考点 简单几何体的表面积和体积
专题9简单几何体的直观图与表面积体积11月19日终稿

专题9简单几何体的直观图与表面积体积第一讲.基本立体图形知识点一多面体、旋转体的定义多面体:由若干个平面多边形围成的几何体.旋转体:一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体知识点二棱柱的结构特征1.棱柱的概念有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.棱柱ABCDEF—A′B′C′D′E′F′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点2.棱柱的分类(1)按底面多边形边数来分:三棱柱、四棱柱、五棱柱…(2)按侧棱是否与底面垂直:侧棱垂直于底面的棱柱叫做直棱柱,侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱,底面是平行四边形的四棱柱也叫做平行六面体.知识点三棱锥的结构特征1.棱锥的概念有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥棱锥S—ABCD底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点2.棱锥的分类(1)按底面多边形的边数分:三棱锥、四棱锥……(2)底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥.知识点四棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台棱台ABCD—A′B′C′D′上底面:平行于棱锥底面的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点知识点五圆柱的结构特征定义:以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱圆柱O O'圆柱的轴:旋转轴圆柱的底面:垂直于轴的边旋转而成的圆面圆柱的侧面:平行于轴的边旋转而成的曲面圆柱侧面的母线:无论旋转到什么位置,平行于轴的边知识点六圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体圆锥SO圆锥的轴:旋转轴圆锥的底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边知识点七圆台的结构特征用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台圆台O O'圆台的轴:旋转轴圆台的底面:垂直于轴的边旋转一周所形成的圆面 圆台的侧面:不垂直于轴的边旋转一周所形成的曲面 母线:无论旋转到什么位置,不垂直于轴的边 知识点八 球的结构特征半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球球O球心:半圆的圆心半径:连接球心和球面上任意一点的线段 直径:连接球面上两点并经过球心的线段 知识点九 简单组合体的结构特征1.概念:由简单几何体组合而成的,这些几何体叫做简单组合体.2.基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成. 知识点十 空间几何体直观图的画法 1.斜二测画法利用平行投影,人们获得了画直观图的斜二测画法.利用这种画法画水平放置的平面图形的直观图,其步骤如下:(1)在已知图形中取互相垂直的x 轴和y 轴,两轴相交干点O.画直观图时,把它们画成对应的x '轴和y '轴,两轴相交于点O ',且使45x O y '''∠=︒(或135︒),它们确定的平面表示水平面.(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x '轴或y '轴的线段.(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,在直观图中长度为原来的一半.注: (1)斜二测画法中,“斜”是指把直角坐标系xOy 变为斜坐标系x O y ''',使45x O y '''∠=︒(或135︒);“二测”是指画直观图时,平行于x 轴的线段长度不变,平行于y 轴的线段长度减半.(2)斜二测画法画图的关键是在原图中找到决定图形位置与形状的点,并在直观图中画出. (3)斜二测画法的度量特征与位置特征简记为:横不变、纵折半,平行位置不改变。
空间几何体的表面积及体积公式大全

空间⼏何体的表⾯积及体积公式⼤全空间⼏何体的表⾯积与体积公式⼤全⼀、全(表)⾯积(含侧⾯积) 1、柱体①棱柱②圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=②圆锥:l c S 底圆锥侧213、台体①棱台:h c c S )(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、球体①球:r S 24π=球②球冠:略③球缺:略⼆、体积 1、柱体①棱柱②圆柱 2、①棱锥②圆锥3、①棱台②圆台 4、球体①球:rV 334π=球②球冠:略③球缺:略说明:棱锥、棱台计算侧⾯积时使⽤侧⾯的斜⾼h '计算;⽽圆锥、圆台的侧⾯积计算时使⽤母线l 计算。
三、拓展提⾼ 1、祖暅原理:(祖暅:祖冲之的⼉⼦)夹在两个平⾏平⾯间的两个⼏何体,如果它们在任意⾼度上的平⾏截⾯⾯积都相等,那么这两个⼏何体的体积相等。
最早推导出球体体积的祖冲之⽗⼦便是运⽤这个原理实现的。
2、阿基⽶德原理:(圆柱容球)圆柱容球原理:在⼀个⾼和底⾯直径都是r 2的圆柱形容器内装⼀个最⼤的球体,则该球体的全⾯积等于圆柱的侧⾯积,体积等于圆柱体积的32。
分析:圆柱体积:r r h S V r 3222)(ππ=?==圆柱圆柱侧⾯积:r h cS r r 242)2(ππ=?==圆柱侧因此:球体体积:r r V 3334232ππ=?=球球体表⾯积:r S 24π=球通过上述分析,我们可以得到⼀个很重要的关系(如图)+ =即底⾯直径和⾼相等的圆柱体积等于与它等底等⾼的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底⾯中⼼连线的纵切⾯为梯形ABCD 。
延长两侧棱相交于⼀点P 。
设台体上底⾯积为S 上,下底⾯积为S 下⾼为h 。
易知:PDC ?∽PAB ?,设h PE 1=,则h h PF +=1由相似三⾓形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似⽐等于⾯积⽐的算术平⽅根)整理得:SS h S h 上下上-=1⼜因为台体的体积=⼤锥体体积—⼩锥体体积∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代⼊:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(3S S h V 下下上上台++=4、球体体积公式推导分析:将半球平⾏分成相同⾼度的若⼲层(层n ),n 越⼤,每⼀层越近似于圆柱,+∞→n 时,每⼀层都可以看作是⼀个圆柱。
简单几何体的表面积和体积

基础知识梳理
(3)锥体 圆锥和棱锥 的体积 锥体(圆锥和棱锥 锥体 圆锥和棱锥)的体积
1 V锥体= Sh. 3
1 其中V圆锥= 3 πr2h ,r为底面半径. 其中 为底面半径. 为底面半径
基础知识梳理
(4)台体的体积公式 台体的体积公式 V台=h(S++ . ++S′). ++ 为台体的高, 和 分别为上下 注:h为台体的高,S′和S分别为上下 为台体的高 两个底面的面积. 两个底面的面积. 1 + 其中V 其中 圆台= 3 πh(r2+rr′+r′2) . 为台体的高, 、 分别为上 分别为上、 注:h为台体的高,r′、r分别为上、 为台体的高 下两底的半径. 下两底的半径. (5)球的体积 球的体积 4 3 V球= 3 πR .
课堂互动讲练
跟踪训练
(2)由(1)知 AB⊥BD.∵CD∥AB, 由 知 ⊥ ∵ ∥ , ∴CD⊥BD,从而 DE⊥BD. ⊥ , ⊥ 在 Rt△DBE 中,∵DB=2 3, △ = , DE=DC=AB=2, = = = , 1 ∴S△DBE=2DBDE=2 3. = 又∵AB⊥平面 EBD,BE平面 ⊥ , EBD,∴AB⊥BE. , ⊥ ∵BE=BC=AD=4,∴S△ABE= = = = , 1 ABBE=4. = 2
几何体的体积与表面积知识点总结

几何体的体积与表面积知识点总结几何体是指在三维空间中有一定形状的物体。
了解几何体的体积和表面积是数学中的重要知识点,它们与实际生活中的量度、测量和建模都有着密切的关系。
本文将对几何体的体积与表面积的概念、计算方法及其应用进行总结。
一、体积的概念和计算方法1. 体积的概念:体积是指几何体所占据的空间大小。
它是一个三维量,通常用单位立方米(m³)表示。
2. 常见几何体的体积计算:a. 直方体的体积计算公式:体积 = 长 ×宽 ×高。
b. 正方体的体积计算公式:体积 = 边长³。
c. 圆柱体的体积计算公式:体积 = 底面积 ×高。
d. 圆锥体的体积计算公式:体积 = 1/3 ×底面积 ×高。
e. 球体的体积计算公式:体积= 4/3 × π × 半径³。
3. 组合体的体积计算:组合体是由多个几何体组合而成的复合体,计算其体积时需将每个几何体的体积计算出来,再进行合并。
二、表面积的概念和计算方法1. 表面积的概念:表面积是指几何体表面的总面积。
它是一个二维量,通常用单位平方米(m²)表示。
2. 常见几何体的表面积计算:a. 直方体的表面积计算公式:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽×高)。
b. 正方体的表面积计算公式:表面积 = 6 ×边长²。
c. 圆柱体的表面积计算公式:表面积 = 2 ×圆底面积 + 圆周长 ×高。
d. 圆锥体的表面积计算公式:表面积 = 圆底面积 + 圆底面积到尖顶的侧面积。
e. 球体的表面积计算公式:表面积= 4 × π × 半径²。
3. 组合体的表面积计算:同样,对于组合体的表面积计算,需将每个几何体的表面积计算出来,再进行合并。
三、体积和表面积的应用1. 应用于物体量度和测量:了解几何体的体积和表面积可以帮助我们测量实际物体的容量和表面大小,例如房屋的体积和墙壁的面积。
第二节 简单几何体的表面积和体积(知识梳理)

第二节简单几何体的表面积和体积复习目标学法指导1.柱、锥、台体的表面积和体积公式.2.球的表面积和体积公式.3.一些简单组合体表面积和体积的计算.4.柱、锥、台体之间关系.(发展要求)1.搞清楚几何体的表面积包括侧面积和底面积.2.求侧面积时,往往需要研究侧面展开图.3.会分解简单组合体为常见的柱、锥、台,进一步求出面积、体积.4.所有公式均不要求记忆.空间几何体的表面积和体积公式如下表面积体积S表=S侧+2S底表面积即空间几何体暴露在外的所有面的面积之和棱柱的底面积为S,高为h,V=S·hV柱=S·hS=S′V台=13(S′+S S +S)h S表=S侧+S底棱锥的底面积为S,高为h,V=13S ·h S ′=0 V 锥=13S ·hS 表=S 侧+ S 上底+S 下底棱台的上、下底面 面积分别为S ′,S,高为h, V=13(S ′+ S S+S)h圆柱的底面半径和母线长分别为r,lS 表=2πr 2+2πrl 圆柱的高为h,V=πr 2h圆锥的底面半径和母线长分别为r,l S 表=πr 2+πrl 圆锥的高为h,V=13πr 2h圆台的上、下底面半 径和母线长分圆台的高为h,V=13π(r ′2+别为r,r′,l,S表=π(r′2+r2+r′l+rl)r′r+r2)h球球半径为R,S球=4πR2V球=43πR31.概念理解(1)表面积应为侧面积和底面积的和,要注意组合体中哪些部分暴露或遮挡.(2)求空间几何体体积的常用方法①公式法:直接根据相关的体积公式计算.②等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.③割补法:把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体.2.求面积或体积中相关联的结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①正方体的外接球,则3②正方体的内切球,则2R=a;③球与正方体的各棱相切,则2(2)长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=222a b c ++.(3)正四面体的外接球与内切球的半径之比为3∶1.1.圆柱的底面积为S,侧面展开图是一个正方形,那么圆柱的侧面积是( A )(A)4πS (B)2πS (C)πS (D)23πS 解析:由πr 2=S 得圆柱的底面半径是πS , 故侧面展开图的边长为2π·πS =2πS,所以圆柱的侧面积是4πS.故选A.2.正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为3,D为BC 的中点,则三棱锥A-B 1DC 1的体积为 . 解析:如图,在正三棱柱ABC-A 1B 1C 1中, 因为AD ⊥BC,AD ⊥BB 1, BB 1∩BC=B,所以AD ⊥平面B 1DC 1. 所以11A B DC V-=1113B DC S ∆·AD=13×12×233=1. 答案:13.某几何体的三视图如图所示(单位:cm),则该几何体的体积为 cm 3,表面积为 cm 2.解析:由三视图可得该几何体为二分之一圆锥, 圆锥的底面半径为1,高为2,所以可得该几何体的体积为12×13×π×12×2=π3, 该几何体的表面积为12×π×12+12π×114++12×2×2=)51π2+2.答案: π3)51π2+24.已知正四棱锥O-ABCD 32,3,则以O 为球心,OA 为半径的球的表面积是 . 解析:设O 到底面的距离为h,则13×3×32,解得32()()2233+62262h ⎛⎫+ ⎪ ⎪⎝⎭6故球的表面积为4π×62=24π.答案:24π5.(2019·浙江宁波模拟)已知一个三棱锥的三视图如图所示,其中俯视图是顶角为120°的等腰三角形,侧视图为直角三角形,则该三棱锥的表面积为,该三棱锥的外接球体积为.解析:由三视图得几何体的直观图如图.所以S表=2×12×2×2+12×3512×3 1153如图,作DE⊥DB,以D为原点,DB所在直线为x轴,DE所在直线为y 轴,DA所在直线为z轴,建立空间直角坐标系,则3设球心坐标为(x,y,z),因为(x-2)2+y2+z2=x2+y2+z2,①x2+y2+(z-2)2=x2+y2+z2,②(x+1)23)2+z2=x2+y2+z2,③所以x=1,y=3,z=1,所以球心的坐标是(1,3,1), 所以球的半径是()222131++=5.所以球的体积是43π×(5)3=2053π.答案:4+15+32053π考点一几何体的表面积[例1] (1)(2018·金丽衢十二校联考)某四面体的三视图如图所示,正视图、侧视图都是腰长为2的等腰直角三角形,俯视图是边长为2的正方形,则此四面体的最大面的面积是( )(A)2 23(D)4(2)(2019·湖州模拟)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )(A)4π3(B)5π3(C)4π3(D)5π3(3)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为;(4)四棱锥S-ABCD中,底面ABCD是边长为2的正方形,侧面SAD是以SD为斜边的等腰直角三角形,若四棱锥S-ABCD的体积取值范围为4383],则该四棱锥外接球表面积的取值范围是.解析:(1)因为几何体为一个四面体,六条棱长分别为2223所以四面体的四个面的面积分别为12×2×2=2,12×2×2212×2×221 2×22sin π33因此四面体的最大面的面积是3.故选C.(2)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(3)设圆锥底面半径为r,母线长为l,母线与轴夹角为θ, 则=22π122rl r l r⋅-2π,r l=3,即sin θ=3,θ=π3. 解析:(4)四棱锥S-ABCD 中,可得AD ⊥SA,AD ⊥AB ⇒AD ⊥平面SAB ⇒平面SAB ⊥平面ABCD,过S 作SO ⊥AB 于O,则SO ⊥平面ABCD, 设∠SAB=θ, 故S ABCDV-=13S 四边形ABCD ·SO=83sin θ, 所以sin θ∈[3,1]⇒θ∈[π3,2π3]⇒-12≤cos θ≤12, 在△SAB 中,SA=AB=2, 则有SB=221cos θ-,所以△SAB 的外接圆半径r=2sin SBθ=21cos θ-,将该四棱锥补成一个以SAB 为一个底面的直三棱柱,得外接球的半径R=21r +⇒S=4πR2=4π(21cos θ++1), 所以S ∈[28π3,20π]. 答案:(1)C (2)D (3)π3答案:(4)[28π3,20π] (1)已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.(2)多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开成平面图形计算,而表面积是侧面积与底面圆的面积之和.1.(2019·浙江十校联盟)如图所示,已知某几何体的三视图及其尺寸(单位:cm),则该几何体的表面积为( C )(A)15π cm2(B)21π cm2(C)24π cm2(D)33π cm2解析:由三视图可知,则该几何体是一个圆锥,圆锥的底面半径为3,母线长为5,故该几何体的表面积为S表=πr2+πrl=π×32+π×3×5=24π(cm2).故选C.2.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( A )(A)81π4(B)16π(C)9π(D)27π4解析:易知球心在正四棱锥的高上,设球的半径为R,则(4-R)2+(2)2=R2, 解得R=94,所以球的表面积为4π×(94)2=814π.故选A.考点二几何体的体积[例2] (1)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )(A)12cm3(B)1 cm3(C)16 cm3 (D)13cm3(2)(2018·天津卷)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H, M(如图),则四棱锥M-EFGH的体积为.解析:(1)由题意,根据给定的三视图可知,该几何体表示一个底面为腰长为1的等腰直角三角形,高为1的三棱锥, 如图所示,所以该三棱锥的体积为V=13×12×1×1×1=16(cm 3),故选C.解析:(2)依题意,易知四棱锥M-EFGH 是一个正四棱锥,且底面边长为2,高为12. 故M EFGHV=13×(2)2×12=112. 答案:(1)C 答案:(2)112(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解,其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.某三棱锥的三视图如图所示,则该三棱锥的体积为( D )(A)60 (B)30 (C)20 (D)10解析:如图,把三棱锥A-BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A-BCD 的高为4,故该三棱锥的体积V=13×12×5×3×4=10.故选D.考点三 与面积、体积相关的综合问题[例3] (1)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则12S S = ;(2)将边长为a 的正方形ABCD 沿对角线AC 折起,点A,B,C,D 折叠后对应点为A ′,B ′,C ′,D ′,使B ′D ′=a,则三棱锥D ′-A ′B ′C ′的体积为 .解析:(1)设正四面体棱长为a,则正四面体的表面积为 S 1=43a 23a2,正四面体的高2233a a ⎛⎫- ⎪ ⎪⎝⎭6a,由13r ·S 1=1332·h 知r=146a. 因此内切球的表面积为S 2=4πr 2=2π6a,则12S S 2236a a 63.解析:(2)如图所示,正方形ABCD 及折叠后的直观图.易知在直观图中,A ′B ′=B ′C ′=C ′D ′=D ′A ′=a, 且A ′D ′⊥D ′C ′,A ′B ′⊥B ′C ′, 取A ′C ′的中点E,连接D ′E,B ′E, 则D ′E ⊥A ′C ′,D ′E=EB ′=2a,所以D ′E ⊥EB ′,所以D ′E ⊥平面A ′B ′C ′. D ′E 即为三棱锥D ′-A ′B ′C ′的高. 故D A B C V''''-=13S △A ′B ′C ′·D ′E =13×12×a ×a ×2a=2a 3.答案:(1)63 答案:(2)2a 3(1)①解决与球有关问题的关键是球心及球的半径,在球中球心与截面圆圆心的连线、截面圆圆心与截面圆周上一点、该点与球心的连线构成一个直角三角形.②解决多面体(或旋转体)的外接球、内切球问题的关键是确定球心在多面体(或旋转体)中的位置,找到球半径(或直径)与几何体相关元素之间的关系.有时将多面体补形为正(长)方体再求解.(2)求几何体表面上两点间的最短距离的常用方法是选择恰当的母线或棱将几何体展开,转化为求平面上两点间的最短距离.1.已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC,AA 1=12,则球O 的半径为( C ) (A)3172 (B)210(C)132(D)310解析:如图,由球心作平面ABC 的垂线, 则垂足为BC 的中点M.又AM=12BC=52,OM=12AA 1=6, 所以球O 的半径 R=OA=22562⎛⎫+ ⎪⎝⎭=132. 故选C.2.已知某几何体的三视图如图所示,则该几何体的表面积是 ,体积是 .解析:本题考查空间几何体的三视图、体积和表面积的计算.由三视图得该几何体为底面是以上底为1,下底为3,高为3的直角梯形,高为3的直四棱柱,则其表面积为2×3×1+32+3×3+1×3+3×3+3×13=33+313,体积为3×3×1+32=18.答案:33+31318考点四易错辨析[例4] (2019·浙江绍兴模拟)如图是由半球和圆柱组合而成的几何体的三视图,则该几何体的体积为( )(A)5π3 (B)8π3(C)10π3(D)12+2π3解析:由题得,几何体是水平放置的一个圆柱和半个球,所以该几何体的体积为V=43π×13×12+π×12×2=83π,故选B.正确解决此类问题应注意确认几何体的形状时,要紧扣三视图,不能凭感觉去确定.已知直三棱柱ABC-A1B1C1的侧棱长为4,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA1,BB1,CC1分别交于三点M,N,Q,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为( C ) 2(B)3 3(D)4解析:如图,不妨设N在B处,AM=h,CQ=m,则有MB2=h2+4,BQ2=m2+4,MQ2=(h-m)2+4,由MB2=BQ2+MQ2,得m2-hm+2=0.则Δ=h2-8≥0,即h2≥8,所以该直角三角形的斜边MB≥23.故选C.类型一几何体的表面积1.如图是一个封闭几何体的三视图,则该几何体的表面积为( C )(A)7π cm2(B)8π cm2(C)9π cm2(D)11π cm2解析:依题意,题中的几何体是从一个圆柱中挖去一个半球后所剩余的部分,其中圆柱的底面半径是1 cm、高是 3 cm,球的半径是1 cm,因此该几何体表面积等于12×(4π×12)+π×12+2π×1×3=9π(cm2).故选C.2.某三棱锥的三视图如图所示,该三棱锥的表面积是( B )(A)28+65(B)30+65(C)56+125(D)60+125解析:根据三棱锥的三视图可还原此几何体的直观图如图,此几何体为一个底面为直角三角形,高为4的三棱锥,因此表面积为S=12×(2+3)×4+12×4×5+12×4×(2+3)+12×5415 5故选B.类型二几何体的体积3.某几何体的三视图如图所示,它的体积为( C )(A)72π(B)48π(C)30π(D)24π解析:由三视图知该几何体是由一个半球和一个圆锥构成的组合体,所以其体积为V=12×43π×33+13π×32×4=30π.故选C.4.某几何体的三视图如图所示,则该几何体的体积为( D )(A)π2(B)1+π2(C)1+π(D)2+π解析:由三视图可得,该几何体是一个长方体和半个圆柱的组合体,则该几何体的体积为V=12×2+12×π×12×2=2+π,故选D.5.(2018·全国Ⅲ卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为3则三棱锥D-ABC体积的最大值为( B )3333解析:由等边△ABC的面积为3323,所以AB=6,所以等边△ABC的外接圆的半径为r=33AB=23.设球的半径为R,球心到等边△ABC的外接圆圆心的距离为d,则d=22R r-=1612-=2.所以三棱锥D-ABC高的最大值为2+4=6,所以三棱锥D-ABC体积的最大值为13×93×6=183.故选B.6.(2019·名校协作体模拟)某几何体的三视图(单位:mm)如图所示,则它的体积是cm3,表面积是cm2.解析:由三视图得该几何体底面是一个以上底为2,下底为4,高为3的直角梯形,高为33的四棱锥,则其体积为13×33×2+42×3=93(cm3),表面积为1 2×3×33+2+42×3+12×3×2+12×3×4+12×5×33=(18+63)(cm2).答案:93(18+63)7.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.解析:由题意知所给的几何体是棱长均为2的八面体,它是由两个有公共底面的正四棱锥组合而成的,正四棱锥的高为1,所以这个八面体的体积为2V 正四棱锥=2×13×(2)2×1=43.答案:43类型三 面积、体积综合问题8.(2018·浙江绍兴质量调测)已知一个几何体的三视图如图所示,则该几何体的体积是( A )(A)83 (B)8 (C)203(D)6 解析:如图所示,在棱长为2的正方体中,题中的三视图对应的几何体为四棱锥P-ADC 1B 1,其中P 为棱A 1D 1的中点,则该几何体的体积11P ADC B V -=211P DB C V -=211D PB C V-=2×13×11PB C S∆×DD 1=83. 故选A.9.已知球的直径SC=4,A,B是该球球面上的两点,AB=3,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为( C )(A)33(B)23(C)3 (D)1解析:由题意知,如图所示,在棱锥S-ABC中,△SAC,△SBC都是有一个角为30°的直角三角形,且3,SC=4,所以3作BD⊥3×3)2×3. SC于D点,连接AD,易证SC⊥平面ABD,因此V=13故选C.。
高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。
专题10简单几何体的表面积与体积(知识精讲)(解析版)

数学第二册讲练测(人教A版2019必修第二册)专题10简单几何体的表面积与体积知识点课前预习与精讲精析核心知识点1:多面体的表面积1.柱体的表面积(1)侧面展开图:棱柱的侧面展开图是平行四边形,一边是棱柱的侧棱,另一边等于棱柱的底面周长,如图①所示;圆柱的侧面展开图是矩形,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=2πrl,表面积S表=2πr(r+l).【知识微点评】表面积是几何体表面的面积,它表示几何体表面的大小,常把多面体展开成平面图形,利用平面图形求多面体的表面积,侧面积是指侧面的面积,与表面积不同.一般地,表面积=侧面积+底面积.2.锥体的表面积(1)侧面展开图:棱锥的侧面展开图是由若干个三角形拼成的,则侧面积为各个三角形面积的和,如图①所示;圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线,扇形的弧长等于圆锥的底面周长,如图②所示.(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=πrl,表面积S表=πr(l+r).3.台体的表面积(1)侧面展开图:棱台的侧面展开图是由若干个梯形拼接而成的,则侧面积为各个梯形面积的和,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.(2)面积:台体的表面积S 表=S 侧+S 上底+S 下底.特别地,圆台的上、下底面半径分别为r ′、r ,母线长为l ,则侧面积S 侧=π(r +r ′)l ,表面积S 表=π(r 2+r ′2+rl +r ′l ).核心知识点2:多面体的体积1.柱体的体积(1)棱柱(圆柱)的高是指两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这个点与垂足(垂线与底面的交点)之间的距离.(2)柱体的底面积S ,高为h ,其体积V =Sh .特别地,圆柱的底面半径为r ,高为h ,其体积V =πr 2h .2.锥体的体积(1)棱锥(圆锥)的高是指从顶点向底面作垂线,顶点与垂足(垂线与底面的交点)之间的距离.(2)锥体的底面积为S ,高为h ,其体积V =13Sh .特别地,圆锥的底面半径为r ,高为h ,其体积V =13πr 2h . 3.台体的体积(1)圆台(棱台)的高是指两个底面之间的距离.(2)台体的上、下底面面积分别是S ′、S ,高为h ,其体积V =13(S +SS ′+S ′)h .特别地,圆台的上、下底面半径分别为r 、r ′,高为h ,其体积V =13π(r 2+rr ′+r ′2)h . 核心知识点3:球的表面积和体积1.球的体积球的半径为R ,那么它的体积V = 43πR 3. 2.球的表面积球的半径为R ,那么它的表面积S = 4πR 2.3.与球有关的组合体问题(1)若一个长方体内接于一个半径为R 的球,则2R =a 2+b 2+c 2(a 、b 、c 分别为长方体的长、宽、高),若正方体内接于球,则2R =3a (a 为正方体的棱长);(2)半径为R 的球内切于棱长为a 的正方体的每个面,则2R =a .【知识微点评】对球的表面积与体积公式的几点认识:(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有惟一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.1.已知正方体外接球的体积是,那么该正方体的内切球的表面积为.【解析】解:设正方体外接球的半径为R,∵正方体外接球的体积是π,∴πR3,解得R=2.设正方体的棱长为a,则a=4,解得a,∴该正方体内切球的半径r,∴该正方体内切球的表面积为S=4πr2=4ππ.故答案为:π.2.已知正三棱柱ABC﹣A1B1C1的高为6,AB=4,点D为棱BB1的中点,则四棱锥C﹣A1ABD的表面积是,正三棱柱的体积为.【解析】解:正三棱柱ABC﹣A1B1C1的高为AA1=6,AB=4,点D为棱BB1的中点,如图所示,则四棱锥C﹣A1ABD的表面积是:SS△ABC+S△BCD(6+3)×4423×46×44=36+42;.故答案为:36+42;.3.已知圆柱的侧面展开图是一个边长为4π的正方形,则这个圆柱的表面积和体积分别为.【解析】解:设圆柱的底面半径为r、母线长为l,∵圆柱的侧面展开图是一个边长为4π的正方形,∴2πr=l=4π,得r=2、l=4π,∴圆柱的表面积为S=2πr2+2πrl=8π+16π2;体积V=πr2l=π•22•4π=16π2,故答案为:8π+16π2,16π2.4.如图,有一滚筒是正六棱柱形(底面是正六边形,每个侧面都是矩形),两端是封闭的,长1.6m,底面外接圆半径是0.46m,制造这个滚筒需要m2铁板(精确到0.1m2).【解析】解:因为此正六棱柱底面外接圆半径为0.46m,所以正六边形的边长是0.46m.设正六边形的周长为C,所以.所以S表=S侧+2S底=4.416+20.462×6≈5.5.故制造这个滚筒约需要 5.5m2铁板.故答案为:5.5.5.用一张(4×8)cm2的矩形硬纸卷成圆柱的侧面,则该圆柱的表面积为.【解析】解:(1)若圆柱的高为4cm,则圆柱的底面半径rcm,故圆柱的表面积为32+2πr2=24(cm2),(2)若圆柱的高为8cm,则圆柱的底面半径rcm,故圆柱的表面积为32+2πr2=24(cm2),故答案为:32cm2或32cm2.必考必会题型1:柱体、锥体、台体的表面积与体积【典型例题】已知直三棱柱底面的一边长为2cm,另两边长都为3cm,侧棱长为4cm,它的侧面积为,体积为.【解析】解:如图,ABC﹣A1B1C1为直三棱柱,AB=AC=3,BC=2,AA1=4.它的侧面积为:4×(2+3+3)=32cm2.∴24=8cm3.故答案为:32cm2;8cm3.【题型强化】现有一个圆锥形的钢锭,底面半径为3,高为4.某工厂拟将此钢锭切割加工成一个圆柱形构件,并要求将钢锭的底面加工成构件的一个底面,则可加工出的圆柱形构件的最大体积为.【解析】解:设该圆锥形钢锭内接圆柱的底面半径为x(0<x<3),高为h(0<h<4),则,即h=4,所以内接圆柱的体积V=πx2(4)=4π(x2x3),(0<x<3),则V'=4π(2x﹣x2),令V'=0,解得x=2或x=0(舍去),当0<x<2时,V'>0,单调递增,当2<x<3时,V'<0,单调递减,故当x=2时,V取极大值也为最大值,所以可加工出的圆柱形构件的最大体积为.故答案为:.【收官验收】如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路线长为.【解析】解:正三棱柱的侧面展开图如图所示的矩形,矩形的长为3,宽为1,则其对角线AA1 的长为最短路程.因此蚂蚁爬行的最短路程为:.故答案为:.【名师点睛】1.求解棱锥的表面积和体积时,注意棱锥的四个基本量,即底面边长、高、斜高、侧棱,并注意高、斜高、底面边心距所成的直角三角形的应用.2.求解圆锥的表面积和体积时,除应用“圆锥的侧面展开图是扇形,扇形的弧长为圆锥的底面周长”求出母线长和底面半径外,还需注意“圆锥的轴截面是等腰三角形”的应用.1.求解正棱台的表面积和体积时,注意棱台的五个基本量(上下底面边长、高、斜高、侧棱),并注意两个直角梯形(高、侧棱与上下底面外接圆半径所成的直角梯形,高、斜高与上下底面边心距所成的直角梯形)的应用.常用两种解题思路:一是把基本量转化到直角梯形中解决问题;二是把正棱台还原成正棱锥,利用正棱锥的有关知识来解决问题.2.求解圆台的表面积和体积时,注意其轴截面是等腰梯形的应用.求圆台的表面积的关键在于求侧面积,“还台为锥”是解题的常用策略,利用侧面展开图将空间问题平面化也是解决问题的重要方法.必考必会题型2:球的表面积与体积【典型例题】如图,一个底面半径为R的圆柱形量杯中装有适量的水,若放入一个半径为r的实心铁球,水面高度恰好升高r,则.【解析】解:半径为r的实心铁球的体积是,由题意可知,升高的水的体积是:πR2r,则,∴,则.故答案为:.【题型强化】我国古代数学名著《九章算术》中相当于给出了已知球的体积V.求其直径d的一个近似公式d.规定:“一个近似数与它准确数的差的绝对值叫这个近似数的绝对误差,相对误差指的是测量所造成的绝对误差与被测量[约定]真值之比.”那么用这个公式所求的直径d结果的相对误差是.【解析】解:设球的直径为d,则V,由近似公式求得的直径的近似值为,绝对误差为||d,相对误差为.故答案为:.【收官验收】把一个半径为R的实心铁球铸成三个小球(不计损耗),三个小球的体积之比为1:3:4,则其中最小球的半径为.【解析】解:原球的体积为:,把一个半径为R的实心铁球铸成三个小球(不计损耗),三个小球的体积之比为1:3:4,最小球的体积为:,设小球的半径为r,可得,所以rR.故答案为:.【名师点睛】计算球的表面积和体积的关键都是确定球的半径,要注意把握表面积公式()和体积公式()中系数的特征和半径次数的区别.必要时需逆用表面积公式和体积公式得到球的半径.注意:计算与球有关的组合体的表面积与体积时要恰当地分割与拼接,避免遗漏或重叠.必考必会题型3:球的切、接问题【典型例题】设正方体的表面积为24,那么其外接球的体积是.【解析】解:正方体的表面积为24,设正方体的列出为a,所以6a2=24,解得a=2,所以正方体的体对角线的长度为2,外接球的半径为.所以外接球的体积:4.故答案为:4.【题型强化】在正四棱锥P﹣ABCD中,,若四棱锥P﹣ABCD的体积为,则该四棱锥外接球的体积为.【解析】解:设AC,BD的交点为E,球心为O,设AB=a,∵,则AEa,P Aa,∴PEa,∵四棱锥P﹣ABCD的体积为,∴•a2•PE⇒a=4,在RT△OBE中,OB2=OE2+EB2⇒R2=(8﹣R)2+16⇒R=5,∴该四棱锥外接球的体积为:π.故答案为:.【收官验收】已知一个球的体积是,则它的内接正方体的表面积为.【解析】解:由题意,正方体的体对角线的长度,是外接球的直径,球的体积是,所以4,解得R,正方体的体对角线的长度为2,所以正方体的棱长为:a,则,所以a=2,所以正方体的表面积为:6×2×2=24.故答案为:24.【名师点睛】球与几何体的切、接问题的解题思路1.球外接于几何体,则几何体的各顶点均在球面上,解题时要认真分析图形,一般需依据球和几何体的对称性,明确接点的位置,根据球心与几何体特殊点间的关系,确定相关的数量关系,并作出合适的截面进行求解.2.解决几何体的内切球问题,应先作出一个适当的截面(一般作出多面体的对角面所在的截面),这个截面应包括几何体与球的主要元素,且能反映出几何体与球的位置关系和数量关系.必考必会题型4:实际应用问题【典型例题】“中国天眼”是我国具有自主知识产权、世界最大单口径、最灵敏的球面射电望远镜(如图),其反射面的形状为球冠(球冠是球面被平面所截后剩下的曲面,截得的圆为底,垂直于圆面的直径被截得的部分为高,球冠表面积S=2πRh,其中R为球的半径,h球冠的高),设球冠底的半径为r,周长为C,球冠的面积为S,则的值为(结果用S、C表示)﹒【解析】解:如图,由(R﹣h)2+r2=R2,可得h=R,由已知可得,①,C=2πr,得C2=4π2r2②,①②两式对应相除得,可得,设,得,整理得,,即m,∴.故答案为:.【题型强化】早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36°按计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于.【解析】解:由图知正二十面体的外接球即为上方正五棱锥的外接球,设其半径为R,正五边形的外接圆半径为r,正二十面体的棱长为l,则,得,所以正五棱锥的顶点到底面的距离是,所以R2=r2+(R﹣h)2,即,解得.所以该正二十面体的外接球表面积为,而该正二十面体的表面积是,所以该正二十面体的表面积与该正二十面体的外接球表面积之比等于.故答案为:.【收官验收】《九章算术》是古代中国的第一部自成体系的数学专著,与古希腊欧几里得的《几何原本》并称现代数学的两大源泉.《九章算术》卷五记载:“今有刍甍(音:刍chú甍méng),下广三丈,表四丈,上袤二丈,无广,高一丈.问积几何?”译文:今有如图所示的屋脊状楔体PQ﹣ABCD,下底面ABCD是矩形,假设屋脊没有歪斜,即PQ中点R在底面ABCD上的投影为矩形ABCD的中心点O,PQ∥AB,AB=4,AD=3,PQ=2,OR=1(长度单位:丈).则楔体PQ﹣ABCD的体积为(体积单位:立方丈).【解析】解:将楔体PQ﹣ABCD分成一个三棱柱、两个四棱锥,则V三棱柱3立方丈,2V四棱锥2立方丈,故V楔体PQ﹣ABCD=V三棱柱+2V四棱锥=3+2=5立方丈.故答案为:5立方丈.【名师点睛】解体积、表面积的实际应用题的关键点对于实际应用问题,解题的关键是正确建立数学模型,然后利用表(侧)面积或体积公式即可求解.另外,正确作出截面图,找出其中的等量关系也是常用的方法.与球有关的实际应用问题一般涉及容积问题,解题的关键是正确作出截面图,找出其中的等量关系.另外,利用总体积不变,正确建立等量关系,也是常用的方法.11/11。
2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)

(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形
球
半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单几何体的表面积和体积
1.一个几何体的三视图如图,该几何体的表面积为()
A.280B.292 C.360 D.372
2.如图,正方体ABCD-A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P,Q分别在棱AD,CD上.若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()
A.与x,y,z都有关B.与x有关,与y,z无关
C.与y有关,与x,z无关D.与z有关,与x,y无关
3.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为()
A.24 cm3B.48 cm3 C.32 cm3D.28 cm3
4.已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为()
A.24-
3π
2B.24-
π
3C.24-πD.24-
π
2
5.一个正方体的体积是8,则这个正方体的内切球的表面积是()
A.8πB.6πC.4πD.π
6.某几何体的三视图如图所示,则该几何体的体积等于()
A.
28
3
π B.
16
3
π C.
4
3
π+8 D.12π
7.将一个长方体沿从同一个顶点出发的三条棱截去一个棱锥,棱锥的体积与剩下的几何体的体积之比为( )
A.1:2
B.1:3
C.1:4
D.1:5
8.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )
23
..
33
43
..
32
A B
C D
9.已知几何体的三视图如图所示,它的表面积是( )
10.如图,啤酒瓶的高为h,瓶内酒面高度为a,若将瓶盖盖好倒置,酒面高度为a′(a′+b=h),则酒瓶容积与瓶内酒的体积之比为( )
.42.22
.32.6
A B
C D
++
+
A.1+b
a
且a+b>h B.1+
b
a
且a+b<h C.1+
a
b
且a+b>h D.1+
a
b
且a+b<h
11.(原创题)设计一个杯子,其三视图如图所示,现在向杯中匀速注水,杯中水面的高度h随时间t变化的图象是( )
12.已知某个几何体的三视图如图(正视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________cm3.
13.已知如图,三棱柱ABC—A1B1C1的体积为V,E是棱CC1上一点,三棱锥E—ABC的体积是V1,则三棱锥E—A1B1C1的体积是________.
14.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.
15.三棱锥P-ABC中,P A⊥底面ABC,P A=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于________.
16.如图,在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC 作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为________.
17.圆柱形容器内部盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.
18.已知正方体AC1的棱长为a,E、F分别为棱AA1与CC1的中点,求四棱锥A1-EBFD1的体积.
19.如图,已知某几何体的三视图如下(单位:cm).
(1)画出这个几何体的直观图(不要求写画法);
(2)求这个几何体的表面积及体积.
20.一几何体按比例绘制的三视图如图所示(单位:m):
(1)试画出它的直观图;
(2)求它的表面积和体积.。