,数轴上的点A所表示的数为k,化简|k|+|1-k|的结果为( )
图2
A.1 B.2k-1
C.2k+1 D.1-2k
10.我国古代的“河图”是由3×3的方格构成(如图3所示),每个方格内各有数目不等的点图,每一行,每一列以及每一条对角线上的三个点图的点数之和都相等.那么P方格内所对应的点图是( )
图3
二、填空题(每小题4分,共24分)
11.若a与b互为倒数,c与d互为相反数,则(-ab)2 018-3(c+d)2 019= .
12.全球每天发生雷电次数约为16 000 000次,将16 000 000用科学记数法表示是 .
13.已知关于x的方程2x-a-4=0的解是x=2,则a的值为 .
14.若|a|=4,|b|=3,且a<0<b,则a b的值为 .
15.按如图4的程序流程计算,若开始输入x的值为3,则最后输出的结果是 .
图4
16.在求1+3+32+33+34+35+36+37+38的值时,李敏发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①
然后在①式的两边都乘3,得3S=3+32+33+34+35+36+37+38+39②
②-①得,3S-S=39-1,即2S=39-1,
所以S=39-1
2
.
得出答案后,爱动脑筋的张红想:如果把“3”换成字母a(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2 017的值?如能求出,其正确答案是 .
三、解答题(共66分)
17.(8分)计算:
(1)-32
-|(-5)3
|×⎝ ⎛⎭
⎪⎫-252
-18÷|-(-3)2|;
(2)⎝ ⎛⎭⎪⎫-34-59+712÷136
.
18.(8分)[2016·哈尔滨月考]解方程: (1)2x -(x +10)=5x +2(x -1); (2)3x +12-2=3x -210-2x +35.
19.(10分)某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
20.(10分)[2016·定州月考]如图5,已知直线AB ,CD 相交于点O ,OE 平分∠AOD ,FO ⊥AB ,垂足为O ,3
2
∠BOD =∠DOE .
图5
(1)求∠BOF 的度数;
(2)请写出图中与∠BOD 相等的所有的角.
21.(10分)我们规定运算符号⊗的意义是:当a >b 时,a ⊗b =a -b ;当a <b 时,a ⊗b =a +b .
(1)计算:6⊗1= ;(-3)⊗2= ; (2)棍据运算符号⊗的意义且其他运算符号意义不变的条件下:
①计算:-14
+15×⎣⎢⎡⎦
⎥⎤
⎝ ⎛⎭⎪⎫-23⊗⎝ ⎛⎭⎪⎫-35-(32⊗23)÷(-7);
②若x ,y 在数轴上的位置如图6所示:
图6
a .填空:x 2+1 y (填“>“或“<”);
b .化简:[(x 2+x +1)⊗(x +y )]+[(y -x 2)⊗(y +2)].
22.(10分)某超市为了回馈广大新老客户,元旦期间决定实行优惠活动. 优惠一:非会员购物时,所有商品均可享受九折优惠;
优惠二:交纳200元会费成为该超市的会员,所有商品可享受八折优惠. (1)若用x 表示商品价格,请你用含x 的式子分别表示两种购物方式优惠后所花的钱数.
(2)当商品价格是多少元时,用两种方式购物后所花钱数相同?
(3)若某人计划在该超市购买一台价格为2 700元的电脑,请分析选择哪种
优惠方式更省钱.
23.(12分)如图7,直线AB上有一点P,点M,N分别为线段PA,PB的中点,AB=14.
(1)若点P在线段AB上,且AP=8,求线段MN的长度;
(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN 的长度:
①当P在AB之间(含A或B);
②当P在A左边;
③当P在B右边;
你发现了什么规律?
(3)如图8,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:
①PA-PB
PC
的值不变;
②PA+PB
PC
的值不变,请选择一个正确的结论并求其值.
参考答案
期末质量评估试卷
1.A 2.B 3.C 4.C 5.B 6.C 7.B 8.B 9.B 10.A 11.1 12.1.6×10713.0 14.-64 15.231
16.a 2 017-1a -1
(a ≠0且a ≠1)
17.(1)-31 (2)-26 18.(1)x =-43. (2)x =7
16
.
19.每天加工大齿轮的有20人,每天加工小齿轮的有64人.
20.(1)∠BOF =90°. (2)图中与∠BOD 相等的所有的角为∠AOC ,∠COF . 21.(1)5 -1 (2)①原式=-196
7. ②a.> b .原式=y +3.
22.(1)优惠一方式付费为0.9x 元,优惠二方式付费为(200+0.8x )元. (2)当商品价格是2 000元时,用两种方式购物后所花钱数相同. (3)选择优惠二方式更省钱.
23.(1)MN =7. (2)①点P 在AB 之间,MN =7. ②点P 在A 左边,MN =7. ③点P 在B 右边,MN =7. 规律:无论点P 在什么位置,MN 的长度不变,为7.
(3)选择②.
设AC =BC =x ,PB =y .
①PA -PB PC =AB x +y =14x +y
(在变化);
②
PA +PB PC =2x +2y
x +y
=2(定值).。