2008中国数学奥林匹克(第23届全国数学冬令营)试题解答
2008年全国数学奥赛

2008年全国初中数学竞赛试题及参考答案一、选择题(共5小题,每小题6分,满分30分,以下每道小题均给出了代号为A 、B 、C 、D 的四个选项,期中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1、已知实数x ,y 满足42423x x-=,423y y +=,则444y x +的值为( )。
A 、7 B 、1132+ C 、7132+ D 、5 [答]A解:因为2x >0,2y ≥0,由已知条件得212444311344x ++⨯⨯+==,2114311322y -++⨯-+==, 所以 444y x +=2222223367y y x x++-=-+=2、把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( )。
A 、512B 、49C 、1736D 、12 [答]C解:基本事件总数有6×6=36,即可以得到36个二次函数,由题意知 △=24m n ->0,即24m n通过枚举知,满足条件的m ,n 有17对,故1736p =3、有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( )。
A 、6条B 、8条C 、10条D 、12条[答]B解:如图,大圆周上有4个不同的点 A 、B 、C 、D ,两两连线可以确定6条不同的直线;小圆周上的两个点E 、F 中,至少有一个不是四边形ABCD 的对角线AC 与 BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线,从而这6个点可以确定的直线不少于8条。
当这6个点如图所示放置时,恰好可以确定8条直线,所以,满足条件的6个点可以确定的直线最少有8条。
4、已知AB 是半径为1的圆O 的一条弦,且AB =a <1,以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB =AB =a ,DC 的延长线交圆O 于点E ,则AE 的长为( )。
2008中国数学奥林匹克解答

2008中国数学奥林匹克解答第一天1. 设锐角 △ABC 的三边长互不相等. O 为其外心, 点A '在线段AO 的延长线上, 使得 BA A CA A ''∠=∠. 过点A '分别作1A A AC '⊥, 2A A AB '⊥, 垂足分别为1A , 2A . 作A AH BC ⊥, 垂足为A H . 记△12A H A A 的外接圆半径为A R , 类似地可得B R , C R . 求证:1112A B C R R R R++=, 其中R 为△ABC 的外接圆半径.(熊斌提供)证明 首先, 易知,,,A B O C '四点共圆.事实上,作△BOC 的外接圆,设它与AO 相交于点P 不同于A ',则BPA BCO CBO CPA ∠=∠=∠=∠,于是,△PA C '≅△PA B ',可得A B A C ''=,故AB AC =,矛盾。
所以01802BCA BOA C ''∠=∠=-∠, 1A CA C '∠=∠.22cos sin A H A AA A AA C AC AA '==∠=∠', 22A A AH A ACB π'∠=∠=-∠. 所以△2A A AH ∽△A AC '. 同理, △1A A H A ∽△A BA '. 所以21,A A A H A ACA A H A ABA ''∠=∠∠=∠, 则12212A A A A H A A H A A H A π∠=-∠-∠2ACA ABA π''=-∠-∠22A A A ππ⎛⎫=∠+-∠=-∠ ⎪⎝⎭.所以,1212122sin 2sin AA RR R A A A R A A A H A ∠==∠2sin 2sin R A RAA A AA ∠==''∠.作AA ''⊥A C ',垂足为A '',因为1ACA A CA C '''∠=∠=∠,所以A AA AH ''=,于是()02sin cos cos sin 90ABC A A S AH AH AA AA AA C A a AA '''===='∠∠∠-∠,故()1cos cos 11cot cot sin sin A ABC a A A B C R S R B C R∠∠===-∠∠∠∠, 同理,()111cot cot B C A R R =-∠∠, ()111cot cot C A B R R=-∠∠, 注意到 cot cot cot cot cot cot 2A B B C C A ∠∠+∠∠+∠∠=,所以1112A B C R R R R++=. 2. 给定整数3n ≥. 证明: 集合{}21,2,3,,X n n =-能写成两个不相交的非空子集的并, 使得每一个子集均不包含n 个元素1212,,,,n n a a a a a a <<<, 满足112k k k a a a -++≤, 2,,1k n =-.(冷岗松提供)证明 定义{}{}22221,,,1,,k k S k k k T k k k =-+=++, 1,2,,1k n =-.令11n k k S S -==, 11n k k T T -==. 下面证明,S T 即为满足题目要求的两个子集.首先, S T =∅, 且S T X =.其次, 如果S 中存在n 个元素1212,,,,,n n a a a a a a <<< 满足112k k k a a a -++≤, 2,,1k n =-.则11,2,, 1.k k k k a a a a k n -+-≤-=- (*)不妨设1i a S ∈. 由于1n S n -<, 故1i n <-. 12,,,n a a a 这n 个数中至少有i n S n i -=-个在11i n S S +-中. 根据抽屉原理, 必有某个()j S i j n <<中含有其中至少两个数, 设最小的一个为k a , 则1,k k j a a S +∈, 而111k j a S S --∈. 于是111k k j a a S j +-≤-=-, 111k k j a a T j ---≥+=.所以11k k k k a a a a +--<-, 与(*)矛盾.故S 中不存在n 个元素满足题中假设.同理, T 中亦不存在这样的n 个元素. 这表明,S T 即为满足题中要求的两个子集.3. 给定正整数n , 及实数1212,,n n x x x y y y ≤≤≤≥≥≥ 满足11nni ii i ix iy===∑∑.证明: 对任意实数α, 有[][]11n niii i x i y i αα==≥∑∑.这里, []β表示不超过实数β的最大整数.(朱华伟提供)证明1 我们先证明一个引理, 对任意实数x 和正整数n , 有[][]111.2n i n i n αα-=-≤∑ 引理证明 只需要将[][][]()i n i n ααα+-≤对1,2,,1i n =-求和即得.回到原题, 我们采用归纳法对n 进行归纳, 当1n =时显然正确.假设n k =时原命题成立, 考虑1n k =+. 令1122,i i k i i k a x x b y y k k ++=+=+, 其中1,2,,.i k = 显然我们有12,k a a a ≤≤≤ 12k b b b ≥≥≥, 并且通过计算得知11kkiii i ia ib===∑∑, 由归纳假设知[][]11kkiii i a i b i αα==≥∑∑.又11k k x y ++≥, 否则若11k k x y ++<, 则121121k k x x x y y y ++≤≤≤<≤≤≤,1111k k iii i ix iy++===∑∑, 矛盾.从而[][]111k ki i i i x i a i αα+==-∑∑()[]1121k k i x k i k αα+=⎧⎫=+-⎡⎤⎨⎬⎣⎦⎩⎭∑ ()[][][]1111121,k k i k ki i i i y k i k y i b i αααα+=+==⎧⎫≥+-⎡⎤⎨⎬⎣⎦⎩⎭=-∑∑∑ 由此可得[][]1111k k i i i i x i y i αα++==≥∑∑. 由归纳法知原命题对任意正整数n 均成立.证明2 记i i i z x y =-, 则120n z z z ≤≤≤≤且10ni i iz ==∑, 只需要证明[]10ni i z i α=≥∑. (1)令112211,,,n n n z z z z z -∆=∆=-∆=-, 则()11ii j j z i n ==∆≤≤∑, 所以11110nninni j j i i j j i jiz i i =======∆=∆∑∑∑∑∑,从而 121n nnj j i ji ii ===∆=∆∑∑∑. (2)于是[][][]1111nninn ijji i j j i jz i i i ααα======∆=∆∑∑∑∑∑[]221nnn nn j j j i j j i ji i ii α=====⎛⎫=∆-∆ ⎪⎝⎭∑∑∑∑∑ [][]211nnnnnnj j i j i ji ji i i i i i i αα======⎛⎫=∆⋅- ⎪⎝⎭∑∑∑∑∑∑, 故(1)转化为证明对任意的2j n ≤≤,[][]11n n n ni ji ji i i i i i αα====≥∑∑∑∑. (3)而[][][][]1111111111(3)j j j j nn n n i ji ji i i i i i i i i i i i i i αααα----========⇔≥⇔≥∑∑∑∑∑∑∑∑. 故只需要证明对任意的1k ≥, 有 [][]111111k k k ki i i i i i i i αα++====≥∑∑∑∑,而上述不等式等价于[][]()[]()()11(1)2110kki i k ki k i k i ααααα==+⋅≥⇔+--+-≥⎡⎤⎡⎤⎣⎦⎣⎦∑∑.注意到[][][]x y x y +≥+对任意实数,x y 成立, 上述不等式显然成立. 从而(3)得证.第二天4. 设A 是正整数集的无限子集, 1n >是给定的整数. 已知: 对任意一个不整除n 的素数p , 集合A 中均有无穷多个元素不被p 整除. (余红兵提供)证明: 对任意整数1m >, (),1m n =, 集合A 中均存在有限个不同元素, 其和S 满足1S ≡(mod m ), 且0S ≡ (mod n ).证明1 设p m α, 则集合A 中有一个无穷子集1A , 其中的元素都不被p 整除. 由抽屉原理知, 集合1A 有一个无穷子集2A , 其中的元素都a ≡(mod mn ), a 是一个不被p 整除的数.因(),1m n =, 故,1mn p p αα⎛⎫= ⎪⎝⎭. 由中国剩余定理, 同余方程组1(mod )0(mod )x a p mn x p αα-⎧≡⎪⎨≡⎪⎩(1)有无穷多个整数解. 任取其中一个正整数解x , 并记p B 是2A 中前x 项的集合, 则p B 中的元素之和(mod )p S ax mn ≡, 再由(1)可知1(mod )p S ax p α≡≡, 0(mod)p mnS pα≡. 设11k k m p p αα=, 并设对每个(11)i p i k ≤≤-已选出了A 的有限子集i B , 其中11\i i B A B B -⊂⋃⋃, 使得i B 中的元素和i p S 满足1(mod )i i p i S p α≡, 0(mod)i ip i mnS p α≡. (2) 考虑集合1ki i B B ==, 则B 的元素和1ki i S S ==∑. 根据(2), 我们有1(mod )i i S p α≡,(1i k ≤≤), 且0(mod )S n ≡.所以B 即满足题目要求.证明2 考虑A 中的数除以mn 的余数, 设出现无穷多次的余数依次为12,,,k ααα.首先证明()12,,,,1k m ααα=. (1)反证法. 反设有某个素数()12,,,,k p m ααα, 则由(),1m n =知p 不整除n ;又根据12,,,k ααα的定义, A 中只有有限个数不是p 的倍数, 这与题设矛盾.于是(1)获证. 从而存在正整数12,,,,k x x x y , 使得11221k k x x x ym ααα+++-=. 再取合适的正整数r 使得1(mod )rn m ≡. 则()()()1122k k rnx rnx rnx rn rmny ααα+++=+.于是从A 中依次取出i rnx 个模mn 的余数为i α的数()1,2,,i k =即满足题目要求.5. 求具有如下性质的最小正整数n : 将正n 边形的每一个顶点任意染上红, 黄, 蓝三种颜色之一, 那么这n 个顶点中一定存在四个同色点, 它们是一个等腰梯形的顶点.(冷岗松提供)解 所求n 的最小值为17. 首先证明17n =时, 结论成立.反证法. 反设存在一种将正17边形的顶点三染色的方法, 使得不存在4个同色顶点是某个等腰梯形的顶点.由于171163-⎡⎤+=⎢⎥⎣⎦, 故必存在某6个顶点染同一种颜色, 不妨设为黄色. 将这6个点两两连线, 可以得到2615C =条线段. 由于这些线段的长度只有1782⎡⎤=⎢⎥⎣⎦种可能, 于是必出现如下的两种情况之一:(1) 有某3条线段长度相同.注意到3 17, 不可能出现这3条线段两两有公共顶点的情况. 所以存在两条线段, 顶点互不相同. 这两条线段的4个顶点即满足题目要求, 矛盾.(2) 有7对长度相等的线段.由假设, 每对长度相等的线段必有公共的黄色顶点, 否则能找到满足题目要求的4个黄色顶点. 再根据抽屉原理, 必有两对线段的公共顶点是同一个黄色点. 这4条线段的另4个顶点必然是某个等腰梯形的顶点, 矛盾.所以, 17n =时, 结论成立.再对16n ≤构造出不满足题目要求的染色方法. 用12,,,n A A A 表示正n 边形的顶点(按顺时针方向), 123,,M M M 分别表示三种颜色的顶点集.当16n =时, 令{}158131416,,,,M A A A A A =,{}23671115,,,,M A A A A A =,{}312491012,,,,,M A A A A A A =. 对于1M , 14A 到另4个顶点的距离互不相同, 而另4个点刚好是一个矩形的顶点. 类似于1M , 可验证2M 中不存在4个顶点是某个等腰梯形的顶点. 对于3M , 其中6个顶点刚好是3条直径的顶点, 所以任意4个顶点要么是某个矩形的4个顶点, 要么是某个不等边4边形的4个顶点.当15n =时,令{}112358,,,,M A A A A A =,{}269131415,,,,M A A A A A =,{}347101112,,,,M A A A A A =, 每个i M 中均无4点是等腰梯形的顶点.当14n =时, 令{}11381014,,,,M A A A A A =, {}24571112,,,,M A A A A A =,{}326913,,,M A A A A =, 每个i M 中均无4点是等腰梯形的顶点.当13n =时, 令{}156710,,,M A A A A =,{}2181112,,,M A A A A =,{}3234913,,,,M A A A A A =, 每个i M 中均无4点是等腰梯形的顶点.在上述情形中去掉顶点13A , 染色方式不变, 即得到12n =的染色方法; 然后再去掉顶点12A , 即得到11n =的染色方法; 继续去掉顶点11A , 得到10n =的染色方法.当9n ≤时, 可以使每种颜色的顶点个数小于4, 从而无4个同色顶点是某个等腰梯形的顶点.上面构造的例子表明16n ≤不具备题目要求的性质. 总上所述, 所求的n 的最小值为17.6. 试确定所有同时满足223mod )n n n q p ++≡(, 223(mod )n n n p q ++≡的三元数组(,,)p q n , 其中,p q 为奇素数, n 为大于1的整数.(陈永高提供)解 易见()3,3,(2,3,)n n =均为满足要求的数组. 假设(),,p q n 为其它满足要求的一数组, 则,3,3p q p q ≠≠≠. 不妨设5q p >≥.如果2n =, 则2443q p -, 即22222(3)(3)q p p -+. 由于q 不同时整除223p -和223p +, 故2223q p -或2223q p +. 但22203p q <-<,22221(3)2p p q +<<, 矛盾. 因此3n ≥. 由22223,3n n n n n n p q q p ++++--知2222223,3n n n n n n n n p p q q p q +++++++-+-. 又p q <, ,p q 为素数, 故2223n n n n n p q p q ++++-. (1)因此得222232n n n n n n p q p q q ++++≤+-<, 从而22n p q <.由223n n n q p++-及3p >知2223n n n n q pp+++≤-<, 从而21nq p+<, 结合22np q <有44232nnnp pp++<<. 因此43n n<+, 故3n =. 这样 3553553,3p q q p --.且由555321113-=⨯⨯易知5p >. 由3553p q -知553p q -. 由费马小定理知113p p p q ---, 因此(5,1)(5,1)3p p p q ---.如果()5,11p -=, 则3p q -, 由5543223443333353(mod )3q q q q q p q -=+⋅+⋅+⋅+≡⨯- 以及5p ≥知p 5533q q --. 因此33p q -. 由3553q p -知()5535553333q p p pq ≤-<=<,矛盾.所以()5,11p -≠, 即51p -, 类似可得51q -. 由q 3p -(因7q p >≥)及3553q p -知55333p qp --, 从而 553432234333333p q p p p p p -≤=+⋅+⋅+⋅+-.由51q-知11p-及51q≥. 因此p≥, 312343433331q p p p p p ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪≤++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭44111381p p p<⋅≤-. 从而1344811p q ⎛⎫> ⎪⎝⎭. 因此3555224133334311111831p q p q p q q p q +-⎛⎫<+<+< ⎪⎝⎭,这与(1), 即335553p q p q +-矛盾.综上, ()3,3,(2,3,)n n =即为所有满足要求条件的三元数组.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
2008年交大冬令营数学试题参考答案2008

2008年交大冬令营数学试题参考答案2008.1.1一.填空题 1.若21()21xxf x -=+,1()()g x fx -=,则3()_______5g =.22.函数218x y x +=+的最大值为__________.143.等差数列中,81353a a =,则前n 项和n S 取最大值时,n 的值为__________.204.复数||1z =,若存在负数a 使得2220z az a a -+-=,则________a =25.若1cos sin 2x x -=,则33cos sin ________x x -=.11166.数列{}n a 的通项公式为n a =,则这个数列的前99项之和99_______S =.9107.2(1)(1)x x ++++……9899(1)(1)x x ++++中3x 的系数为________.4100C =3921225 8.数列{}n a 中,00a =,112a =-,26a =,334a =-,420a =,556a =-,642a =,778a =-,872a =,此数列的通项公式为_______n a =.(1)(1)(1)nnn n --+9.甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的80%,乙厂生产的占20%;甲厂商品的合格率为95%,乙厂商品的合格率为90%.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为__________.2310.若曲线221:0C x y -= 与 222:()1C x a y -+=的图像有3个交点,则a = .1±二.解答题1.30个人排成矩形,身高各不相同.把每列最矮的人选出,这些人中最高的设为a ;把每行最高的人选出,这些人中最矮的设为b . (1)a 是否有可能比b 高? (2)a 和b 是否可能相等? 1. 解:()1不可能① 若a 、b 为同一人,有a b =;② 若a 、b 在同一行、列,则均有a b ≤; ③ 若a 、b 不在同一行、列,同如图1以5*6的矩形为例,记a 所在列与b 所在行相交的人为x 。
历届中国数学奥林匹克(全国中学生数学冬令营)试题解答

√1 42
.
则|zk| = x2k + yk2 |xk| + |yk|.
n
∴ |xk| + |yk| 1.
k=1
∴ | xk| + | xk| + | yk| + | yk| 1.
xk 0
xk <0
yk 0
yk <0
其中必有一项不小于
1 4
,不妨设为第一项,则
|
xk |
1 4
.
xk 0
∴|
zk| = |
1 4
.
√
2xk .
∴
xk
zk√∈A
而4 2 < 6,
√1 42
.∴
∴|
|
zk| =
zk ∈A
zk |
1 6
.
|
xk
zk ∈A
+
i
yk |
zk ∈A
zk ∈A
即A中复数之和的模不小于
1 6
.证毕.
另证:设zk = xk + yki(xk, yk ∈ R, k = 1, 2 . . . , n)
xk
zk ∈A
最后一步是由于x2, x3, . . . , xn > 0, (x2 + · · · + xn)2 = x22 + · · · + x2n +
xixj
2 i<j n
逆命题的证明:对于任意的1
i<j
n,令xi
=
xj
=
1 2
,其余xk均等于0.则
1 2
(ai
+
aj )
2008年全国小学数学奥林匹克决赛试题及详细解答

2008年小学数学奥林匹克决赛试题1、计算:2、计算:76×65-65×54+54×43-43×32+32×21-21×10= 。
3、自然数N=123456789101112…2008是一个位数。
4、人们常常喜欢使用自己的生日数码作为密码。
例如,某人的生日是1997年3月24日,他的六位数生日数码就是970324,其中97是出生年号的十位数字和个位数字,老师说:这种数码很容易重复,因为它只占六位数字数码的很小一部分。
那么,如果不计闰年二月的29日,六位数生日数码占六位数码总数的﹪。
5、如图,小张的家是一个建在10m×10m的正方形地面上的房子,房子正好位于一个40m×40m的正方形草地的正中,他们家喂了一只羊,用15m长的绳子拴在房子一边的中点处,取π=3,那么羊能吃到草的草地面积是平方米。
6、有两个2位数,它们的乘积是1924,如果它们的和是奇数,那么它们的和= 。
7、小王和小张玩拼图游戏,他们各用若干个边长为1的等边三角形拼成一个尽可能大的等边三角形,小王有1000个边长为1的等边三角形,但是无论怎样努力,小王拼成的大等边三角形的边长都比小张拼的等边三角形的边长小,那么,小张用的边长为1的等边三角形至少有个。
8、某工厂甲、乙二车间去年计划完成税利800万元,结果,甲车间超额20﹪完成任务,乙车间超额10﹪完成任务,两车间共完成税利925万元,那么,乙车间去年完成的税利是万元。
9、一只装了若干水的水桶,我们把它的水倒出一半,然后再加入一升水,这算一次操作,第二次操作是把经过第一次操作的水桶里的水倒出一半,然后再加入一升水,如果经过7次操作后,桶里还有3升水,那么,这只水桶原来有水升。
10、n正整数,D某个数字,如果n/810=0.9D59D5…,那么n= 。
11、图一是由19个六边形组成的图形,在六边形内蚂蚁只可以选图二中箭头所指的方向之一爬到相邻的六边形内。
2008年全国高中数学联合竞赛试题与答案

sin B b = sin A = a = q ∈
5 − 1, 5 + 1 . 所以选 C.
2
2
二、填空题 (本题满分 54 分,每小题 9 分)
7. 设 f (x) = ax + b,其中 a, b 为实数,f1(x) = f (x), fn+1(x) = f (fn(x)),
n = 1, 2, · · · ,若 f7(x) = 128x + 381,则 a + b =
于是
a + b > c, b + c > a
⇒
q2 q2
− +
q q
− −
1 1
< >
0, 0
⇒
√ 5− 2
1
<
q
<
√ 5+ 2
1.
sin A cot C + cos A sin A cos C + cos A sin C sin(A + C)
sin B cot C + cos B =√sin B co√s C + cos B sin C = sin(B + C)
负的 1 局在前 2 局. 于是需要比赛 6 局的情况是在前 4 局中,甲或乙在 1, 2
局和 3, 4 局中均为 1 胜 1 负. 相应分布列为
局数ξ 概率P
2
4
6
22 +
3
12 3
C21
·
1 3
2 3
3
+
C21
·
2 3
13 3
4
12 3
22 3
于是
数学奥林匹克 习题五与参考答案

数学奥林匹克 兴趣习题五与参考答案【编号】ZSWD2023B00781、计算:20022003×20032002-20022002×20032003= 。
2、把一张纸剪成6块,从所得的纸片中取出若干块 ,每块各剪成6块;再从所有的纸片中取出若干块,每块各剪成6块……如此进行下去,到剪完某一次后停止。
所得的纸片总数可能是2000,2001,2002,2003这四个数中的 。
3、去年某校参加各种体育小组的同学中,女生占总数的,今年全校的学生和去年一样,为迎接2008年奥运会,全校今年参加各种体育小组的学生增加了20%,其中女生站总数的 。
那么,今年女生参加体育小组的的人数比去年增加 %4、一类自然数,它们各数位上的和为2003,那么这类自然数中最小的一个是 。
5、小明家的计数器是一个很巧的七位数ABCDEF。
把它中间断开,分成一个三位数ABC和一个四位数DEFG,或者分成一个四位数ABCD和一个三位数EFG,但无论前三位数和后四位数的和,还是前四位数和后三位数的和都是两个相等的四位数。
小亮家后来也买了同小明家计数器一样的号码,而且七位数比小明家的还要大。
家长认真说,这样的号码小明家的是最大的。
那么小明家的号码是 。
6、某校六年级的80名同学与2名老师共82人去公元春游,学校只准备了180瓶汽水。
总务主任向老师交待,每人供应3瓶汽水(包括老师),不足部分可到公园里购买,回校后报销。
到了公园,商店贴有告示:每5个空瓶可换一瓶汽水。
于是要求大家喝完汽水后空瓶由老师统一退瓶。
那么用最佳的方法筹划,至少还要购买 瓶汽水回学校报销。
7、小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时80秒。
爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第十根电线杆用时25秒。
如果路旁每两根电线杆的间隔为50米,小明就算出了大桥的长度。
那么,大桥的长为 米。
8、如图所示,在三角形ABC中,BD=2DC,AE=2ED。
2008年全国高中数学联赛试题及解答

2008全国高中数学联合竞赛一试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次. 一、选择题(本题满分36分,每小题6分) 1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是(C)A .0B .1C .2D .3 [解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3) [解] 因240x ax --=有两个实根12a x =-22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a , 解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A.24181B.26681C.27481D.670243[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==, 4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜.由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=, 1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==, 故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A )A. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 3 [解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为( B )A. 1B. 2C. 3D. 4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列, 则sin cot cos sin cot cos A C A B C B ++的取值范围是A. (0,)+∞B.C.D.)+∞ [解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得q q q <<⎨⎪><⎪⎩从而1122q <<,因此所求的取值范围是. 二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n = ,若7()128381f x x =+,则a b += 5 . [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -;(2) 2a <-时,()f x 当cos 1x =-时取最小值1;(3)22a -≤≤时,()f x 当cos 2ax =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-2a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种. [解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. [解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n = ,则通项n a =112(1)n n n -+. [解]1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n .令1(1)n n b a n n =++,111122b a =+= (10a =), 有112n n b b +=,故12n nb =,所以)1(121+-=n n a nn . 11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅,因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822007=+.[解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=, 6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,答12图1故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+. 12.一个半径为1的小球在一个内壁棱长为内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B CA B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅, 故44PD OD r==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则2211PP PO OP =-==. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为答13图答12图21PEF ,如答12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有11cos PM PP MPP =⋅==,故小三角形的边长12PE PA PM a =-=-.小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)1PAB P EFS S ∆∆-22())a a =--2=-.又1r =,a =1PAB P EF S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为三、解答题(本题满分60分,每小题20分) 13.已知函数|sin |)(x x f =的图像与直线y kx =)0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证: 2cos 1sin sin 34ααααα+=+.[证]()f x 的图象与直线y kx = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->.…5分分组分解12108x x x +-1086222x x x ++-864444x x x ++-642x x x ++-4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,2211(022x x ---+-->. …15分所以2x ,即x <x >故原不等式解集为(,)-∞+∞ . …20分[解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.…5分即6422232262133122(1)2(1)x x x x x x x x+<+++++=+++, )1(2)1()1(2)1(232232+++<+x x xx , …10分令3()2g t t t =+,则不等式为221()(1)g g x x<+,显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于答15图2211x x <+, …15分即222()10x x +->,解得2x >(2x <舍去),故原不等式解集为(,)-∞+∞ . …20分15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y b y b x x --=,化简得000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,1= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+, 易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则 22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--48≥=.当20(2)4x -=时,上式取等号,此时004,x y ==±.因此PBC S ∆的最小值为8. …20分2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分; 2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次. 一、(本题满分50分)如题一图,给定凸四边形ABCD ,180B D ∠+∠< ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E 是ABC ∆外接圆O 的 AB 上一点,满足:AE AB=,1BC EC=,12ECB ECA ∠=∠,又,DA DC 是O的切线,AC 求()f P 的最小值.[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅.因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅PB CA PD CA ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在ABC ∆的外接圆且在AC 上时, ()()f P PB PD CA =+⋅.…10分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为ABC ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆.…20分(Ⅱ)记ECB α∠=,则2ECA α∠=,由正弦定理有sin 2sin 3AE ABαα==,从而32sin 2αα=34sin )4sin cos αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα-,…30分解得cosα=cos α=, 故30α= ,60ACE ∠= .由已知1BC EC=()0sin 30sin EAC EAC∠-∠,有sin(30)1)sin EAC EAC ∠-=∠ ,1cos 1)sin 2EAC EAC EAC ∠-∠=∠,整理得1cos2EAC EAC ∠=∠,故tan 2EAC ∠== 可得75EAC ∠= , …40分 从而45E ∠= ,45DAC DCA E ∠=∠=∠= ,ADC ∆为等腰直角三角形.因AC =1CD =.又ABC∆也是等腰直角三角形,故BC =,212215BD =+-⋅=,BD =故min ()f P BD AC =⋅=.…50分[解法二] (Ⅰ)如答一图2,连接BD 交ABC ∆的外接圆O 于0P 点(因为D 在O 外,故0P 在BD 上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在ACD ∆内,从而在111A B C ∆内,记ABC∆之三内角分别为x y z ,,,则0180AP C y z x ∠=︒-=+,又因110B C P A ⊥,110B A P C ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=,所以111A B C ∆∽ABC ∆. …10分设11B C BC λ=,11C A CA λ=,11A B AB λ=, 则对平面上任意点M ,有0000()()f P P A BC P D CA P C AB λλ=⋅+⋅+⋅ 011011011P A B C P D C A PC A B =⋅+⋅+⋅ 1112A B C S ∆=111111MA B C MD C A MC A B ≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅()f M λ=,从而0()()f P f M ≤.由M 点的任意性,知0P 点是使()f P 达最小值的点. 由点0P 在O 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值11102()A B C f P S λ∆=2ABC S λ∆=,记ECB α∠=,则2ECA α∠=,由正弦定理有sin 2sin 3AE AB αα==,从而答一图232sin 2αα=34sin )4sin cos αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα-=, …30分解得cosα=cos α=,故30α= ,60ACE ∠= . 由已知1BC EC=()0sin 30sin EAC EAC∠-∠,有sin(30)1)sin EAC EAC ∠-=∠ ,即1cos 1)sin 2EAC EAC EAC ∠-∠=∠,整理得1cos2EAC EAC ∠=∠,故tan 2EAC ∠== 可得75EAC ∠= , …40分 所以45E ∠=︒,ABC ∆为等腰直角三角形,AC 1ABC S ∆=,因为145AB C ∠=︒,1B 点在O 上,190AB B ∠=︒,所以11B BDC 为矩形,11B C BD ===故λ=min ()21f P == …50分[解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有1212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 PA BC PC AB PA BC PC AB⋅+⋅≥⋅+⋅ ,所以 ()()()()A P C B C P B A --+--()()()()A P CBC P B A ≥--+-- (1)P C A B C B P A =-⋅-⋅+⋅+⋅()()B P C A PB AC=--=⋅,从而PA BC PC AB PD CA⋅+⋅+⋅PB AC PD AC ≥⋅+⋅()PB PD AC =+⋅BD AC≥⋅ . (2) …10分(1)式取等号的条件是 复数 ()()A P C B --与()()C P B A --同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--,A PB AC P C Bλ--=--, 所以 arg()arg()A P B A C P C B--=--,向量PC 旋转到PA 所成的角等于BC旋转到AB 所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上. 故当()f P 达最小值时P 点在ABC ∆之外接圆上,,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅. 以下同解法一.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.[证] (Ⅰ)若T 是有理数,则存在正整数,m n 使得n T m=且(,)1m n =,从而存在整数,a b ,使得 1ma nb +=.于是11ma nb a bT a b T m m+==+=⋅+⋅是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而11m p m'=⋅ 是()f x 的周期. …20分(Ⅱ)若T 是无理数,令111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,……111n n n a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a TT ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设ka 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、(本题满分50分)设0k a >,1,2,,2008k = .证明:当且仅当200811k k a =>∑时,存在数列{}n x满足以下条件:(1)010n n x x x +=<<,1,2,3,n = ; (2)lim n n x →∞存在; (3)20082007111n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n = .[证] 必要性:假设存在{}n x 满足(1),(2),(3).注意到(3)中式子可化为2008111()n n k n k n k k x x a x x -++-=-=-∑,n ∈*N,其中00x =.将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++- .…10分由(1)可设lim n n b x →∞=,将上式取极限得 112220082008()()()b a b x a b x a b x =-+-++-20081122200820081()k k b a a x a x a x ==⋅-+++∑20081kk b a =<⋅∑,因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1kk k f s a s ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10k k f a ==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =.…30分下取数列{}n x 为01n k n k x s ==∑,1,2,n = ,则明显地{}n x 满足题设条件(1),且100101n nkn k s s x s s +=-==-∑.因001s <<,故1lim 0n n s+→∞=,因此10000lim lim 11n n n n s s sx s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ).…40分最后验证{}n x 满足(3),因0()0f s =,即2008011k k k a s ==∑,从而200820082008101111()()nk n n k n n k k k n k n k k k k x x s a s s a sa x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(1),(2),(3). …50分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先, S I T = ∅ , 且 S U T = X . 其次, 如果 S 中存在 n 个元素 a1 , a2 ,L , an , a1 < a2 < L < an , 满足
ak ≤ ak −1 + ak +1 , 2
k = 2,L , n − 1 .
则 ak − ak −1 ≤ ak +1 − ak , k = 2,L , n − 1. (*)
i =1 i =1 j =1 n j =1 i= j
n
n
i
n
n
从而
n
Δ1 = ∑ Δ j ∑ i
j =2 i= j n i
n
∑i .
i =1 n n j =1 i= j
n
(2)
于是
∑ zi [iα ] = ∑ [iα ] ∑ Δ j = ∑ Δ j ∑ [iα ]
i =1 i =1 j =1
n n n ⎛ n = ∑ Δ j ∑ [iα ] − ∑ Δ j ⎜ ∑ i j =2 i= j j =2 ⎝ i= j n n ⎛ n = ∑ Δ j ∑ i ⋅ ⎜ ∑ [iα ] j =2 i= j ⎝ i= j n
α1 , α 2 ,L , α k .
首先证明 (α1 , α 2 ,L , α k , m ) = 1 .
(1)
反证法 . 反设有某个素数 p (α1 , α 2 ,L , α k , m ) , 则由 ( m, n ) = 1 知 p 不整除 n ; 又根据 α1 , α 2 ,L , α k 的定义, A 中只有有限个数不是 p 的倍数, 这与题设矛盾. 于 是 (1) 获 证 . 从 而 存 在 正 整 数 x1 , x2 ,L , xk , y , 使 得
证明 1 设 pα m , 则集合 A 中有一个无穷子集 A1 , 其中的元素都不被 p 整除. 由抽屉原理知, 集合 A1 有一个无穷子集 A2 , 其中的元素都 ≡ a (mod mn ), a 是一 个不被 p 整除的数. ⎛ mn ⎞ 因 ( m, n ) = 1 , 故 ⎜ pα , α ⎟ = 1 . 由中国剩余定理, 同余方程组 p ⎠ ⎝
∑ [iα ] ≤
i =1
n −1
n −1 [ nα ]. 2
引理证明 只需要将 [iα ] + [ (n − i )α ] ≤ [ nα ] 对 i = 1, 2,L , n − 1 求和即得. 回到原题, 我们采用归纳法对 n 进行归纳, 当 n = 1 时显然正确. 2 2 假设 n = k 时原命题成立 , 考虑 n = k + 1 . 令 ai = xi + xk +1 , bi = yi + yk +1 , 其 k k 中 i = 1, 2,L , k . 显然我们有 a1 ≤ a2 ≤ L ≤ ak , b1 ≥ b2 ≥ L ≥ bk , 并且通过计算得知
ak −1 + ak +1 , 2
k = 2,L , n − 1 .(冷岗松提供)
证明 定义 S k = {k 2 − k + 1,L , k 2 } , Tk = {k 2 + 1,L , k 2 + k } , k = 1, 2,L , n − 1 . 令 S = U S k , T = U Tk . 下面证明 S , T 即为满足题目要求的两个子集.
AA′ = 2 S ABC AA′′ AH A AH A , = = = 0 sin ∠AA′C sin ( 90 − ∠A ) cos ∠A a cos ∠A
故
1 a cos ∠A cos ∠A 1 = = = (1 − cot ∠B cot ∠C ) , RA S ABC R sin ∠B sin ∠C R 1 1 1 1 = (1 − cot ∠C cot ∠A ) , = (1 − cot ∠A cot ∠B ) , 注意到 RB R RC R
mn ). pα
设 m = p1α1 L pk α k , 并设对每个 pi (1 ≤ i ≤ k − 1) 已选出了 A 的有限子集 Bi , 其 中 Bi ⊂ A \ B1 ∪ L ∪ Bi −1 , 使得 Bi 中的元素和 S pi 满足
S pi ≡ 1(mod piαi ) , S pi ≡ 0(mod
i =1
n
∑ z [iα ] ≥ 0 .
i =1 i
n
(1)
i
令 Δ1 = z1 , Δ 2 = z2 − z1 ,L , Δ n = zn − zn −1 , 则 zi = ∑ Δ j (1 ≤ i ≤ n ) , 所以
j =1
0 = ∑ izi = ∑ i ∑ Δ j = ∑ Δ j ∑ i ,
∑ iai = ∑ ibi , 由 归 纳 假 设 知
i =1 i =1
k
k
∑ ai [iα ] ≥ ∑ bi [iα ] . 又 xk +1 ≥ yk +1 , 否 则 若
i =1 i =1
k
k
xk +1 < yk +1 , 则 x1 ≤ x2 ≤ L ≤ xk +1 < yk +1 ≤ L ≤ y2 ≤ y1 , 从而
同理,
cot ∠A cot ∠B + cot ∠B cot ∠C + cot ∠C cot ∠A = 2 ,
所以
1 1 1 2 + + = . RA RB RC R
2. 给定整数 n ≥ 3 . 证明 : 集合 X = {1, 2,3,L , n 2 − n} 能写成两个不相交的非 空子集的并, 使得每一个子集均不包含 n 个元素 a1 , a2 ,L , an , a1 < a2 < L < an , 满 足 ak ≤
i= j
n
∑ i ≥ ∑ [iα ] ∑ i ⇔ ∑ [iα ] ∑ i ≥ ∑ [iα ] ∑ i .
i= j i =1 i =1 i =1 i =1 i =1 i =1
n
j −1
j −1
n
j −1
故只需要证
明对任意的 k ≥ 1 , 有
∑ [iα ]
i =1
k +1
∑ i ≥ ∑ [iα ]
i =1 i =1 k
1 1 1 2 + + = , RA RB RC R
其中 R 为△ ABC 的外接圆半径.(熊斌提供) 证明 首先, 易知 A′, B, O, C 四点共圆. 事实上,作△ BOC 的外接圆,设它与 AO 相交于点 P 不同于 A′ ,则 ∠BPA = ∠BCO = ∠CBO = ∠CPA ,于是,△ PA′C ≅ △ PA′B ,可得 A′B = A′C , 故 AB = AC ,矛盾。 所以 ∠BCA′ = ∠BOA′ = 1800 − 2∠C , ∠A′CA1 = ∠C .
∑ ixi = ∑ iyi , 矛盾.
i =1 i =1
k +1
k +1
∑ x [iα ] − ∑ a [iα ] = x
i =1 i i =1 i
k +1
k
2 k ⎧ ⎫ + − k 1 α ⎡ ⎤ ( ) ⎨ k +1 ⎣ ⎦ k ∑ [iα ]⎬ i =1 ⎩ ⎭
2 k ⎧ ⎫ 1 ≥ yk +1 ⎨ ⎡ + ⎤ − k α ( ) ⎣ ⎦ k ∑ [iα ]⎬ i =1 ⎩ ⎭ = ∑ yi [iα ] − ∑ bi [iα ],
H A A AA2 π = = cos ∠A2 AA′ = sin ∠C , ∠A2 AH A = ∠A′AC = − ∠B . AC AA′ 2
所以△ A2 AH A ∽△ A′AC . 同理, △ A1 H A A ∽△ A′BA . 所以 ∠A2 H A A = ∠ACA′, ∠A1 H A A = ∠ABA′ , 则 ∠A1 H A A2 = 2π − ∠A2 H A A − ∠A1 H A A
不妨设 a1 ∈ Si . 由于 Sn −1 < n , 故 i < n − 1 . a1 , a2 ,L , an 这 n 个数中至少有
n − Si = n − i 个在 Si +1 ULU Sn −1 中. 根据抽屉原理, 必有某个 S j (i < j < n) 中含有
其中至少两个数 , 设最小的一个为 ak , 则 ak , ak +1 ∈ S j , 而 ak −1 ∈ S1 UL U S j −1 . 于 是 ak +1 − ak ≤ S j − 1 = j − 1 , ak − ak −1 ≥ T j −1 + 1 = j .所以 ak +1 − ak < ak − a k −1 , 与(*)矛 盾. 故 S 中不存在 n 个元素满足题中假设. 同理, T 中亦不存在这样的 n 个元素. 这表明 S , T 即为满足题中要求的两个 子集.
k k
mn ). piαi
(2)
考虑集合 B = U Bi , 则 B 的元素和 S = ∑ Si . 根据(2), 我们有
i =1 i =1
S ≡ 1(mod piαi ) ,( 1 ≤ i ≤ k ), 且 S ≡ 0(mod n) .
所以 B 即满足题目要求. 证 明 2 考 虑 A 中 的 数 除 以 mn 的 余 数 , 设 出 现 无 穷 多 次 的 余 数 依 次 为
k +1
k
∑i ,
i =1
k
而上述不等式等价于
[(k + 1)α ] ⋅ k
2 ≥ ∑ [iα ] ⇔ ∑ ⎡ ⎣( k + 1) α ⎤ ⎦ − [iα ] − ⎡ ⎣( k + 1 − i ) α ⎤ ⎦ ≥ 0.