第八章 平面连杆机构

合集下载

机械原理课件第8章平面连杆机构及其设计

机械原理课件第8章平面连杆机构及其设计
机械原理课件第8章平面 连杆机构及其设计
本章介绍了平面连杆机构的基本概念、分类、运动分析方法和设计原则,以 及通过设计实例来展示平面连杆机构的应用。让我们一起探索这个有趣而重 要的机械原理领域吧!
平面连杆机构简介
平面连杆机构是机械工程中常见的一类机构,由连杆和铰链连接而成。它们的运动以及如何将动力传递 至其他部件都是设计时需要考虑的重要因素。
以汽车发动机中的连杆机构设计为例,通过优化连杆长度和转动角度,提高 功率输出和燃油效率。

平面连杆机构的设计步骤
1
需求分析
明确机构的工作要求,包括运动形式、
构想设计
2
速度要求等。
根据需求,初步构想机构的组成和结
构形式,并进行快速仿真验证。
3
细化设计
对构想设计进行细化,确定材料、尺
制造和调试
4
寸和制造工艺等。
按照设计图纸制造机构,并进行装配 和调试,确保运动性能符合要求。
平面连杆机构设计实例
平面连杆机构的基本组成
连杆
连杆是平面连杆机构中最基本的元件,常见的包括曲柄、摇杆和滑块。
铰链
铰链是连接连杆的关节,它们允许连杆相对运动,并使机构能够完成所需的动作。
驱动力
驱动力(如电机或手动操作)通过连杆传递运动,实现机构的工作。
平面连杆机构的分类
曲柄摇杆机构
曲柄摇杆机构由一个曲柄和一 个摇杆组成,广泛用于活塞式 发动机和机械手臂等应用中。
双摇杆机构
双摇杆机构由两个摇杆组成, 常用于切割机、绞盘等需要定 向力的设备。
滑块曲柄机构
滑块曲柄机构包括一个滑块和 一个曲柄,常见于发动机的曲 轴机构。
平面连杆机构的运动分析方法
1 刚体分析法

第八章-平面连杆机构及其设计

第八章-平面连杆机构及其设计

许用值:[α] = 500(一般)、400(高速重载);or [γ] = 400 、500 设计时: αman ≤ [α] or γmin ≥ [γ]
对于铰链四杆机构, γmin 为两极限位置时的 γ 角之一,要比较得出。 γ 与 各杆尺寸有关。
五、机构的死点位置 设曲柄摇杆机构的摇杆为主动件, 在图示两个位置有:
1.已知连杆几个给定位置设计机构
已知:B1C1、B2C2、B3C3 三位置 求:A、D 和 B、C
A、D 固定铰 B、C活动铰
C
Bb
a
c
A
d
D
解:① 选定B、C点
---据结构等附加条件
B1
② 作B1B2 、 B2 B3 垂直 平分线
C1B2C2 Nhomakorabea③ 垂直 平分线交点
即为 A 铰
B3
④ 同理可得 D 铰
P Pt:∥Vc---有效推力
Pt = Pcosα Pn = Psinα
B
1
φ
A
2 4
Pn
P
C
γ
α
Vc
Pt
3
D
α ----着力点的推力方向与其速度方向的夹角,称为 压力角。∵ α↑, Pn↑
γ ----传动角, 压力角的余角。 γ ↑, Pt↑,传力效果越好。 为保证一定的传力特性,设计机构时, α 不能太大, γ 不能太小。
曲柄存在条件:
1)机架和连架杆中必有一个为最短杆; 2)最短杆 + 最长杆≤ 其它两杆之和。
b
B
可知满足杆长条件时: 连架杆为最短杆,则得曲柄摇杆机构 机架为最短杆,则得双曲柄机构
a
φ
d
A
连杆为最短杆,则得双摇杆机构(存在周转副)

第8章平面连杆机构及其设计(参考答案)

第8章平面连杆机构及其设计(参考答案)

一、填空题:1.平面连杆机构是由一些刚性构件用转动副和移动副连接组成的。

2.平面连杆机构是由一些刚性构件用低副连接组成的。

3.在铰链四杆机构中,运动副全部是转动副。

4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。

5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。

6.在铰链四杆机构中,与连架杆相连的构件称为连杆。

7.某些平面连杆机构具有急回特性。

从动件的急回性质一般用行程速度变化系数表示。

8.对心曲柄滑快机构无急回特性。

8.偏置曲柄滑快机构有急回特性。

10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。

11.机构处于死点时,其传动角等于0。

12.机构的压力角越小对传动越有利。

13.曲柄滑块机构,当取滑块为原动件时,可能有死点。

14.机构处在死点时,其压力角等于90º。

15.平面连杆机构,至少需要4个构件。

二、判断题:1.平面连杆机构中,至少有一个连杆。

(√)2.平面连杆机构中,最少需要三个构件。

(×)3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。

(√)4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。

(√)5.有死点的机构不能产生运动。

(×)6.机构的压力角越大,传力越费劲,传动效率越低。

(√)7.曲柄摇杆机构中,曲柄为最短杆。

(√)8.双曲柄机构中,曲柄一定是最短杆。

(×)9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。

(√)10.平面连杆机构中,压力角的余角称为传动角。

(√)11.机构运转时,压力角是变化的。

(√)三、选择题:1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。

A <=;B >=;C > 。

2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。

第八章平面连杆机构(动画演示下载可看)

第八章平面连杆机构(动画演示下载可看)

49
50
判别各铰链四杆机构
51

例题:
在图示铰链四杆机构中,已知:LBC=50mm,lCD=35mm lAD=30mm,AD为机架。 1)若此机构为以AB为曲柄的曲柄摇杆机构,求:lAB
的最大值;15
2)若此机构为双曲柄机构,求lAB的最小值;45 3)若此机构为双摇杆机构,求:lAB的数值
15 lAB 45
• 周转副:
• 摆动副:
5
8-8.sw f
6
曲柄摇杆机构
7
曲柄摇杆机构(搅拌机)
8
曲柄摇杆机构
9
曲柄摇杆机构(冲床模型)
10
曲柄摇杆机构
11
双曲柄机构
12
双曲柄机构
13
双曲柄机构
14
双曲柄机构
15
三、双摇杆机构
16
2、平面四杆机构的演化型式
• 改变构件的形状及尺寸 • 改变运动副的尺寸 • 选用不同的构件为机架 • 运动副元素的拟换
C
55 lAB 115
B
A
D
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
按从动件的急回运动特性设计四杆机构
设已知行程速比系数K,摇杆长度Lc,机架长度LAD,摇杆摆角ψ, 试求曲柄摇杆机构的尺寸。
解: (1)求出极位夹角
17
1、改变构件的形状及尺寸
8-6.sw f
18
19
曲柄滑块机构

《机械原理》-第八章--平面连杆机构及其设计

《机械原理》-第八章--平面连杆机构及其设计

§ 8-5 多杆机构
1.多杆机构的功用 (1)取得有利的传动角
(2)获得较大的机械利益 (3)改变从动件的运动特性 (4)实现从动件带停歇的运动 (5)扩大机构从动件的行程 (6)使机构从动件的行程可调 (7)实现特定要求下平面导引 结论 由于导杆机构的尺度参数较多,因此它可以满足更为 复杂的或实现更加精确的运动规律要求和轨迹要求。但其设计也 较困难。
c f
A
D
b c f max b c f min c b f min
平面四杆机构的基本知识
假设:
b c fmax a d d>a b c f min d a c b f d a min
a d b c a b c d a c b d
' B'C' D
b2 c 2 (d a)2 arccos 2bc
2 2 2 b c ( d a ) or " 1800 arccos 2bc
平面四杆机构的基本知识
Fr C B
F Ft V C V B F C B
A
B
D
A
D
a e
A
b
B'
α
γ
a
C VC F
多杆机构
2.多杆机构的类型 (1)多杆机构的分类 1)按杆数分 五杆、六杆、八杆机构等; 2)按自由度分 单自由度、两自由度和三自由度多杆机构。 (2)六杆机构的分类 1)瓦特(Watt)型,有Ⅰ型、Ⅱ型两种。
a) 瓦特型
b) 斯蒂芬森型
a) 瓦特Ⅰ型
b) 瓦特Ⅱ型
多杆机构
2)斯蒂芬森(Stephenson)型,有Ⅰ型、Ⅱ型、Ⅲ型三种。

第八章--平面连杆机构及其设计要点

第八章--平面连杆机构及其设计要点

第八章平面连杆机构及其设计1 什么是连杆、连架杆、连杆机构?连杆机构适用于什么场合?不适用于什么场合?2平面四杆机构的基本形式是什么?它有哪几种演化方法?其演化的目的何在?3什么叫整转副、摆转副?什么叫曲柄?曲柄一定是最短构件吗?机构中有整转副的条件是什么?4什么是连杆机构的急回特性?它用什么来表达?什么叫极位夹角?它与机构的急回特性有何关系?5什么叫连杆机构的压力角、传动角?四杆机构的最大压力角发生在什么位置?研究传动角的意义是什么?6什么叫"死点"?它在什么情况下发生?与"自锁"有何本质区别?如何利用和避免"死点"位置?7平面连杆机构设计的基本命题有哪些?设计方法有哪些?它们分别适用在什么设计条件下?8 按给定连杆位置或按给定两连架杆位置用解析法设计四杆机构时,各分别最多能精确满足几个或几组位置?9 铰链四杆机构具有两个曲柄的条件是什么?10 何为连杆机构的传动角γ?传动角大小对四杆机构的工作有何影响?11铰链四杆机构在死点位置时,推动力任意增大也不能使机构产生运动,这与机构的自锁现象是否相同?试加以说明?12 一对心曲柄滑块机构,若以滑块为机架,则将演化成机构。

13 在图示铰链四杆机构中,若机构以AB杆为机架时,则为机构;以BC杆为机架时,则为机构;以CD杆为机架时,则为机构;以AD杆为机架时,则为机构。

14在条件下,曲柄滑块机构具有急回特性。

15在曲柄摇杆机构中,当和两次共线位置时出现最小传动角。

16机构的压力角是指,压力角愈大,则机构效率。

17机构处于死点位置时,其传动角γ为度,压力角α为度。

18铰链四杆机构中,当最短杆和最长杆长度之和大于其它两杆长度之和时,只能获得机构19在平面四杆机构中,能实现急回运动的机构有,,.20在摆动导杆机构中,导杆摆角等于30º,其行程速比系数K的值为 . 21在摆动导杆机构中,若以曲柄为原动件时,该机构的压力角为 度,其传动角为度.22一对心曲柄滑块机构中,若改为以曲柄为机架,则将演化为 机构.23设计一平面连杆机构,给定条件为:主动曲柄绕轴心A作等速回转,从动件滑块作往复移动,其动程12250E E mm =,行程速比系数 1.5K =,其他参数如图所示。

第八章 连杆机构

第八章 连杆机构一、学习指导与提示连杆机构是由若干构件用低副(回转副、移动副)组成的机构,用来实现预期的运动规律或轨迹。

本章重点讨论工程中应用最广泛的平面四杆机构。

建议读者熟练掌握平面四杆机构的工作特性,这些是设计、改进和创新机构的基础。

注意以下概念:1.铰链四杆机构的基本型式及尺寸关系铰链四杆机构有三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。

这三种基本类型的差异在于是否存在曲柄和存在几个曲柄,其实质是铰链四杆机构各杆的相对长度,以及选取哪一根构件作为机架。

2.平面连杆机构的工作特性平面连杆机构的工作特性包括运动特性和传力特性两个方面。

运动特性包括各构件的位移、速度、加速度分析,从动件的急回运动特性等;传力特性包括压力角与传动角、机构的死点位置等概念。

(1)对于位移、速度、加速度分析,常用的分析方法是相对运动图解法和解析法。

由于相对运动图解法直观、方便,已可满足一般工程问题的需要,因此应重点掌握它。

请参阅第三章机构的运动分析。

(2)对于急回运动特性的分析,确定机构的极位夹角是关键。

极位夹角θ是指机构从动件处于两个极限位置时,曲柄的两个相应位置之间所夹的锐角。

机构从动件的急回运动特性用行程速比系数K 来表示,即()()θθ-+=οο180/180K 。

极位夹角θ>0,则K >1,机构具有急回特性,因此看一个机构有无急回作用,只需考察该机构有无极位夹角即可,只要θ>0,就存在急回运动,且θ角愈大,机构的急回运动愈显著。

(3)对于传力特性,应注意压力角α的定义。

在不计摩擦的情况下,机构从动件所受驱动力的方向线与受力点速度方向线之间所夹的锐角,称为压力角α。

压力角的余角,称为传动角γ。

传动角没有独立的定义,它与压力角互为余角,故总存在ο90=+γα。

对于连杆机构,因为传动角表现为连杆与从动件之间所夹的锐角,比较直观,所以有时用传动角γ来反映机构的传力性能较为方便。

压力角α是衡量机构传力性能好坏的重要指标。

第8章 平面连杆机构及其设计讲解

应用实例: 内燃机、鹤式吊、火车轮、手动冲床、牛头刨床、椭圆 仪、机械 手爪、开窗户支撑、开关门机构、折叠伞、 折叠床、 制动操作机构等。 定义:由低副(转动、移动)连接组成的平面机构。 特征:有一作平面运动的构件,称为连杆。 • 一、平面四杆机构的基本类型及应用 • 基本型式-铰链四杆机构:全部运动副为转动副的 四杆机构称为铰链四杆机构。 • 其他四杆机构都是其演化型式。
t1 (180 ) / V1 C1C2 t1 C1C2 /(180 )
当曲柄以ω继续转过180°-θ时,摇杆从C2D位置摆 到C1D,所花时间为t2 ,平均速度为V2 ,那么有: C1 C2 t2 (180 ) /
V2 C1C2 t2
C1C2 /(180 )
a、b、c、d
Y N
ad bc
双摇杆机构
以最短杆相邻杆为机架 以与最短杆相对的杆为机架
曲柄摇杆机构 双摇杆机构
以最短杆为机架
双曲柄机构
如果四杆机构两相邻杆两两相等,则为泛菱形机构 p117
泛菱形机构有三个周转副,一个摆转副 泛菱形机构当以短杆为机架时,为双曲柄机构 泛菱形机构当以长杆为机架时,为曲柄摇杆机构 泛菱形机构当相邻两杆重合时,为二杆机构 例:折叠架
C' B' B C
设计:潘存云
C C 电机
A
D
蜗轮 B B B A A 设计:潘存云 A D 蜗杆 蜗杆
D
设计:潘存云
A E E B
C
风扇座
梯形转向机构
转向条件: 所有车轮形成一个转动中心.
转向时汽车各轮纯 滚动的条件:
1. 内、外导向轮的 转速:n外>n内。 2. 内外驱动轮的转 速:n外>n内。 (靠差速器保证) L

第八章 平面连杆机构


4.定块机构 定块机构 在图8-1(c)所示的曲柄滑块机构中,如果取滑块3为机 架,便得到如图8-6所示的定块机构。如图8-7所示的手摇唧 筒就是这种定块机构的应用实例。
图8-6定块机构
图8-7 手摇唧筒
第三节 平面四杆机构的运动特性
一、曲柄摇杆机构的运动特性 曲柄摇杆机构的运动特性 1.急回特性 急回特性 急回特性 如图8-8所示的曲柄摇杆机构,设曲柄AB为原动件,摇杆 CD为从动件。在曲柄回转一周的过程中,曲柄AB与连杆BC 有两次共线,此时摇杆CD分别处于左、右两个极限位置C1D 和C2D,摆角为ψ。
图8-12死点位置错开的曲柄滑块机构
图8-10偏置曲柄滑块机构的急回特性 偏置曲柄滑块机构的急回特性
图8-11对心曲柄滑块机构的急回特性
铰链四杆机构的动力学特性
死点:传动角为零的
机构位置。即γ=0 在不计摩擦的情况下,若以CD为主动件, AB杆上所受的力恰好通过其回转中心, 构件AB不能连续转动,出现“顶死”现象。 此时,CD杆已不能驱动AB杆作连续运动。
2.导杆机构 导杆机构 当取图8-1(c)所示的曲柄滑块机构中的构件AB为机架 时,可得到如图8-3所示的导杆机构。构件2为原动件,构件4 称为导杆,滑块3相对导杆4滑动并随其一起绕A点转动。当 l1≤l2时,构件2和4均可作整周转动,称为转动导杆机构;当l1 >l2时,导杆4只能作往复摆动,称为摆动导杆机构。 导杆机构常用作牛头刨床(摆动导杆机构)和插床(转 动导杆机构)等工作机构。
平面连杆机构
机构的倒置
双曲柄机构
曲柄连杆机构
曲柄连杆机构
双摇杆机构
二、铰链四杆机构的类型判别 铰链四杆机构的类型判别 通过对铰链四杆机构运动的分析可知,铰链四杆机构有 曲柄存在的条件是: (1)最短杆与最长杆的长度之和小于等于其余两杆的 长度之和; (2)在机架和连架杆当中必有一杆是最短杆。 铰链四杆机构的类型与组成机构的各杆长度有关,也与 机架的选取有关。根据四杆机构有曲柄存在的条件,一般可 按下述方法判定其类型:

机械原理--平面连杆机构及其设计 ppt课件


9
平行四边形机构应用举例
天平
B C
A
D
平行四边形机构运动不确定问题 第一种可能 第二种可能 改进措施 加虚约束构件 或加焊接构件
注意:在长边做机架的平行四边形机构中,当各构件位于一
条直线时(两曲柄与机架共线时)从动曲柄有可能反转,即
在曲柄通过机架位置时,存在pp运t课件动不确定。
10
3)逆(反)平行四边形机构
通过机构的倒置,曲柄摇杆机构可演变成如下机构:
C
C
B
B
A
D
曲柄摇杆机构
C
A
D
双曲柄机构 C
B
B
A
D
A
D
曲柄摇杆机构
ppt课件 双摇杆机构
26
•讨论1 (1)当已判明四杆机构有曲柄存在时,取不同构件为 机架会得到不同的机构: ■取与最短杆相邻的构件为机架则为曲柄摇杆机构 ■取与最短杆相对的构件为机架则为双摇杆机构 ■取最短杆为机架则为双曲柄机构
θ称为极位夹角。
摇杆的最大摆角:
注意:急位夹角为曲柄 两特殊位置间所夹锐角
BB
1 AA
B1
C1C

B2 B B
CC
CCC2

DD
BB
ppt课件
28
急回特性 摇杆的第一个极位
进程:摇杆从第一个极位DC1摆向第二个极位DC2的运动过程
对应进程曲柄转过的角度:α1 =180°+θ
对应摇杆从 C1D 位置摆到 C2D 转过的角度:φ
(4) 机构急回特性用于非工作行程可以节省时间
本节课后作业:8-1~8-3,8-5~8-9
ppt课件
32
曲柄滑块机构急回特征的判断
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q
Q A
鹤式起重机 要求连杆上E点的轨 迹为一条水平直线
搅拌机构 要求连杆上E点的轨 迹为一条卵形曲线
甘肃工业大学专用
给定的设计条件: 1)几何条件(给定连架杆或连杆的位置) 2)运动条件(给定K)
3)动力条件(给定γmin)
设计方法:解析法、图解法
2. 用解析法设计四杆机构
思路:首先建立包含机构的各尺度参数和运动变量在内的解析 关系式,然后根据已知的运动变量求解所需的机构尺度参数。 1 )按预定的运动规律设计四杆机构
当曲柄以ω继续转过180°-θ时,摇杆从C2D,置摆到C1D,
所花时间为t2 ,平均速度为V2 ,那么有:
t2 (180 ) / V2 C1C2 t2
C2
180°+θω
C1 D
θ
B1
B2 180°-θ 因曲柄转角不同,故摇杆来回 摆动的时间不一样,平均速度 也不等。 并且:t1 >t2 V2 > V 1 摇杆的这种特性称为急回运动。用以下比值表示急回程度:
1 A
3
应用实例 C 3
4 2 A
A A 11 4Aφ 1 4 1 4 AA 1 2 B 2 34 3 C3 C
4 C 导杆机构
B
甘肃工业大学专用
1
自卸卡车举升机构
(3)选不同的构件为机架
B 1 B 2 3 1 A 2 3
A
4 C 曲柄滑块机构
B 2
1 A
3
4 C 摇块机构 A 1 B 4 2
A
4A 4
摇杆
(1)曲柄摇杆机构 特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。如雷达天线。
甘肃工业大学专用
CC 2 B 1
A
3
33 D
4
3 2 1 4 摇杆主动
2
4 1
缝纫机踏板机构
雷达天线俯仰机构 曲柄主动
(2)双曲柄机构 特征:两个曲柄
作用:将等速回转转变为等速或变速回转。如惯性筛等。
③难以实现精确的轨迹。
平面连杆机构
分类:
空间连杆机构
常以构件数命名:
四杆机构、多杆机构。
本章重点内容是介绍四杆机构。
甘肃工业大学专用
§8-2 平面四杆机构的类型和应用
1.平面四杆机构的基本型式
基本型式-铰链四杆机构,其它四杆机构都是由它演变得到的
连杆 名词解释: 曲柄—作整周定轴回转的构件; 曲柄 连杆—作平面运动的构件; 摇杆—作定轴摆动的构件; 连架杆—与机架相联的构件; 周转副—能作360 相对回转的运动副; 摆转副—只能作有限角度摆动的运动副。 三种基本型式:
D
为避免在共线位置出现运动不确定, 采用两组机构错开排列。
B’ A’ E’ F’ D’ C’ G’
A B
E F
D C
G
反平行四边形机构 --车门开闭机构
反向
甘肃工业大学专用
(3)双摇杆机构 特征:两个摇杆 应用举例:铸造翻箱机构、风扇摇头机构
特例:等腰梯形机构-汽车转向机构
B’ C’ B C A D C C 电机 D
甘肃工业大学专用
a/a=1 b/a=m c/a=n d/a=l
带入移项得: mcosθ2 i= l+ncos(θ3i+φ0 )-cos(θ1i+α0 ) msinθ2 i= nsin(θ3i+φ0 )-sin(θ1i+α0 ) 消去θ2i整理得: cos(θ1i+α0)=ncos(θ3i+φ0 )-(n/l) cos(θ3i+φ0--θ1i -α0 ) +(l2+n2+1-m2)/(2l) 令 p0=n, p1= -n/l, p2=(l2+n2+1-m2)/(2l) 则上式简化为: coc(θ1i+α0 )=P0cos(θ3i+φ0 ) + p1 cos(θ3i+φ0 -θ1i -α0 )+ p2
甘肃工业大学专用
3.四杆机构的压力角与传动角
切向分力: Pt= Pcosα = Psinγ
法向分力: Pn= Pcosγ γ↑ →Pt↑ →对传动有利。 可用γ的大小来表示机构传动力性能的好坏, 称γ为传动角 为了保证机构良好的传力性能,设计时要求: γmin≥50° γmin出现的位置:
Pn C B A A B D D
甘肃工业大学专用
B 6
C 2 3 B 1 4 D A E A B’ D
C C’
惯性筛机构
AB = CD BC = AD 特例:平行四边形机构 特征:两连架杆等长且平行,连杆作平动 实例:火车轮、摄影平台 、播种机料斗机构 、天平 香皂成型机。
B C B C D C 料斗 耕地 A
B
A
甘肃工业大学专用
180°+θ ω
B
C2
CC
1
θ
B1 D D
曲柄摇杆机构3D
A A B2
当曲柄以ω逆时针转过180°+θ时,摇杆从C1D位置摆到C2D。 所花时间为t1 , 平均速度为V1,那么有:
t1 (180 ) /
甘肃工业大学专用
V1 C1C2 t1 C1C2 /(180 )
当∠BCD≤90°时,γ=∠BCD
当∠BCD>90°时, γ=180°- ∠BCD 当∠BCD最小或最大时, 都有可能出现γmin 此位置一定是: 主动件与机架共线两处之一。
甘肃工业大学专用
γ
C γPα Pt
P
由余弦定律有: ∠B1C1D=arccos[b2+c2-(d-a)2]/2bc 若∠B1C1D≤90°,则 γ1=∠B1C1D ∠B2C2D=arccos[b2+c2-(d+a)2]/2bc 若∠B2C2D>90°, 则 γ2=180°-∠B2C2D
1)满足预定的运动规律,两连架杆转角对应,如起落架、牛头刨。
3)满足预定的轨迹要求,如鹤式起重机、搅拌机等。
甘肃工业大学专用
A
D B’ C’ B C A
x B
D
C
y=logx
函数机构 飞机起落架 要求两连架杆的转角 满足函数 y=logx
要求两连架杆转角对应
甘肃工业大学专用
A C E B D
B C D E
B A a d b
c D
甘肃工业大学专用
当满足杆长条件时,说明存在周转副,当选择不同的 构件作为机架时,可得不同的机构。如: 曲柄摇杆、 双曲柄、 双摇杆机构。
甘肃工业大学专用
2.急回运动和行程速比系数 在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆 位于两个极限位置,简称极位。 此两处曲柄之间的夹角θ 称为极位夹角。
1 1 4 3 3 2 4 导杆机构
甘肃工业大学专用
2 摇块机构
§8-3 有关平面四杆机构的一些基本知识
1.平面四杆机构有曲柄的条件 设a<d,连架杆若能整周回转,必有两次与机架共线 则由△B’C’D可得:三角形任意两边之和大于第三边 a+d≤b+c 则由△B”C”D可得: 最长杆与最短杆的长度之 和≤其他两杆长度之和 b≤(d-a)+c 即: a+b≤d+c c≤(d-a)+ b 即: a+c≤d+b 将以上三式两两相加得: a≤b, a≤c, a≤d AB为最短杆 B’ 若设a>d,同理有: d≤a, d≤b, d≤c
偏心轮机构
2 4
2 4 导杆机构
3 C 摆动导杆机构 转动导杆机构
曲柄滑块机构
甘肃工业大学专用
应用实例
D C 3 C C1
3
6 E 5 4
2 B A
B
2
4
1
C2 1
D
小型刨床
A
牛头刨床
甘肃工业大学专用
(3)选不同的构件为机架
B 1 B 2 3 1 A 2 3
A
4 C 曲柄滑块机构
B 2
4 C 摇块机构
特征:有一作平面运动的构件,称为连杆。 特点: ①采用低副。面接触、承载大、便于润滑、不易磨损 形状简单、易加工。 ②改变杆的相对长度,从动件运动规律不同。 ③连杆曲线丰富。可满足不同要求。 ④构件呈“杆”状、传递路线长。
甘肃工业大学专用
缺点: ①构件和运动副多,累积误差大、运动精度低、效率低。 ②产生动载荷(惯性力),不适合高速。

180 K 180
K 1 可得 : 180 K 1
曲柄滑块机构的急回特性
180°+θ
180°+θ
θ
θ
180°-θ
180°-θ
思考题: 对心曲柄滑块机构的急回特性如何? 导杆机构的急回特性 应用:空行程节省运动时间,如牛头刨、往复式输送机等。
对于需要有急回运动的机构,常常是根据需要的行程速比系数K, 先求出θ ,然后在设计各构件的尺寸。
γmin=[∠B1C1D, 180°-∠B2C2D]min 机构的传动角一般在运动 链最终一个从动件上度量。 B2
车门 γ v
甘肃工业大学专用
C2
a
γ2
b c
γ1
C1
B1
d
4.四杆机构的死点
摇杆为主动件,且连杆与 曲柄两次共线时,有: γ=0 此时机构不能运动.
称此位置为: “死点”
P
P
避免措施: 两组机构错开排列,如火车轮机构; 靠飞轮的惯性(如内然机、缝纫机等)。
蜗轮 B B B A A A 蜗杆 蜗杆
D
E E
A
C
B
风扇座
甘肃工业大学专用
2.平面四杆机构的演化型式
(1) 改变构件的形状和运动尺寸
相关文档
最新文档