数学建模代表名额分配

合集下载

席位分配问题数学建模

席位分配问题数学建模

席位分配问题是一个常见的实际问题,涉及到资源的分配和管理。

为了解决这个问题,我们可以使用数学建模的方法,通过建立数学模型来分析和优化席位的分配方案。

一、问题描述假设有一个大型会议,需要分配给不同的参与者席位。

每个参与者可能有不同的资格和需求,我们需要根据一定的规则来分配席位。

具体问题包括:1. 参与者数量和席位数量2. 参与者的资格和需求3. 席位分配的规则和标准二、数学建模为了解决席位分配问题,我们可以使用以下数学模型:1. 参与者集合P:表示所有的参与者。

2. 席位集合S:表示所有的席位。

3. 资格矩阵A:表示每个参与者的资格情况,每一行表示一个参与者,每一列表示一个资格类型(例如,专业、身份等)。

4. 需求矩阵D:表示每个参与者对席位的需求情况,每一行表示一个参与者,每一列表示一个席位类型(例如,地点、时间等)。

5. 分配规则R:表示席位的分配规则和标准,如按照资格优先、按照需求优先、按照公平分配等。

根据以上描述,我们可以建立如下的数学模型:目标函数:最小化席位浪费(即席位数与参与者需求之差)约束条件:1. 资格约束:每个参与者的资格必须满足分配规则的要求。

2. 需求约束:每个参与者所需席位类型必须得到满足。

3. 数量约束:总的席位数必须不超过总席位数量。

4. 可行性约束:分配的席位必须是有效的,即不存在冲突和重复的情况。

三、求解方法根据上述数学模型,我们可以使用以下方法进行求解:1. 枚举法:逐个尝试所有可能的席位分配方案,找到满足约束条件的方案。

这种方法需要大量的计算时间和空间,但在某些情况下可能找到最优解。

2. 优化算法:使用优化算法如遗传算法、粒子群算法等,通过不断迭代找到最优解。

这种方法需要一定的编程知识和技能,但通常能够快速找到满意的解。

3. 启发式算法:使用启发式算法如模拟退火、蚁群算法等,通过不断尝试找到满意解。

这种方法相对简单易行,但可能无法找到最优解。

4. 数学软件求解:使用专门的数学软件如Matlab、Python等,通过编程求解上述数学模型。

数学建模 名额分配问题

数学建模 名额分配问题

名额公平分配问题问题的提出名额分配问题是西方所谓的民主政治问题,美国宪法在第一条第二条款指出:‘众议院议员名额……将根据各州的人口比例分配。

’美国宪法从1788年生效以来200多年间,关于公平和人力的实现宪法中所规定的分配原则,美国的政治家和科学家们展开了激烈的讨论。

并提出了多种方法,但没有一种方法能够得到普遍的认可。

下面就日常生活中的实际问题,考虑合理的分配方案问题。

设某高校有5个系共2500名学生,各系学生人数见表格。

现有25个学生代表名额,赢如何分配较为合理。

5个系的学生人数系别一二三四五总和人数11056483622481372500模型假设1、要将名额尽可能的公平的分配,首先考虑的是公平量化,所谓公平,就是学生代表的名额占有率都相等,这样,基于名额占有率相等的分配的方案就是最公平的,在名额占有率不相等时,应要求差距尽可能的小,才能使分配方案更加公平。

2、在计算各个系别的名额分配占有量,这样就确定了公平的分配方案。

3、通常计算的名额占有量是小数,而名额只能整数的分配,这就需要将小数变成整数,解决小数变整数的问题通常采用四舍五入法。

名额占有率=总名额数÷总人数名额占有量=名额占有率×学生数模型建立模型一名额占有率分配=1%,即每一百人才有一个名额。

根据名额占有率可以算出全校名额占有率=252500分配:系别一二三四五总和人数11056483622481372500名额数11.05 6.48 3.62 2.48 1.3725取整11642124显然看出,这种方法出现了缺陷,分的总名额数多出一个,而这一个又无法可分,无论是四舍五入法,还是直接取整,分给二,四其中一个必定对另一个不公平。

所以需要改进。

模型二Hamilton 方法1790年,美国乔治·华盛顿时代的财政部长亚历山大·哈密尔顿(Hamilton)提出了一种解决名额分配的办法,并于1792年被美国国会通过。

数学建模-席位分配

数学建模-席位分配
设理想情况下m方分配的席位分别为n1,n2,… , nm (自然应有n1+n2+…+nm=N),
ni 应是 N和 p1, … , pm 的函数,即ni = ni (N, p1, … , pm )
记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取最大整数;
4
49,750
总席位
3
B党 127,500(2)
63,750 42,500 31,875
1
C党 124,000(3)
62,000 41,333

1
D党 49,500 24,750 16,500

0
北欧折衷方案
作法与洪德规则类似,所采用的除数依次为1.4、3、5、 7、…
A党
B党
C党
D党
2
2
1
0
三种分配方案,得到了完全不同的结果,最大余数法显 然对小党比较有利,洪德规则则偏向最大的党,北欧折 衷方案对最大和最小党都不利
二.份额分配法(Quota Method) 一种以“相对公平”为标准的席位分配方法,来源于
著名的“阿拉巴玛悖论”(Alabama Paradox)。 美国宪法第1条第2款对议会席位分配作了明确规定,
最大余数法
按每10万选民1席分配后,再按余数大小排序,多余的 席位依次分给余数较大的各党。
党名 A B C D
代表选民数 199,000 127,500 124,000
49,500
整数席 1 1 1 0
余数 99,000 27,500 24,000 49,500

数学建模三人任务分配

数学建模三人任务分配

数学建模三人任务分配第一篇:数学建模三人任务分配可能遇到的相关思想、方法、关键词等判断矩阵、灰色理论、指数平滑法、层次分析法(AHP)、时间序列、BP神经网络、主成分分析、相关性分析、最小二乘法、曲线拟合三人任务分配:金双:负责搜集整理课件以及概括方法、思想还有包括网上的多方面信息(中国知网、万方数据网),在这个过程中寻找列举关键词为后面写论文做铺垫。

莹洁:利用Matlab、Minitab、Lingo等软件解决全部问题(包括建立各种矩阵,求解相关特征值特征向量,判断矩阵等),为写论文提供表格和数据,同时也辅助搜集各种有用信息(随时关注建模网的动态变化和周围相关信息)。

还有就是搜集论文模型、考生心得。

我:随时关注相关信息,并保持信息通畅,及时把两人搜集的各种思想方法尽快保证质量地看完,做到心中有数。

同时对两位提供地数据详细而又全面的进行汇总,并做出预测。

此外我还向学长学姐那边询问考试情况!注意:一有什么信息,彼此间保持随时联系,包括心理、饮食、生活等方面,全力备战这几天的任务。

(相关性知识:世博会调度优化配置问题、“天地之中”世界遗产申请成功、舟曲灾害以及河南受水灾等问题。

)接下来的任务就是迅速确定各自任务,并迅速进入备战状态。

快速找出问题症结所在,有什么疑问尽快提出,实事求是,量力而行!!第二篇:任务分配二级医院评审任务组成员名单及任务一、第一任务组:组长:孙礼超成员:孙礼刚丁军、娄玄、赵威、刘培雪、代良坤、张奎、孟娜、时远征、潘金花联络员:赵威任务:对应2012版二级医院评审标准第一章“医院功能任务”篇展开工作。

1、医院设置、功能和任务符合区域卫生规划和医疗机构设置规划要求;(责任人:孙礼超、赵威)2、积极探索科学规范的公立医院内部管理体制;(责任人:丁军、娄玄)3、承担公立医院与基层医疗机构对口协作等政府指令性任务;(责任人:张奎、代良坤)4、应急管理;(责任人:刘培雪、营同标)5、临床医学教育与继续医学教育;(责任人:丁军、时远征)6、科研及其成果(责任人:孙礼刚、潘金花)二、第二任务组:组长:孙礼超成员:为全体分项目责任人联络员:潘彬任务:对应2012版二级医院评审标准第二章“医院服务”篇展开工作。

数学建模队员分配问题模型

数学建模队员分配问题模型

数学建模队员分配问题模型
数学建模队员分配问题可以建立如下模型:
1. 确定目标:确定需要完成的任务以及任务的优先级,以此确定需要分配的队员数量和能力要求。

2. 确定约束条件:确定队员的能力水平,以及每个队员能够承担的任务数量的限制。

3. 建立数学模型:将任务分配问题抽象为一个图论问题,其中每个节点表示一个任务,边表示任务间的关系或依赖关系。

根据任务的优先级和队员的能力水平,为每个任务分配一个权重值。

然后使用图论算法,如最小匹配算法或最大流算法,来确定最优的任务分配方案。

4. 求解最优解:根据建立的数学模型,使用相应的算法求解最优的任务分配方案。

可以通过编程实现算法,或使用专业的优化软件来求解。

5. 验证和评估:对求解的结果进行验证,确保分配方案满足任务的要求和约束条件。

同时,评估分配方案的效果和可行性,可以根据实际情况进行调整和优化。

以上是一个基本的数学建模队员分配问题的模型,具体的实现方式和求解方法可以根据具体的情况进行调整和优化。

数学建模席位分配

数学建模席位分配

情形2
说明当对A 不公平时,给A 单 位增加1席,对B 又不公平。
计算对B 的相对不公平值
情形3
说明当对A 不公平时,给B 单
位增加1席,对A 不公平。
计算对A 的相对不公平值
则这一席位给A 单位,否则给B 单位。
结论:当(*)成立时,增加的一个席位应分配给A 单位, 反之,应分配给 B 单位。
若A、B两方已占有席位数为
按Q值方法:
甲1 2 2 3 4 … 乙1 1 2 2 2 … 丙1 1 1 1 1 …
甲:11,乙:6,丙:4
练习 学校共1000学生,235人住在A楼,333人住 在B楼,432住在C楼。学生要组织一个10人 委员会,试用惯例分配方法, d’Hondt方法和 Q值方法分配各楼的委员数,并比较结果。

则增加的一个席位应分配给Q值 较大的一方。 这样的分配席位的方法称为Q值方法。 4 推广 有m 方分配席位的情况 设 方人数为 ,已占有 个席位, 当总席位增加1 席时,计算
则1 席应分给Q值最大的一方。从
开始,即每方
至少应得到以1 席,(如果有一方1 席也分不到,则把 它排除在外。)
5 举例
甲、乙、丙三系各有人数103,63,34,有21个 席位,如何分配?

40
4
40/4=10
系别 人数 席位数 每席位代表的人数 公平程度
甲 103 10
103/10=10.3

乙 63 6
63/6=10.5

丙 34 4
34/4=8.5

系别 人数 席位数 每席位代表的人数
甲 103 11 103/11=9.36
乙 63 7
63/7=9

数学建模论文 - 席位公平分配问题1

数学建模论文 - 席位公平分配问题1

数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。

我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。

首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。

其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。

同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。

最后,我用相对不公平数来检验两个模型的公平性程度。

关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型目录一、问题重述与分析: (3)1.1问题重述: (3)1.2问题分析: (3)二、模型假设 (4)三、符号说明 (4)四、模型建立: (5)4.1公平的定义: (5)4.2不公平程度的表示: (5)4.3相对不公平数的定义: (5)4.4模型一的建立:(比例分配模型) (6)4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 (8)5.1模型一求解: (8)5.2模型二的求解: (8)六、模型分析与检验 (9)七、模型的评价: (11)7.1、优点: (11)7.2、缺点: (11)7.3、改进方向: (11)八、模型优化 (11)九、参考文献 (12)一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

现因学生转系,三系人数为103, 63, 34, 问20席如何分配。

若增加为21席,又如何分配。

因此存在席位公平分配问题,以下针对各系自身人数对所获席位数目的影响建立相关模型,解得最优的席位公平分配方案。

数学建模论文:席位分配问题例题

数学建模论文:席位分配问题例题

席位分配问题例题:有一个学校要召开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。

如何分配最为恰当?问题:(1)问20席该如何分配,如果有三名学生转系该怎样分配?(2)若增加21席又如何分配?问题的分析:一、20席分配情况:系名甲乙丙总数学生数100 60 40 200学生人数比例100/200 60/200 40/200席位分配10 6 4 20如果有三名学生转系,分配情况:系名甲乙丙总数学生数103 63 34 200学生人数比例103/200 63/200 34/200按比例分配席位10.3 6.3 3.4 20按惯例席位分配10 6 4 20二、21席位分配情况:系名甲乙丙总数学生数103 63 34 200学生人数比例103/200 63/200 34/200按比例分配席位10.815 6.615 3.57 21按惯例席位分配11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。

要怎样才能公平呢?模型的建立:假设由两个单位公平分配席位的情况,设单位人数席位数单位A p1 n1单位B p2 n2要公平,应该有p1/n1 = p2/n2,但这一般不成立。

注意到等式不成立时有若p1/n1 >p2/n2 ,则说明单位A吃亏(即对单位A不公平)若p1/n1 <p2/n2 ,则说明单位B 吃亏(即对单位B不公平)因此可以考虑用算式p=|p1/n1-p2/n2|来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为n1 =n2 =10 ,p1 =120,p2=100,算得p=2另两个单位的人数和席位为n1 =n2 =10 ,p1 =1020,p2=1000, 算得p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p2 (n1 + 1) 1 rB (n1 + 1, n2 ) = p1n2
p1 (n2 + 1) 1 rA (n1 , n2 + 1) = p2 n1
2 p2 p12 p2 ( n1 + 1) p1 ( n2 + 1) < < n2 ( n2 + 1) n1 ( n1 + 1) p1n2 p2 n1
数学模型
数学建模就是应用数学理论,根据实际问题的内在 规律,做出必要的简化假设,得到一个数学结构。
代表名额的分配 利益的合理分配
代表名额的分配
美国宪法第一条第二款指出:“众议院议员 名额。。。。。。。将根据各州的人口比例分配”。 假设众议院名额数为 N , 共有 s 个州, 各州的人口数 pi , i = 1, 2, , N , 分配合理?
现在的问题是当名额再增加一个时,又如何分配? 若p1 / n1 = p2 / n2 , 则可以直接利用相对不公平度
若再增加一个名额 若 p1 / n1 > p2 / n2 , 对 A 不公平, i) 若 p1 /(n1 + 1) > p2 / n2 , 名额显然应该分配给 A
p2 (n1 + 1) 1 ii) 若 p1 /(n1 + 1) < p2 / n2 , rB (n1 + 1, n2 ) = p n 1 2 p1 (n2 + 1) iii) 若 p1 / n1 > p2 /( n2 + 1), rA (n1 , n2 + 1) = p n 1 2 1 rB ( n1 + 1, n2 ) < rA ( n1 , n2 + 1) 则这时应该把名额分配给 A
Alabama悖论: 当州数和各州人口比例不变时,议会 席位的增加反而导致某州的名额的减少。 总的名额增加一个,成为21个,那么这时各个 系的人数分别为103,63,34, 这时如果仍然按原来 Hamilton原则进行分配 10,6,4 10,7,3
丙:Why,为什么吃亏的总是我?
人口悖论: 当州数和议员名额不变时,各州的人口 有所增长,第 i 州的人口比第 j 州的人口增长率大, 但第 j 州的名额增加一个,第 i 州的名额减少一个
I = {1, 2,
, n}
s1 ∩ s2 =
v ( s1 ∪ s2 ) ≥ v ( s1 ) + v ( s2 )
∑x
i =1
n
i
= v( I )
xi ≥ v ( i ) , xn )
Φ( v ) = (1 ( v ),
, n ( v )) = ( x1 ,
s∈si
i (v ) = ∑ w( s )[v ( s ) v ( s \ i )]
州 人 名 口 数 A 623 B 377 按比例分 分配 州 人 配的名额 名额 名 口 数 2.492 2 A 623 1.508 2 B 377 C 200 按比例分 分配名额 配的名额 2.595 1.57 0.835 3 1 1
p = ( pi ), n = (ni ) 若 pi / ni 全部相等
103 20 × = 10.3 ;6.3 ;3.4 100 + 60 + 40
华盛顿时代的财政部长Hamilton就提出一种分配方案 (1790年),1792年被美国国会通过 i) 先让各州取得份额的整数部分 [qi ] ii)
ri = qi [ qi ] 按照从大到小的顺序排序,将余
下的名额逐个分配给各相应的州.
1.人口单调性 人口的增加不会导致它失去一个名额。 2.无偏性 每个州应该得到它应得的份额
(把自己的痛苦建立在别人的幸福之上,做赔本买卖) 3.名额的单调性 总名额的增加不会使得某州的名额减少
4.公平分摊性 任何州的名额不会偏离其比例份数。 5.接近份额性 不能从一个州到另外一个州的名额转让会使得这两个 州都接近它们应得的份额。 1982年,Balinsky,Young证明了名额分配的不可 能公理。也就是说这样的分配情况不存在。
州 人 名 口 数 A 420 B 455 C 125 按比例分 配的名额 1.26 1.365 0.375 分配 名额 1 1 1 人口增 长率% 2.38 14.29 20 人 口 数 430 520 150 按比例分 配的名额 1.17 1.42 0.41 分配 名额 1 2 0
新州悖论: 在州数增加一个,原有各州人口不变, 议员席位有所增加的情况下,有的州增加一个名额, 有的州减少一个名额。
∑n
k =1
s
k
=N
ni = pi N /(∑ pi )
i =1
n
某校共有3个系甲、乙、丙,人数分别为100、60、 40,学生会的构成总名额为20,很容易我们可以得 到分配方案。
100 = 10 ;6 ;4 20 × 100 + 60 + 40
如果丙系有六名学生分别转入其他两个系,那么 这时各个系的人数分别为103,63,34, 这时如果 仍然按原来的原则进行分配
w( s ) = ( n s )!( s 1)! n!
s v( s)
1
1∪ 2
1∪ 3
I
1 0 1 1 1/3
7 1 6 2 1/6 1
5 1 4 2 1/6 2/3Βιβλιοθήκη 10 4 6 3 1/3 2
v ( s \ 1)
v ( s ) v ( s \ 1)
s w( s )
w ( s )[v ( s ) v ( s \ 1)] 1/3
pi2 Qi = ni ( ni + 1)
增加的一席应该分配给该值较大的一方
州名 A B C D E F
人口数 9515 159 158 157 156 155
按比例分配的 名额 92.15 1.59 1.58 1.57 1.56 1.55
Q分配名额 90 2 2 2 2 2
能否找到一个对各个部分而言,都公正公平的分配 方案?
利益的合理分配
甲乙丙三人经商,若单干,每个人仅能获利1元;甲 乙合作可获利7元;甲丙合作可以获利5元;乙丙合作可 获利4元;三人合作时怎样合理地分配10元的收入
x1 + x2 + x3 = 10 x1 , x2 , x3 ≥ 1
x1 + x2 ≥ 7 x1 + x3 ≥ 5 x2 + x3 ≥ 4
p1 / n1 p2 / n2 表示名额分配不公平
p 相 对 公 平 A B C D 120 100 1020 1000
n 10 10 10 10
p/n 12 10 102 100
[p1/n1-p2/n2] 2 2
p1 / n1 p2 / n2 rA ( n1 , n2 ) = 称为对 A 的相对不公平度 p2 / n2
相关文档
最新文档