平行线的性质优质课课件
合集下载
平行线的性质ppt课件

(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
平行线的性质 课件(共22张PPT)

3
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
你发现了什么?
两条平行直线被第三条直线所截,内错角相等. 简写成:两直线平行,内错角相等. 表达方式:如图,
∵a∥b(已知),
∴∠1=∠2(两直线平行,内错角相等).
如图,直线a∥b,直线a、b被直线c所截
试一试
翻开你的数学练习横格本,每一页上都有许多如图所示的互 相平行的横线条,随意画一条斜线与这些横线条相交, 找出其中 任意一对同位角.观察或用量角器度量这对同位角,你有什么发现?
∠1=∠2
那么,一般情况下,如图,如果直线a与直线b平行,直线l与 直线a、b分别交于点O和点P,其中的同位角∠1与∠2也必定相等吗?
A.65°
B.55°
C.45°
D.35°
课堂小结
知识点 平行线的性质
1.两直线平行,同位角 相等 . 2.两直线平行,内错角 相等 . 3.两直线平行,同旁内角 互补 .
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
(2)从∠1=110o可以知道 ∠3是多少度?为什么?
(3)从 ∠1=110 o可以知道∠4 是多少度?为什么?B
D
解:(1)∠2=110o 理由:两直线平行,内错角相等;
(2)∠3=110o 理由:两直线平行,同位角相等;
(3)∠4=70o 理由:两直线平行,同旁内角互补.
C 2E 43
2.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为 ( B )
例3 将如左图所示的方格图中的图形向右平行移动4格,再向上 平行移动3格,画出平行移动后的图形.
平行线的性质 优秀课件ppt

素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a
平行线的性质(优质课)获奖课件

3, 1
不是原方程组的解;
(3)把,
②,发现能使方程
x 4,
y
1. 2
①, ②左右两边相等,所以
是原方程组的解.
【跟踪训练】
把下列方程组的解和相应的方程组用线段连起来:
x=1,
y=3-x,
y=2. x=3, y=-2. x=2, y=1.
y3=x2+x2,y=8. x+y=3. y=1-x, 3x+2y=5.
4 5
5.已知2x+3y=4,当x=y 时,x,y的值为_____,当x+y=0时,
-4
4
1
x=_____x,=-y3=______.
2
y=-2
6.已知-1
8
是方3 程2x-4y+2a=3的一个解,则a=______.
8.已知二元一次方程3x-2y=5,若y=0,则x=
.
5
答案: 3
9.下列4组数值中,哪些是二元一次方程2x+y=10的解?
你还累?这么大的 个,才比我多驮 了2个.
哼,我从你背上拿来 1个,我的包裹数就 是你的2倍!
真的?!
我从你背上拿来 1个,我的包裹数 就是你的 2 倍!
你还累?这么大 的个,才比我 多驮了2个.
它们各驮了多少包裹呢?
【解析】设老牛驮了 x 个包裹 , 小马驮了 y个包裹. 老牛的包裹数比小马的多2个,
∵a∥b,∴∠1=∠2,
同理∠2=∠3,∴∠1=∠3,∴a∥c.
【跟踪训练】
根据下列命题,画出图形,并结合图形写出已知、求证
(不写证明过程):两条平行线的一对内错角的平分线互相
平行.
已知:如图,AB、CD被直线EF所截,且AB∥CD,EG、
《平行线的性质》课件(共21张PPT)【推荐】

A.4个 B.3个直 线所截,默认两直线平行
例 下列说法正确的有 ①两直线被第三条直线所截,同位角相等; ②两直线被第三条直线所截,同旁内角互补; ③两直线平行,同旁内角相等; ④两直线平行,内错角相等
A.4个 B.3个 C.2个 D.1个
错解 B 正解 D
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
证明 ∵AB∥CD,∴∠BAD=∠ADC, ∵∠1=∠2,∴∠BAD-∠1=∠ADC-∠2,即∠MAD=∠ADN, ∴AM∥DN,∴∠M=∠N, ∵A⊥MN,∴∠M=90°,∴∠N=∠M=90°,∴DN⊥MN.
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
证明 ∵AB∥CD,∴∠BAD=∠ADC, ∵∠1=∠2,∴∠BAD-∠1=∠ADC-∠2,即∠MAD=∠ADN, ∴AM∥DN,∴∠M=∠N, ∵A⊥MN,∴∠M=90°,∴∠N=∠M=90°,∴DN⊥MN. 点拔 本题思路:平行→内错角相等→平行→内错角相等,综合 运用了平行线的性质与判定.
题型三 直尺或三角板中的平行线
例3 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数 为( )
A.60° B.65° C.75° D.85°
题型三 直尺或三角板中的平行线
例3 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数 为( )
A.60° B.65° 解析 如图所示,
C.75°
易错点 看到两直线被第三条直 线所截,默认两直线平行
例 下列说法正确的有 ①两直线被第三条直线所截,同位角相等; ②两直线被第三条直线所截,同旁内角互补; ③两直线平行,同旁内角相等; ④两直线平行,内错角相等
A.4个 B.3个 C.2个 D.1个
错解 B 正解 D
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
证明 ∵AB∥CD,∴∠BAD=∠ADC, ∵∠1=∠2,∴∠BAD-∠1=∠ADC-∠2,即∠MAD=∠ADN, ∴AM∥DN,∴∠M=∠N, ∵A⊥MN,∴∠M=90°,∴∠N=∠M=90°,∴DN⊥MN.
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
证明 ∵AB∥CD,∴∠BAD=∠ADC, ∵∠1=∠2,∴∠BAD-∠1=∠ADC-∠2,即∠MAD=∠ADN, ∴AM∥DN,∴∠M=∠N, ∵A⊥MN,∴∠M=90°,∴∠N=∠M=90°,∴DN⊥MN. 点拔 本题思路:平行→内错角相等→平行→内错角相等,综合 运用了平行线的性质与判定.
题型三 直尺或三角板中的平行线
例3 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数 为( )
A.60° B.65° C.75° D.85°
题型三 直尺或三角板中的平行线
例3 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数 为( )
A.60° B.65° 解析 如图所示,
C.75°
易错点 看到两直线被第三条直 线所截,默认两直线平行
省优质课获奖课例平行线性质课件

平行线性质课件制作过程
课件素材收集与整理
收集资料
从教材、教辅、网络等途径收集 关于平行线性质的文字、图片、 视频等素材。
筛选与整理
对收集的素材进行筛选,去除重 复或质量不高的内容,按照课件 制作需求进行分类整理。
课件制作工具选择
选择工具
根据团队成员的技术能力和课件制作需求,选择合适的课件制作工具,如 PowerPoint、Flash、Authorware等。
增强学生理解
02
通过动态演示和交互式学习,课件能帮助学生更好地理解平行
线的抽象概念。
提高课堂效率
03
课件能快速展示大量信息和实例,节省了教师在课堂上绘制图
形和板书的时间。
课件的教学效果评估
学生反馈
通过调查和访谈,学生普遍认为平行线性质课件有助于他们更好 地理解和掌握相关内容。
学习成绩提升
使用课件后,学生在平行线相关题目的正确率有所提高。
功能测试
在课件初步完成后进行功能测试 ,检查课件的各个功能是否正常
工作,是否存在技术问题。
效果评估
邀请学科教师对课件进行试讲,评 估课件的教学效果,根据反馈进行 优化和改进。
细节调整
根据测试和评估结果,对课件的细 节进行优化和调整,如文字大小、 颜色搭配、动画效果等,提高课件 的用户体验。
03
平行线性质课件特色与亮点
色彩搭配
课件采用清新、明亮的色彩搭配 ,吸引学生的注意力,提高学习
兴趣。
图形图像
课件中使用了大量的图形和图像 ,如平行线、三角形等,帮助学过动画效果,将静态的数学图 形动态化,让学生更直观地理解
平行线的性质。
课件的教学辅助功能
教学提示
课件中提供了丰富的教学提示,帮助学生理解难 点和重点。
课件素材收集与整理
收集资料
从教材、教辅、网络等途径收集 关于平行线性质的文字、图片、 视频等素材。
筛选与整理
对收集的素材进行筛选,去除重 复或质量不高的内容,按照课件 制作需求进行分类整理。
课件制作工具选择
选择工具
根据团队成员的技术能力和课件制作需求,选择合适的课件制作工具,如 PowerPoint、Flash、Authorware等。
增强学生理解
02
通过动态演示和交互式学习,课件能帮助学生更好地理解平行
线的抽象概念。
提高课堂效率
03
课件能快速展示大量信息和实例,节省了教师在课堂上绘制图
形和板书的时间。
课件的教学效果评估
学生反馈
通过调查和访谈,学生普遍认为平行线性质课件有助于他们更好 地理解和掌握相关内容。
学习成绩提升
使用课件后,学生在平行线相关题目的正确率有所提高。
功能测试
在课件初步完成后进行功能测试 ,检查课件的各个功能是否正常
工作,是否存在技术问题。
效果评估
邀请学科教师对课件进行试讲,评 估课件的教学效果,根据反馈进行 优化和改进。
细节调整
根据测试和评估结果,对课件的细 节进行优化和调整,如文字大小、 颜色搭配、动画效果等,提高课件 的用户体验。
03
平行线性质课件特色与亮点
色彩搭配
课件采用清新、明亮的色彩搭配 ,吸引学生的注意力,提高学习
兴趣。
图形图像
课件中使用了大量的图形和图像 ,如平行线、三角形等,帮助学过动画效果,将静态的数学图 形动态化,让学生更直观地理解
平行线的性质。
课件的教学辅助功能
教学提示
课件中提供了丰富的教学提示,帮助学生理解难 点和重点。
平行线的性质-课件(24张)
E A
N
7 1 2
M
3 5 6 8
B
4
(1)请同学们量出图中8个 角的度数
C
(2)请同学们看看它们有 怎样的关系,你有怎样的 D 发现?
F
36500365
胯恒柠
∠1 度数 ∠5 度数
∠2
∠3
∠4
∠6
∠7
∠8
注意: 一定要求学生动手测量
两直线平行,同位角相等
∵ a∥ b (已知) ∴∠1=∠2 (两直线平行,同位角相等) 3 2
教材分析
1《5.3平行线的性质》这一节的重点和难点是平行线的性质。
2 通过学生动手操作度量,观察所得度数猜想总结出平行线的性质,并给 出证明。
3
平行线的判定与性质是易混内容,所以理解判定与性质的条件和结论,
明确二者的区别是本节课需要注意的地方。在总结出平行线的三条性质后 引导学生对二者进行对比。
答:BE∥CF 证明:∵AB∥CD(已知) ∴∠ABC=∠BCD (两直线平行,内错角相等) ∵BE平分∠ABC, CF平分∠BCD(已知)
A E F B
∴∠EBC=∠BCF(等式性质) ∴BE∥CF (内错角相等,两直线平行)
1 ∴∠EBC= 2∠ABC 1 ∠BCF= 2 ∠BCD(角平分线定义) 判定和性质的综
3情感态度价值观: 让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生 学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态 度.
教学重点:平行线的三个性质的应用.
教学难点:平行线的三个性质的探索.
教学重难点分析
教学流程
活动1 活动2
N
7 1 2
M
3 5 6 8
B
4
(1)请同学们量出图中8个 角的度数
C
(2)请同学们看看它们有 怎样的关系,你有怎样的 D 发现?
F
36500365
胯恒柠
∠1 度数 ∠5 度数
∠2
∠3
∠4
∠6
∠7
∠8
注意: 一定要求学生动手测量
两直线平行,同位角相等
∵ a∥ b (已知) ∴∠1=∠2 (两直线平行,同位角相等) 3 2
教材分析
1《5.3平行线的性质》这一节的重点和难点是平行线的性质。
2 通过学生动手操作度量,观察所得度数猜想总结出平行线的性质,并给 出证明。
3
平行线的判定与性质是易混内容,所以理解判定与性质的条件和结论,
明确二者的区别是本节课需要注意的地方。在总结出平行线的三条性质后 引导学生对二者进行对比。
答:BE∥CF 证明:∵AB∥CD(已知) ∴∠ABC=∠BCD (两直线平行,内错角相等) ∵BE平分∠ABC, CF平分∠BCD(已知)
A E F B
∴∠EBC=∠BCF(等式性质) ∴BE∥CF (内错角相等,两直线平行)
1 ∴∠EBC= 2∠ABC 1 ∠BCF= 2 ∠BCD(角平分线定义) 判定和性质的综
3情感态度价值观: 让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生 学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态 度.
教学重点:平行线的三个性质的应用.
教学难点:平行线的三个性质的探索.
教学重难点分析
教学流程
活动1 活动2
《平行线的性质》PPT优质课件(第1课时)
∴∠A=∠D ( 等量代换 ).
4.如图,若AB∥DE , AC∥DF,请说出∠A和∠D之间的数
量关系,并说明理由。 解: ∠A+∠D=180o. 理由:
∵ AB∥DE( 已知 ),
F C
∴∠A=_∠__C_P_D_ ( 两直线平行,同位角相等 ). D
E P
∵AC∥DF( 已知 ),
B
A
∴∠D+ _∠__C_P_D__=180o ( 两直线平行,同旁内角互补 ).
c
d
∴ ∠2=∠3(两直线平行,内错角相等).
∵ ∠1=73°(已知),
a 23
∴ ∠2=73°(等量代换).
∵c∥d (已知),
1 b
∴ ∠2+∠3=180°(两直线平行,同旁内
角互补).
∴ ∠3=180°-∠2 (等式的性质).
∴ ∠3=180°-=107°(等量代换).
练一练 如图,AB∥CD,AE平分∠CAB交CD于点E,若 ∠C=50°,求∠AED的度数.
解:∵AB∥CD(已知), ∴∠C+∠CAB=180° (两直线平行,同旁内角互补), ∵∠C=50°(已知), ∴∠CAB=180°-50°=130°(等式的性 质).
∵AE平分∠CAB(已知),
∴∠EAB= 1∠CAB= 1 130?=65°(角平分线的定义).
2
2
∵AB∥CD(已知),
∴∠EAB+∠AED=180°
(两直线平行,同旁内角互补).
∴∠AED=180°-65°=115°(等式的性质).
当堂练习
1.两条直线被第三条直线所截,则 ( D )
A.同位角相等
B.内错角互补
C.同旁内角相等 D.以上结论都不对
5.3.1平行线的性质优质课公开课一等奖课件省赛课获奖课件
5.3.1
问题1
平行线的鉴定办法有哪三种?它 们是先懂得什么……、 后懂得什么?
同位角相等 内错角相等 同旁内角互补
两直线平行
问题2
根据同位角相等能够鉴定两直线 平行,反过来如果两直线平行同位角之 间有什么关系呢? 内错角,同旁内角之间又有什么关系呢?
观察两条平行直线被第三条直线所截 所形成的同位角的数量关系,从中你能发 现什么?
∴∠B=∠C ( 两直线平行,内错角相等 )
又∵∠B=142° (已知)
∴ ∠C= ∠B=142°( 等量代换)
例1
如图是梯形上底的一部分。 已经量得 A= 115°, D=100°,梯形另外两个角各是多少度?
A
D
B
C
解:∵AD//BC (已知) ∴ A + B=180° D+ C=180 °(两直线平行,同旁内角互补) ∴ B= 180 °- A =180 ° -115 ° =65 ° C=180 °- D =180 ° -100 ° =80 °
演示
结论
平行线的性质1(公理):
1 a 2
b
两条平行线被第三条直线所截,同位角相等。 简朴说成:两直线平行,同位角相等。
【应用格式】
∵ a//b (已知)
∴ ∠1=∠2 (两直线平行,同位角相等.)
平行线的性质1(公理):两直线平行,同位角相等。
如图,已知:a// b
思考
那么2与3有什么关系?
回答 例如:如右图
∴ ∠3= 180°- ∠2= 180° -54°=126°
∴ ∠4=∠1=54°_(_两_直__线__平_行__,同__位_角__相_等)
2.如图,D是AB上一点,E是AC上一点,∠ADE=60 °, ∠B=
问题1
平行线的鉴定办法有哪三种?它 们是先懂得什么……、 后懂得什么?
同位角相等 内错角相等 同旁内角互补
两直线平行
问题2
根据同位角相等能够鉴定两直线 平行,反过来如果两直线平行同位角之 间有什么关系呢? 内错角,同旁内角之间又有什么关系呢?
观察两条平行直线被第三条直线所截 所形成的同位角的数量关系,从中你能发 现什么?
∴∠B=∠C ( 两直线平行,内错角相等 )
又∵∠B=142° (已知)
∴ ∠C= ∠B=142°( 等量代换)
例1
如图是梯形上底的一部分。 已经量得 A= 115°, D=100°,梯形另外两个角各是多少度?
A
D
B
C
解:∵AD//BC (已知) ∴ A + B=180° D+ C=180 °(两直线平行,同旁内角互补) ∴ B= 180 °- A =180 ° -115 ° =65 ° C=180 °- D =180 ° -100 ° =80 °
演示
结论
平行线的性质1(公理):
1 a 2
b
两条平行线被第三条直线所截,同位角相等。 简朴说成:两直线平行,同位角相等。
【应用格式】
∵ a//b (已知)
∴ ∠1=∠2 (两直线平行,同位角相等.)
平行线的性质1(公理):两直线平行,同位角相等。
如图,已知:a// b
思考
那么2与3有什么关系?
回答 例如:如右图
∴ ∠3= 180°- ∠2= 180° -54°=126°
∴ ∠4=∠1=54°_(_两_直__线__平_行__,同__位_角__相_等)
2.如图,D是AB上一点,E是AC上一点,∠ADE=60 °, ∠B=
《平行线的性质》课件
反向平行线的性质
• 反向平行线具有相反的斜率。 • 反向平行线之间的距离保持不变。
三、平行线的特殊角度
同位角及其性质
• 同位角是两条平行线 之间的对应角,它们
• 相同等 位。 角具有相等的补 角、余角。
内错角及其性质
• 内错角是两条平行线 之间的相交角,它们
• 互内补错。角具有相等的对 顶角。
相关角及其性质
《平行线的性质》PPT课 件
这是一份关于平行线的精彩课件,通过介绍平行线的基本定义、性质、应用、 证明,并进行综合练习,帮助大家深入理解和应用平行线的知识。
一、基本定义
平行线的概念
平行线是永远不会相交的两条直线。
平行线的符号表示
用“//”表示两条线段平行。
二、平行线的性质
同向平行线的性质
• 同向平行线具有相等的斜率。 • 同向平行线之间的距离保持不变。
对平行线的思考与感悟
通过学习平行线的性质,反思几何学对我们日常生活的影响和意义。
• 相关角是两条平行线 之间的内角与外角。
• 相关角之和等于180°。
四、平行线的应用
1
平行线的实际应用
2
例如,在城市规划中,平行线可用于 规划马路的设计和建设。
平行线的应用场景
平行线的应用广泛,如建筑设计、地 图制作等。
五、平行线的证明
平行线的证明方法
通过等角、等比和等边等多种证明方法来证明平行线。
平行线证明例题
通过实例演示如何在几何问题中使用平行线的证明。
六、综合练习
பைடு நூலகம்
1
综合运用平行线的知识解题
通过题目练习,提升对平行线性质的理解和应用能力。
2
平行线的综合练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单说成:
性质1:两直线平行,同位角相等. a
性质2:两直线平行,内错角相等. b
c
1 34
2
性质3:两直线平行,同旁内角互补.
2020/11/30
12
书写方法
c
a
1
34
如图,
b
2
(1)∵ a ∥ b (已知)
∴ ∠Байду номын сангаас=__∠2 ( 两直线平行,同位角相等)
(2)∵ a ∥ b (已知)
∴ ∠2__=__∠3 ( 两直线平行,内错角相等)
(3)∵ a ∥ b (已知)
∴ ∠2+∠4=__1_8_0(°两直线平行,同旁内角互补)
2020/11/30
13
两者比较
平行线的判定
条件
结论
同位角相等,
平行线的性质
条件
结论
同位角相等;
内错角相等,两直线平行; 两直线平行, 内错角相等;
同旁内角互补,
同旁内角互补。
判定:角的关系
线的关系
性质:线的关系
(2)反射光线BC与EF也平行吗?
2020/11/30
22
拓展提升
如图所示,已知AB ∥ DE,∠B=40°, ∠D=31°, 求∠BCD为多少度?
2020/11/30
23
小结与回顾:
(1)请你谈谈本节课的收获和感受。 (2)说说平行线的“判定”与“性质”有什么不同?
已知
同位角相等 内错角相等 同旁内角互补
平行线的性质3
a
1
4
b
2
c
两条平行线被第三条直线所截,同旁内角互补.
简写为:两直线平行,同旁内角互补.
符号语言: ∵a∥b
2020/11/30
∴ 2+ 4=180°.
11
平行线的性质:
性质1:两条平行线被第三条直线所截,同位角相等.
性质2:两条平行线被第三条直线所截,内错角相等.
性质3:两条平行线被第三条直线所截,同旁内角互补.
平行线的性质优质课课件
2020/11/30
2
3.2 平行线的性质
北师大版 七年级下册
学习目标:
探索、归纳、运用平行 线的性质,从中体会研究几 何图形的一般方法.
4
探索新知
如图,直线a与直线b平行。
同位角∠1 和∠5 的大小有什么关系?
图中还有其他同位角吗? 它们的大小有什么关系?
5
结论
a
1
B
2020/11/30
A
1
C
2 43
E ∠两同同两∠两内3直位旁=2∠直直错=1线 角内411线线角=01平 相角7o0平平 相0行 等o互o行行 等,补,,
D 21
合作交流
如图,一束平行光线 AB 与DE 射向一个水平 镜面后被反射,此时 ∠1 =∠2,∠3 =∠4.
(1)∠1 与∠3的大小有什么关系? ∠2与∠4 呢?
角的关系
2020/11/30
14
一、是是非非
1、如图 ∵AB ∥CD,∴∠1=∠2 (两直线平行,
内错角相等 )
× ( )
A1
D
1
a
B
2C
2
b
2、如图直线 a∥b,则∠1=∠2 .( ×)
2020/11/30
15
二、选选看
1、如果有两条直线被第三条直线所截,
那么必定有 ( D )
(A)内错角相等, (B)同位角相等, (C)同旁内角互补 (D)以上都不对.
2、如图,一条公路两次拐弯前后两条路互 相平行。第一次拐的角∠B是142゜,第二 次拐的角∠C是多少度?为什么?
C
B
∠C=142o
2020/11/30
两直线平行,内错角相等20
牛刀初试
3、如图,已知平行线AB、CD被直线AE所截 (1)从 ∠1=110o可以知道∠2 是多少度?为什么? (2)从∠1=110o可以知道 ∠3是多少度?为什么? (3)从 ∠1=110 o可以知道∠4 是多少度?为什么?
26
结语
谢谢大家!
判定 性质
得到
两直线平行
2020/11/30
得到
已知
24
达标测试
1、如图是一块梯形铁片的残缺部 分,量得∠A=65°,∠B=80°, 梯形 另外两个角分别是多少度?
2020/11/30
25
达标测试
2、如图,若AB∥DE , AC∥DF, 请说出∠A和∠D之间的数量关系, 并说明理由。
2020/11/30
a
1
3
b
2
c
2020/11/30
8
结论
a
b
平行线的性质2:
1 3
2
c
两条平行线被第三条直线所截,内错角相等.
简写为:两直线平行,内错角相等.
符号语言: ∵a∥b
∴∠2=∠3.
2020/11/30
9
推导
如图,已知a//b,那么2与4有什 么关系呢?为什么?
a
1
4
b
2
c
2020/11/30
10
结论
1D
2 C
∴AD∥ BC ( 内错角相等,两直线平行)
∴∠BCD+ ∠D =180° ( 两直线平行,同旁内角互补 )
2020/11/30
18
牛刀初试
1、如图,直线 a ∥ b,直线b垂直于直 线c,则直线a垂直于直线c吗?
a⊥b
?
ab
2020/11/30
∵两直线平行, c 同位角相等
19
牛刀初试
平行线的性质1: b
2
c
两条平行线被第三条直线所截,同位角相等.
简写为:两直线平行,同位角相等.
符号语言: ∵a∥b
∴∠1=∠2.
2020/11/30
6
猜想
两直线平行,内错角、同旁内角 有怎么关系呢?
?你用什么方法来验证你的猜想呢?
2020/11/30
7
推导
如图:已知a//b,那么2与3相等吗? 为什么?
2020/11/30
16
2 、∠1 和∠2是两条直线被第三条直线 所截形成的同旁内角,要使这两条直线
平行,必须 ( C)
A. ∠1= ∠2 B. ∠1+∠2=90o C. 2(∠1+∠2)=360o D .∠1是钝角, ∠2是锐角
2020/11/30
17
三、填填看
A
1、如图: ∵∠1=∠2(
已知 ) B