八年级数学轴对称最短路径题专题难点训练
初中数学八年级上册课题学习_最短路径问题练习题含答案

初中数学八年级上册课题学习最短路径问题练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,已知Rt△ABC中,∠B=90∘,AB=3,BC=4,D,E,F分别是边AB,BC,AC上的动点,则DE+EF+FD的最小值为()A.4.8B.6C.10D.无法确定2. 如图,在矩形ABCD中,AB=6,AD=8,点P在矩形内部,且满足S PCD=1 4S长方形ABCD,则点P到A,B两点的距离之和PA+PB的最小值为( )A.8B.10C.14D.2√133. 如图,直线l表示石家庄的太平河,点P表示朱河村,点Q表示黄庄村,欲在太平河l 上修建一个水泵站(记为点M),分别向两村供水,现有如下四种修建水泵站供水管道的方案,图中实线表示修建的管道,则修建的管道最短的方案是()A. B. C. D.4. 如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )A. B.C. D.5. 如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ//BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.5√2B.√2C.4√2D.3√26. 如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15∘,P为CD上的动点,则|PA−PB|的最大值是()A.4B.5C.6D.87. 如图,一个实心圆柱高8cm,底面周长为30cm,一只蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是())cm C.√161cm D.2√241cmA.17cmB.(8+30π8. 已知:如图,四边形ABCD中,∠ABC=60∘,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P是对角线BD上的一个动点,则PE+PC的最小值为()A.√3B.3C.2D.√229. 如图,在长方体中,AB=5,BC=4,CC1=3,动点从A1出发沿长方体的表面运动到达C点,则动点的最短距离是()A.√90B.√80C.√78D.√7410. 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A.6B.8C.10D.1211. 一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B 处,则小虫所爬的最短路径长是(π取3)________.AC,AB=8,E是AB上12. 如图,在Rt△ABC中,∠CAB=30∘,∠C=90∘.AD=14任意一点,F是AC上任意一点,则折线DEFB的最短长度为________.13. 小明在广场上散步,先向东走12m后,再向北又走了9m,现要以最短距离________m回到原地.14. 如图,菱形ABCD中,∠BAD=45∘,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于2,则AB=________.15. 对于平面直角坐标系中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“对称点”;当QM=QN=MN时,称点Q为线段MN的“完美对称点”.(1)如图1,点A坐标为(4,0),有点Q1(0,4),Q2(2,−4),Q3(1,√3),则线段OA的“对称点”是________.(填“Q1”"Q2"或 "Q3")(2)如图2,已知Q(2,2√3)为线段OA的“完美对称点”,D为线段OQ的中点,B为线段OA 的一个“对称点”,则BO+BD的最小值为________.16. 如图,在△ABC中,AB=3,AC=4,EF垂直平分BC,点P为直线EF上一动点,则△ABP周长的最小值是________.17. 圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是________.18. 如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF 交AC于点F,若D为BC边上的动点,M为线段EF上一动点,则BM+DM最小值为________.19. 如图,已知蚂蚁沿着长为2的正方体表面从点A出发,经过3个侧面爬到点B,如果它运动的路径是最短的,则此经过3个侧面的最短路径长为________.20. 如图,在平面直角坐标系xOy中,A(1,0),B(3,0),点P为y轴正半轴上的一个动点,以线段PA为边在PA的右上方作等边△APQ,连接QB,在点P运动的过程中,线段QB长度的最小值为________.21. 如图,若∠AOB=30∘,点P在∠AOB内,且OP=2cm,分别在OA、OB上找一点E,F使△PEF的周长最小,并求△PEF的周长最小值.22. 如图,有一个圆柱高为6cm,底面半径为2cm,圆柱下底面的A点有一只蚂蚁,它想吃到上底边与点A相对B处的食物,需要爬行的最短路程是多少(π取3)?23. 在直线m上找一点C,使CA+CB的值最小.24. 如图,一只小蚂蚁要从A点沿长方体木块表面爬到B点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm、8cm、6cm,试计算小蚂蚁爬行的最短距离.25. 有一圆柱体高为8cm,底面圆的半径为2cm,如图所示,在AA1上的点Q处有一只蜘蛛,QA1=3cm,在BB1上的点P处有一只苍蝇,PB=2cm.(1)蜘蛛要从点Q处沿圆柱体表面去吃点P处的苍蝇,请在图中大致画出蜘蛛爬行的最短路径;(2)求蜘蛛爬行的最短路径长.(π取3)26. 如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?x2+1具有如下性质:该抛物线上任意一点到定点F(0, 2)的距离27. 已知抛物线y=14x2+1上一个与到x轴的距离始终相等,如图,点M的坐标为(√3,3),P是抛物线y=14动点.(1)若PF=5,求点P的坐标;(2)求△PMF周长的最小值.28. 同学们在灯管上缠绕5cm彩带.已知灯管长100cm,灯管截面圆的周长是15cm,彩带至少应剪多长?29. 如图所示,P、Q是△ABC中AB、AC边上的点,你能在BC边上确定一点R,使△PQR的周长最小吗?30. 如图,Q为马厩甲,AB为草地边缘(下方为草地),CD为一河流,放牧人欲从马厩甲牵马先去草地M处让马吃草,然后到河边N处饮水,最后回到马厩乙P.请你帮他确定一条最佳行走路线QM→MN→NP,使其所走路程最短.31. 判断说理:元旦联欢会上,八年级(1)班的同学们在礼堂四周摆了一圈长条桌子,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间B处放了一把椅子,游戏规则是这样的:甲、乙二人从A处(如图)同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.张晓和李岚比赛,比赛一开始,只见张晓直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见李岚已经手捧苹果和香蕉稳稳地坐在B处的椅子上了.如果李岚不比张晓跑得快,张晓若想获胜有没有其他的捷径?若有,请说明你的捷径,若没有,请说明理由.32. 如图,矩形ABCD,AB=6cm,AD=12cm,P是AB上的动点,Q是AD上的动点.P以1cm/s的速度从B到A,Q以2cm/s的速度从A到D,P到A(或Q到D)时停止运动.求PQ+QC最小值.33. 如图,A,B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.34. 如图,在四边形ABCD中,P为BC的中点,试在CD边上找一点Q,使△APQ的周长最小.35.作图题:现要在形如△ABC的地面范围内建一中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.(要求:保留作图痕迹,并用适当的文字说明作图方法)36. 如图,有一只蚂蚁从一个圆柱体的A点沿着侧面绕圆柱至少一圈爬到B点,已知圆柱的底面半径为1.5cm,高为12cm,则蚂蚁所走过的最短路径是多少?(π取3)37. 在一条笔直公路上分布A,B,C,D,E五个工厂(各相邻工厂之间的距离均不相等),为方便这些工厂的员工,现要在公路上设一个汽车站,使各工厂到汽车站的距离之和最小.【简化分析】(1)假若由三个工厂A,B,C时,汽车站的位置有五种情形:①A厂门口,②AB之间,③B厂门口,④BC之间,⑤C厂门口.【分类讨论】①当车站设在A工厂门口时,则A厂到汽车站的距离为0,B厂到汽车站的距离为AB,C厂到汽车站的距离为AB+BC,所以各工厂到车站的距离之和为________②当车站设在A,B两工厂之间的P点时,则A厂到汽车站的距离为AP,B厂到汽车站的距离为BP,C厂到汽车站的距离为BP+BC,所以各工厂到车站的距离之和为_________③当车站设在B工厂门口,则各工厂到汽车站的距离之和为_________④当车站设在B,C两工厂之间的Q点时,则各工厂到汽车站的距离之和为_________⑤当车站设在C工厂门口,则各工厂到汽车站的距离之和为________【总结归纳】综上可知:汽车站设在________时,各工厂到汽车站的距离之和最小.【问题解决】 (2)当有A,B,C,D,E五个工厂时,汽车站设在哪里,才能使各工厂到汽车站的距离之和最小?请说明理由.38. 如图,A,B,C,D为四家超市,其中超市D距A,B,C三家超市的路程分别为25km,10km,5km.现计划在A,D之间的道路上建一个配货中心P,为避免交通拥堵,配货中心与超市之间的距离不少于2km.假设一辆货车每天从P出发为这四家超市送货各次,由于货车每次仅能给一家超市送货,因此每次送货后均要返回配货中心P,重新装货后再前往其他超市.设P到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)直接写出配货中心P建在什么位置,这辆货车每天行驶的路程最短?最短路程是多少?39. 如图,一块砖宽AN=5cm,长ND=10cm,CD上的点B距地面的高BD=8cm,地面上A处的一只蚂蚁到B处吃食,要爬行的最短路线是多少?40. 下图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?(不写做法,保留作图痕迹)参考答案与试题解析初中数学八年级上册课题学习最短路径问题练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】轴对称——最短路线问题【解析】此题暂无解析【解答】解:如图作F关于直线AB的对称点M,作F关于直线BC的对称点N,连接BM,BN,BF,EF,EN,DE,DM.∵∠MBA=∠FBA,∠CBN=∠CBF,∠ABF+∠CBF=90∘,∴∠MBF+∠FBN=180∘,∴M、B、N共线,∵DF+DE+EF=DM+DE+EN,∵DM+DE+EN≥MN,∴当D、E、M、N共线时,且BF⊥AC时,DE+EF+FD的值最小,最小值=2BF,∵BF⊥AC,∴12⋅AC⋅BF=12⋅AB⋅AC,∴BF=AB⋅BCAC =125=2.4,∴DE+EF+FD的最小值为4.8.故选A.2.【答案】B【考点】路径最短问题【解析】此题暂无解析【解答】解:∵S PCD=14S长方形ABCD,设△PCD的CD边上的高为ℎ∴12CD⋅ℎ=14CD⋅AD,又AD=8,∴ℎ=4,∴动点P在与CD平行且与CD的距离为4的直线l上,如图,作D关于直线l的对称点A,连接AC,则AC的长就是所求的最短距离.在Rt△ADC中,CD=AB=6,AD=8∴AC=√AD2+CD2解得AC=10.故选B.3.【答案】B【考点】轴对称——最短路线问题【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连结QP′交直线l于M,根据两点之间,线段最短,可知选项B修建的管道,则所需管道最短.故选B.4.【答案】D【考点】轴对称——最短路线问题【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连结QP′交直线l于M.根据两点之间,线段最短,可知选项D铺设的管道,所需管道最短.故选D.5.【答案】A【考点】路径最短问题【解析】此题暂无解析【解答】此题暂无解答6.【答案】A【考点】轴对称——最短路线问题【解析】作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|PA−PB|的值最大的点,|PA−PB|=A′B,连接A′C,根据等腰直角三角形的性质得到∠CAB=∠ABC=45∘,∠ACB=90∘,根据三角形的内角和得到∠ACD=75∘,于是得到∠CAA′=15∘,根据轴对称的性质得到A′C=BC,∠CA′A=∠CAA′=15∘,推出△A′BC是腰三角形,根据等边三角形的性质即可得到结论.【解答】解:作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|PA−PB|的值最大的点,|PA−PB|=A′B,连接A′C,∵△ABC为等腰直角三角形,AC=BC=4,∴∠CAB=∠ABC=45∘,∠ACB=90∘,∵∠BCD=15∘,∴∠ACD=75∘,∴∠CAA′=15∘,∵AC=A′C,∴A′C=BC,∠CA′A=∠CAA′=15∘,∴∠ACA′=150∘,∵∠ACB=90∘,∴∠A′CB=60∘,∴△A′BC是等腰三角形,∴A′B=BC=4.故选A.7.【答案】A【考点】平面展开-最短路径问题【解析】沿过A点和过B点的母线剪开,展成平面,连接AB,则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程,求出AC和BC的长,根据勾股定理求出斜边AB即可.【解答】如图所示:沿过A点和过B点的母线剪开,展成平面,连接AB,则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程.×30=15(cm),∠C=90∘,BC=8cm,在Rt△ABC中,∵AC=12∴AB=√AC2+BC2=17(cm).故选:A.8.【答案】A【考点】轴对称——最短路线问题【解析】根据菱形的判定,得出平行四边形ABCD为菱形,作出E关于BD的对称点E′,转化为线段长度的问题,再根据等边三角形的性质判断出△BCE′为直角三角形,利用勾股定理即可求出CE′的长.【解答】解:∵BA=BC=2,∴平行四边形ABCD为菱形.∴∠ABD=∠CBD,∴BD是∠ABC的平分线.作E关BD的对称点E′,连接CE′,PE,则PE=PE′,此时,PE+PC=PE′+PC=CE′,CE′即为PE+PC的最小值.∵∠ABC=60∘,又∵BE′=BE,∴△E′BE为正三角形,EE′=1,∠ABE=60∘,故EE′=EC,∠EE′C=∠ECE′=30∘,∴∠BE′C=60∘+30∘=90∘,在Rt△BCE′中,CE′=√22−12=√3.故选:A.9.【答案】D【考点】平面展开-最短路径问题【解析】连接AC1,求出AC1的长即可,分为三种情况:画出图形,根据勾股定理求出每种情况时AC1的长,再找出最短的即可.【解答】解:展开成平面后,连接AC1,则AC1的长就是绳子最短时的长度,分为三种情况:如图1,AB=5,BC=4,CC1=BB1=3,在Rt△ABC′中,由勾股定理得:AC1=√AB2+(BB1+B1C1)2=√25+49=√74;如图2,AC=5+4=9,CC1=3,在Rt△ACC1中,由勾股定理得:AC1=√AC2+CC12=√81+9=√90>√74,如图3,同法可求AC1=√(3+5)2+42=√80>√74,即绳子最短时的长度是√74,故选D.10.【答案】C【考点】轴对称——最短路线问题【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF 的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC⋅AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+1BC=8+1×4=8+2=10.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】30cm【考点】平面展开-最短路径问题【解析】先将圆柱的侧面展开为一矩形,而矩形的长就是地面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC =3×16÷2=24,在Rt △ABC 中,由勾股定理,得AB =√AC 2+BC 2=√242+182=30cm .故答案为:30cm .12.【答案】 √67【考点】轴对称——最短路线问题【解析】利用轴对称求最短路径的方法,重新构造直角三角形,进而利用勾股定理求出即可.【解答】解:作D 点关于AB 的对称点D′,B 点关于AC 的对称点B′,连接D′B′分别交AB 于点E ,AC 于点F ,作B′R ⊥AB ,过点D′作D′W ⊥B′R 于点W ,∵ ∠CAB =30∘,∠C =90∘.AD =14AC ,AB =8, ∴ BC =4,AC =4√3,则AD =√3,BB′=8,B′R =4√3,∴ DT =12AD =√32,AT =√AD 2−DT 2=32,BR =4, ∴ RW =√32,D′W =8−32−4=52, ∴ B′W =9√32,B′D′=√D′W 2+B′W 2=(52)(9√32)=√67.故答案为:√67.13.【答案】15【考点】勾股定理路径最短问题【解析】此题暂无解析【解答】解:设小明散步原地为O,则先向东走12m到达A点后,再向北又走了9m到达B点,则要回到原地,最短行走距离为OB的距离,根据勾股定理可得OB=√122+92=15m.故答案为:15.14.【答案】2√2【考点】轴对称——最短路线问题【解析】先找出点E关于AC的对称点E′,过点E′作E′F⊥BC于F,交AC于P,根据轴对称确定最短路线问题以及垂线段最短可知E′F为PE+PF的最小值的最小值,过点B作BG⊥AD 于G,解直角三角形求出AB即可.【解答】解:如图,点E关于AC的对称点E′,过点E′作E′F⊥BC于F,交AC于P,即E′F为PE+PF的最小值.过点B作BG⊥AD于G,易知BG=FE′=2,在Rt△ABG中,∠BAG=45∘,∴AB=BG÷sin45∘=2√2.故答案为:2√2.15.【答案】Q22.【考点】图形间的距离定义新图形路径最短问题坐标与图形性质【解析】(1)找到OA的垂直平分线即可找到对应的点.(2)利用“完美对称点”的特征,作出图象,从而确定最小值.【解答】解:(1)当点Q满足QO=QA时,Q为OA的“对称点”,∴ Q在线段OA的垂直平分线上,∵ A(4,0),∴ 线段OA的垂直平分线是直线x=2,∵Q2(2,−4),∴ 线段OA的“对称点”是Q2.故答案为:Q2.∵ Q(2,2√3)为线段OA的“完美对称点”,∴ QO=OA=QA,∴ △QOA是等边三角形,过点Q作QH⊥OA于H,则直线QH为线段AO的垂直平分线,如图:∵ B为线段OA的一个“对称点”,∴ BO=BA,∴ B是直线QH上的一点,显然,当Q、B重合时,BQ+BD有最小值,此时BQ+BD=BD,∵ Q(2,2√3),∴ OQ=√22+(2√3)2=4,∵ D为线段OQ的中点,∴ DQ=12OQ=12×4=2,∴ BD=2,∴ BQ+BD的最小值为2. 故答案为:2.16.【答案】7【考点】轴对称——最短路线问题根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.【解答】解:∵EF垂直平分BC,∴B,C关于EF对称.设AC交EF于点D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=7.故答案为:7.17.【答案】【考点】路径最短问题【解析】此题暂无解析【解答】此题暂无解答18.【答案】6cm【考点】轴对称——最短路线问题【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC⋅AD=12×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴BM+DM最小值为6cm.故答案为:6cm.19.2√17【考点】平面展开-最短路径问题【解析】将正方体展开,根据两点之间线段最短,构造出直角三角形,进而求出最短路径的长.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB=√82+22=2√17,故答案为:2√17.20.【答案】2【考点】勾股定理路径最短问题【解析】【解答】解:当PQ//x轴时QB长度最小,设Q(m,n),P(0,n),△APQ为等边三角形,∴1+n2=(m−1)2+n2,解得m=2或m=0(舍),∴PQ=PA=m=2,∴1+n2=4,解得n=√3,故BQ=√3+1=2.故答案为:2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点E,与OB交于点F,此时△PEF的周长最小.从图上可看出△PEF的周长就是P1P2的长,∵∠AOB=30∘,∴∠P1OP2=60∘.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=2cm.∴△PEF周长的最小值是2cm.【考点】轴对称——最短路线问题【解析】作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点E,与OB交于点F,此时△PEF的周长最小,然后根据∠AOB=30∘,点P在∠AOB内,点E、F分别在边OA、OB上移动,如果OP=2cm,可求出值.【解答】解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点E,与OB交于点F,此时△PEF的周长最小.从图上可看出△PEF的周长就是P1P2的长,∵∠AOB=30∘,∴∠P1OP2=60∘.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=2cm.∴△PEF周长的最小值是2cm.22.【答案】需要爬行的最短路程是6√2cm.【考点】平面展开-最短路径问题【解析】要想求得最短路程,首先利用BC长等于底面圆的一半,即可求出BC的长.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【解答】解:利用展开图,根据题意可得:BC=2π≈6cm,AC=6cm,AB=√BC2+AC2=6√2(cm),23.【答案】解:如图,点C即为所求.【考点】轴对称——最短路线问题【解析】作点A关于直线m的对称点A′,连接A′B交直线m于点C,则CA+CB的值最小.【解答】解:如图,点C即为所求.24.【答案】解:展开后有三种不同的情况如图,如图1,AB=√(10+8)2+62=√360,如图2,AB=√102+(6+8)2=√296,如图3,AB=√82+(10+6)2=√320,∵√296<√320<√360,∴小蚂蚁爬行的最短路线为√296cm.【考点】平面展开-最短路径问题【解析】根据题意画出不同数值的三种情况,根据勾股定理求出每种情况的AB,再比较即可.【解答】解:展开后有三种不同的情况如图,如图1,AB=√(10+8)2+62=√360,如图2,AB=√102+(6+8)2=√296,如图3,AB=√82+(10+6)2=√320,∵√296<√320<√360,∴小蚂蚁爬行的最短路线为√296cm.25.【答案】蜘蛛爬行的最短路径长是3√5cm.【考点】平面展开-最短路径问题【解析】(1)划出符合条件的QP即可;(2)展开后构造直角三角形,根据勾股定理求出线段QP的长即可.【解答】解:(1)如图:(2)如图,沿AA1剪开,过Q作QM⊥BB1于M,连接QP,则PM=8−3−2=3(cm),QM=A1B1=1×2×π×2=6(cm),2在Rt△QMP中,由勾股定理得:PQ=√QM2+PM2=√32+62=3√5(cm),答:蜘蛛爬行的最短路径长是3√5cm.26.【答案】解:(1)如图所示:∵正方形的棱长为2,∴AC=2AB=4,CG=2,AG=√AC2+CG2=√16+4=√20=2√5,∴蚂蚁吃到这粒米需要爬行的最短距离是2√5;(2)如图所示:由题意可知:AN=AB+BN=3,MN=2,∴AM=√AN2+MN2=√32+22=√13,∴蚂蚁要吃到这粒米的最短距离是√13.【考点】平面展开-最短路径问题【解析】(1)根据图形是立方体得出最短路径只有一种情况,利用勾股定理求出即可.(2)把此正方体的点M所在的面展开,然后在平面内,利用勾股定理求点A和点M间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2长,另一条直角边长等于3,利用勾股定理可求得.【解答】解:(1)如图所示:∵正方形的棱长为2,∴AC=2AB=4,CG=2,AG=√AC2+CG2=√16+4=√20=2√5,∴蚂蚁吃到这粒米需要爬行的最短距离是2√5;(2)如图所示:由题意可知:AN=AB+BN=3,MN=2,∴AM=√AN2+MN2=√32+22=√13,∴蚂蚁要吃到这粒米的最短距离是√13.27.【答案】解:(1)由题意可知,当PF=5时,P到x轴的距离为5,∴P(x,5),将P(x,5)代入y=14x2+1,得5=14x2+1,解得,x=±4,∴点P的坐标为(4,5)或(−4,5).(2)过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示:∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,MF=√(√3−0)2+(3−2)2=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.【考点】路径最短问题二次函数的性质二次函数图象上点的坐标特征点到直线的距离垂线段最短【解析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值,【解答】解:(1)由题意可知,当PF=5时,P到x轴的距离为5,∴P(x,5),将P(x,5)代入y=14x2+1,得5=14x2+1,解得,x=±4,∴点P的坐标为(4,5)或(−4,5).(2)过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示:∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,MF=√(√3−0)2+(3−2)2=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.28.【答案】彩带至少应剪125cm.【考点】平面展开-最短路径问题【解析】将灯管上缠的彩带展开,得到直角三角形,用勾股定理解答即可.【解答】解:如图,展开后可得AB=15×5=75cm,BC=100cm,AC=√AB2+BC2=√752+1002=125cm.29.【答案】解:如图所示:作P点关于BC的对称点P′,连接P′Q,与BC交于点R,R点即为所求.【考点】轴对称——最短路线问题【解析】作P点关于BC的对称点P′,连接P′Q,与BC交于点R,由两点之间线段最短可知△PQR 周长最小即为所求点.【解答】解:如图所示:作P点关于BC的对称点P′,连接P′Q,与BC交于点R,R点即为所求.30.【答案】解:使其所走路程最短的最佳行走路线QM→MN→NP如图:【考点】路径最短问题【解析】此题暂无解析【解答】解:使其所走路程最短的最佳行走路线QM→MN→NP如图:31.【答案】解:如图,假设北边和东边条桌各为一个平面镜,光线经过两次反射到达B点.因此,分别以北条桌和东条桌为对称轴,找到A,B的对称点A′,B′,连接A′B′,交两长条桌于C,D两点,则折线ACDB就是捷径.【考点】轴对称——最短路线问题【解析】利用轴对称得出找到A,B的对称点A′,B′,连接A′B′,交两长条桌于C,D两点,则折线ACDB就是捷径.【解答】解:如图,假设北边和东边条桌各为一个平面镜,光线经过两次反射到达B点.因此,分别以北条桌和东条桌为对称轴,找到A,B的对称点A′,B′,连接A′B′,交两长条桌于C,D两点,则折线ACDB就是捷径.32.【答案】解:设t秒后PQ+QC最小,取点P关于AD的对称点P′,连接CP′与AD相交,由轴对称确定最短路线问题,交点即为所求的使PQ+QC最小的点Q的位置,∵AB=6cm,AD=12cm,∴AP=AP′=6−t,AQ=2t,QD=12−2t,∵AB // CD,∴△AP′Q∽△DCQ,∴AP′CD =AQQD,即6−t6=2t12−2t,整理得,t2−18t+36=0,解得t1=9−3√5,t2=9+3√5(舍去),所以,BP′=AB+AP′=6+(6−9+3√5)=3+3√5,所以,P′C=√BP′2+BC2=√(3+3√5)2+122=3√22+2√5,即PQ+QC最小值是3√22+2√5.【考点】轴对称——最短路线问题【解析】设t秒后PQ+QC最小,取点P关于AD的对称点P′,连接CP′与AD相交,根据轴对称确定最短路线问题,交点即为所求的使PQ+QC最小的点Q的位置,表示AP′、AQ、QD,然后根据△AP′Q和△DCQ相似,利用相似三角形对应边成比例列式求出t,再表示出BP′,然后利用勾股定理列式计算即可得解.【解答】解:设t秒后PQ+QC最小,取点P关于AD的对称点P′,连接CP′与AD相交,由轴对称确定最短路线问题,交点即为所求的使PQ+QC最小的点Q的位置,∵AB=6cm,AD=12cm,∴AP=AP′=6−t,AQ=2t,QD=12−2t,∵AB // CD,∴△AP′Q∽△DCQ,∴AP′CD =AQQD,即6−t6=2t12−2t,整理得,t2−18t+36=0,解得t1=9−3√5,t2=9+3√5(舍去),所以,BP′=AB+AP′=6+(6−9+3√5)=3+3√5,所以,P′C=√BP′2+BC2=√(3+3√5)2+122=3√22+2√5,即PQ+QC最小值是3√22+2√5.33.【答案】解:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,作出AB的中垂线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+ BP是最小的.路径最短问题作图—应用与设计作图线段垂直平分线的性质【解析】根据中垂线和轴对称及三角形的三边关系求解.【解答】解:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,作出AB的中垂线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+ BP是最小的.34.【答案】解:如图所示,点Q即为所求点.【考点】轴对称——最短路线问题作PH⊥CD于点H,延长PH到点P′,使P′H=PH,连接AP′交CD于点Q,连接PQ,则D点Q就是△APQ的周长最小的点.【解答】解:如图所示,点Q即为所求点.35.【答案】【考点】路径最短问题【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:如图所示,∵圆柱的底面半径为1.5cm,高为12cm,∴AC=2π×1.5≈9cm,∴AB=√AC2+BC2=√92+122=15(cm).答:蚂蚁所走过的最短路径是15cm.【考点】平面展开-最短路径问题【解析】根据题意画出圆柱的侧面展开图,再利用勾股定理求解即可.【解答】解:如图所示,。
13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册

13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册题型一、两定点一动点作图问题1.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使P A+PB最短.下面四种选址方案符合要求的是()A.B.C.D.2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.3.如图,直线l是一条公路,A、B是两个村庄.欲在l上的某点处修建一个车站,直接向A、B两地提供乘车服务.现有如下四种建设方案,图中实线表示铺设的行走道路,则铺设道路最短的方案是()A.B.C.D.4.为了促进A,B两小区居民的阅读交流,区政府准备在街道l上设立一个读书亭C,使其分别到A,B两小区的距离之和最小,则下列作法正确的是()A.B.C.D.5.如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在()A.A点B.B点C.C点D.D点题型二、两定点一动点求线段和最小值1.如图,在△ABC中,∠ABC=60°,AD⊥BC于D点,AB=12,.若点E、F分别是线段AD、线段AB上的动点,则BE+EF的最小值是()A.6B.12C.D.2.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E、F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.6D.3.53.如图,在△ABC中,∠A=90°,AB=6,AC=8,BC=10,CD平分∠BCA交AB于点D,点P,Q分别是CD,AC上的动点,连接AP,PQ,则AP+PQ的最小值是()A.6B.5C.4.8D.44.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值()A.2.4B.4C.5D.4.85.如图,点N在等边△ABC的边BC上,CN=6,射线BD⊥BC,垂足为点B,点P是射线BD上一动点,点M是线段AC上一动点,当MP+NP的值最小时,CM=7,则AC的长为()A.8B.9C.10D.126.如图,已知等边△ABC的边长为4,点D,E分别在边AB,AC上,AE=2BD.以DE为边向右作等边△DEF,则AF+BF的最小值为()A.4B.4C.4D.47.数形结合是重要的数学思想,借助图形,求解的最小值为.8.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.9.如图,A,B两个小镇在河流CD的同侧,到河的距离分别为AC=6千米,BD=14千米,且CD=15千米,现要在河边建一自来水厂,同时向A,B两镇供水,铺设水管的费用为每千米3万元,请你在河流CD上选择水厂的位置M,使铺设水管的费用最省,并求出总费用是多少?题型三、两定点一动点求周长最小值1.如图,在△ABC中,直线m是线段BC的垂直平分线,点P是直线m上的一个动点.若AB=7,AC=4,BC=5,则△APC周长的最小值是()A.12B.11C.9D.72.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.8B.3C.6D.43.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)4.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5,D、E、F分别是AB、BC、AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.65.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC 外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若BC=5,∠CAB=30°,点P是直线DE 上的一个动点,则△PBC周长的最小值为()A.15B.17C.18D.206.如图,在平面直角坐标系中,点P的坐标为(2,3),P A⊥x轴,PB⊥y轴,C是OA的中点,D是OB上的一点,当△PCD的周长最小时,点D的坐标是()A.(0,1)B.C.D.(0,2)7.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为______8.如图,点A(1,﹣1),B(2,﹣3)(1)点A关于x轴的对称点的坐标为.(2)若点P为坐标轴上一点,当△APB的周长最小时,点P的坐标为.三、一定点二动点线段或周长问题1.如图,在五边形中,∠BAE=140°,∠B=∠E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当△AMN的周长最小时,求∠AMN+∠ANM的值是()A.100°B.140°C.120°D.80°2.如图,∠AOB=30°,P是∠AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则△CPD周长的最小值为.3.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,则MQ+PQ+PN的最小值为.四、一定点二动点角度问题1.如图,在四边形ABCD中,∠C=40°,∠B=∠D =90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°2,如图,∠MON=45°,P为∠MON内一点,A 为OM上一点,B为ON上一点,当△P AB的周长取最小值时,∠APB的度数为()A.45°B.90°C.100°D.135°3.如图,点P为∠AOB内一点,点M,N分别是射线OA,OB上一点,当△PMN的周长最小时,∠OPM=50°,则∠AOB的度数是()A.55°B.50°C.40°D.45°4.已知点P在∠MON内.如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.(1)若∠MON=50°,求∠GOH的度数;(2)如图2,若OP=6,当△P AB的周长最小值为6时,求∠MON的度数.五、二定点二动点1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,在四边形ABCD中,∠B=90°,AB∥CD,BC=3,DC=4,点E在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE的周长的最小值为.3.如图,锐角∠MON内有一定点A,连结AO,点B、C分别为OM、ON边上的动点,连结AB、BC、CA,设∠MON=α(0°<α<90°),当AB+BC+CA取得最小值时,则∠BAC=.(用含α的代数式表示)4.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)5.已知B,C是平面直角坐标系中与x轴平行且距离x轴1个单位长度的直线上的两个动点(点B在点C左侧),且BC=2,若有点A(0,5)和点D(3,3),则当AB+BC+CD的值最小时,点C的坐标为.6.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.7.如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°8.如图,∠MON=α,α<30°,点A为ON上一定点,点C为ON上一动点,B,D为OM上两动点,当AB+BC+CD最小时,∠BCD+∠ABC=()A.5αB.6αC.90°﹣αD.180°﹣α9.如图,直线l 1,l 2表示一条河的两岸,且l 1∥l 2.现要在这条河上建一座桥(桥与河的两岸相互垂直),使得从村庄A 经桥过河到村庄B 的路程最短,应该选择路线( )A .B .C .D .10.如图,直线l 1、l 2表示一条河的两岸,且l 1∥l 2,现要在这条河上建一座桥,使得村庄A 经桥过河到村庄B 的路程最短,现两位同学提供了两种设计方案,下列说法正确的是( )方案一:①将点A 向上平移d 得到A ';②连接A 'B 交l 1于点M ;③过点M 作MN ⊥l 1,交l 2于点N ,MN 即桥的位置.方案二:①连接AB 交l 1于点M ;②过点M 作MN ⊥l 1,交l 2于点N .MN 即桥的位置.A .唯方案一可行B .唯方案二可行C .方案一、二均可行D .方案一、二均不可行六、线段差的最大值1.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P为对角线BD上一点,则PM﹣PN的最大值为()A.2B.3C.D.2.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.七、多条线段和的最小值1.如图所示,已知A、B、C、D,请在图中找出一点P,使P A+PB+PC+PD最小.2.如图,在平面直角坐标系中,点E在原点,点D(0,2),点F(1,0),线段DE和EF构成一个“L”形,另有点A(﹣1,5),点B(﹣1,﹣1),点C(6,﹣1),连AD,BE,CF.若将这个“L”形沿y轴上下平移,当AD+DE+BE 的值最小时,E点坐标为;若将这个“L”形沿x轴左右平移,当AD+DE+EF+CF的值最小时,E点坐标为.。
人教版八年级数学上册第13章 轴对称4 课题学习 最短路径问题

yA
的周长最小时点 C 的坐标是( A )
C′
A.(0,3)
B.(0,2)
C
C.(0,1)
D.(0,0)
B′
解析:作 B 点关于 y 轴对称点 B′,连接 AB′,O E B x
交 y 轴于点 C′,此时△ABC 的周长最小. 然后依据点 A
与点 B′ 的坐标可得到 B′E、AE 的长,再证明△B′OC′ 为
找一点 P,使 C、D、P 三点组成的三角形的周长最短,
找出此点,并说明理由; D
C
A
P
B
C' 图①
(2)如图②,在∠AOB 内部有一点 P,是否在 OA、
OB 上分别存在点 E、F,使得 E、F、P 三点组成的
三角形的周长最短,找出 E、F 两点,并说明理由;
P'
A
E P
OF
B
P'' 图②
(3)如图③,在∠AOB 内部有两点 M、N,是否在 OA、 OB 上分别存在点 E、F,使得 E、F、M、N 四点组成的 四边形的周长最短,找出 E、F 两点,并说明理由.
A
2. 把 B 平移到岸边;
M
3. 把桥平移到和 A 相连; 4. 把桥平移到和 B 相连.
N B
1. 把 A 平移到岸边. AM + MN + BN 长度改变了
A
A'
M
N B' B
2. 把 B 平移到岸边. AM + MN + BN 长度改变了
3. 把桥平移到和 A 相连.
A M
N B
4. 把桥平移到和 B 相连.
边上的动点,则 BF + EF 的最小值为( B ) A
八年级数学上册第十三章轴对称13.4课题学习最短路径问题同步训练新版新人教版

13.4 课题学习最短路径问题[学生用书P63]1.如图13-4-6,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是( )A.40° B.100° C.140° D.50°图13-4-62.如图13-4-7所示,四边形EFGH是一个矩形的台球桌面,有黑白两球分别位于A,B 两点,试说明怎样撞击B,才能使白球先撞击台球桌边EF,反弹后又能击中黑球A?图13-4-73.如图13-4-8,点A,B在直线m的同侧,点B′是点B关于m的对称点,AB′交m 于点P.(1)AB′与AP+BP相等吗?为什么?(2)在m上再取一点N,并连接AN与BN,比较AN+BN与AP+BP的大小,并说明理由.图13-4-84.[2015·鄂尔多斯]如图13-4-9,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMMNNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)( D )图13-4-9A BC D5.[2015·营口改编]如图13-4-10,点P 是∠AOB 内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5 cm ,求∠AOB 的度数.图13-4-106.[2016·百色]如图13-4-11,等边△ABC的边长为2,过点B的直线l⊥AB,且△ABC 与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( A )图13-4-11A.4 B.3 2C.2 D.2+ 3参考答案【归类探究】例1略例2略【当堂测评】1.B 2.D 3.略【分层作业】1.B 2.略3.(1)AB′=AP+BP,理由略;(2)AN+BN>AP+BP,理由略.4.D 5.∠AOB=30° 6.A。
初中数学人教八年级上册(2023年更新)第十三章 轴对称最短路径问题习题

课题学习最短路径问题
基础题
知识点1运用“垂线段最短”解决最短路径问题
1.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )
2.如图,l为河岸(视为直线),要想开一条沟将河里的水从A处引到田地里去,则应从河边l的何处开口才能使水沟最短?找出开口处的位置并说明理由.
知识点2运用“两点之间,线段最短”解决最短路径问题
3.如图,直线l外有不重合的两点A,B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B 关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )
A.转化思想
B.三角形的两边之和大于第三边
C.两点之间,线段最短
D.三角形的一个外角大于与它不相邻的任意一个内角
4.已知,如图,在直线l的同侧有两点A,B.
(1)在图1的直线上找一点P,使PA+PB最短;
(2)在图2的直线上找一点P,使PA-PB最长.
5.(天津中考)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )
6.【关注实际生活】茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.
综合题
7.(兰州中考改编)如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,求∠AMN+∠ANM的度数.。
专题05 轴对称重难点题型分类(解析版)—八年级数学上册重难点题型分类高分必刷题(人教版)

专题05轴对称重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《轴对称》这一章除各类压轴题之外的六种主流题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含的题型有:轴对称图形、垂直平分线的性质与判定、尺规作图、最短路径问题、等腰三角形的性质与判定、等边三角形的性质与判定。
适合于培训机构的老师给学生作培训时使用或者学生考前刷题时使用。
题型一轴对称图形1.(2021·湖南)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【详解】A.是轴对称图形,故A符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D不符合题意.故选:A.2.(2021·辽宁)若点M(2,a)和点N(a+b,3)关于y轴对称,则a、b的值为()A.a=3,b=-5B.a=-3,b=5C.a=3,b=5D.a=-3,b=1【详解】解:根据题意,点M(2,a)和点N(a+b,3)关于y轴对称,则a+b=-2,a=3,解得b=-5,故选:A.3.如图,是小亮在镜中看到身后墙上的时钟,此时时钟的实际时刻是()A.3:55B.8:05C.3:05D.8:55【详解】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,分针指向11实际对应点为1,故此时的实际时刻是:8点5分.故选:B.4.(2022·浙江)如图,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N 的位置上,若55∠-∠的值为()∠=︒,则21EFGA.35︒B.40︒C.45︒D.55︒【详解】解: 四边形ABCD 是长方形,∴AD BC ,∴55DEF EFG ∠=∠=︒,由折叠的性质得:55GEF DEF ∠=∠=︒,118070GEF DEF ∴∠=︒-∠-∠=︒,又∵AD BC ,21801110∴∠=︒-∠=︒,211107040∴∠-∠=︒-︒=︒,故选:B .题型二垂直平分线的性质与判定1.垂直平分线的定义经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线).2.垂直平分线的性质垂直平分线上任意一点,到线段两端点的距离相等..3.垂直平分线的判定到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.5.(2015·湖北)如图,△ABC 中,AB =5,AC =6,BC =4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是()A .8B .9C .10D .11【详解】解:∵ED 是AB 的垂直平分线,∴AD =BD ,∵△BDC 的周长=DB +BC +CD ,∴△BDC 的周长=AD +BC +CD =AC +BC =6+4=10.故选C .6.(2017·湖北)如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为()A .30°B .45°C .50°D .75°【详解】∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°,∵AB 的垂直平分线交AC 于D ,∴AD =BD ,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.7.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20°B.40°C.50°D.60°【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,又MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:B.8.(2021·宁夏)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.【详解】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,9.(2021·北京)如图所示,AD是ABC∠=∠.连结AF,求证:BAF ACF【详解】证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠ADF,∵∠FAD=∠FAC+∠CAD,∠ADF=∠B+∠DAB,∵AD是∠BAC的平分线,∴∠DAB=∠CAD,∴∠FAC=∠B,∴∠BAC+∠FAC=∠B+∠BAC,即∠BAF=∠ACF.10.(2021·山东)已知:如图,在△ABC中,∠BAC的平分线AP与BC的垂直平分线PQ相交于点P,过点P分别作PM⊥AC于点M,PN⊥AB交AB延长线于点N,连接PB,PC.求证:BN=CM.【详解】解:证明:∵AP是∠BAC的平分线,PM⊥AC,PN⊥AB,∴PM=PN,∵PQ是线段BC的垂直平分线,∴PB=PC,在Rt△PBN和Rt△PCM中,PB PCPM PN=⎧⎨=⎩,∴Rt△PBN≌Rt△PCM(HL),∴BN=CM.11.如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6cm,AC=10cm,求AD的长.【解答】(1)证明:连接BP、CP,∵点P在BC的垂直平分线上,∴BP=CP,∵AP是∠DAC的平分线,∴DP=EP,在Rt△BDP和Rt△CEP中,,∴Rt△BDP≌Rt△CEP(HL),∴BD=CE;(2)解:在Rt△ADP和Rt△AEP中,,∴Rt△ADP≌Rt△AEP(HL),∴AD=AE,∵AB=6cm,AC=10cm,∴6+AD=10﹣AE,即6+AD=10﹣AD,解得AD=2cm.12.已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线D交于点D,DM⊥AB于M,DN⊥AC的延长线于N.(1)证明:BM=CN;(2)当∠BAC=70°时,求∠DCB的度数.【解答】(1)证明:连接BD,如图所示:∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分线BC,∴DB=DC,在Rt△DMB和Rt△DNC中,,∴Rt△DMB≌Rt△DNC(HL),∴BM=CN;(2)解:由(1)得:∠BDM=∠CDN,∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,在Rt△DMA和Rt△DNA中,,∴Rt△DMA≌Rt△DNA(HL),∴∠ADM=∠ADN,∵∠BAC =70°,∴∠MDN=110°,∠ADM=∠ADN=55°,∵∠BDM=∠CDN,∴∠BDC=∠MDN=110°,∵DE是BC的垂直平分线,∴DB=DC,∴∠EDC=BDC=55°,∴∠DCB=90°﹣∠EDC=35°,∴∠DCB=35°.13.(2022·广东)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【详解】(1)∵AD平分∠BAC,∠BAC=50°,∴∠EAD=12∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠ADE=90°-∠EAD=90°-25°=65°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,DE=DC,∴点A在线段CE的垂直平分线上,点D在线段CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.14.(2019·广东)如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .求证:(1)∠ECD =∠EDC ;(2)OC =OD ;(3)OE 是线段CD 的垂直平分线.【详解】证明:(1)∵OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,∴ED =EC ,即△CDE 为等腰三角形,∴∠ECD =∠EDC ;(2)∵点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,∴∠DOE =∠COE ,∠ODE =∠OCE =90°,OE =OE ,∴△OED ≌△OEC (AAS ),∴OC =OD ;(3)∵OC =OD ,且DE =EC ,∴OE 是线段CD 的垂直平分线.题型三尺规作图15.(2022·辽宁)已知在ABC 中,点D 为线段BC 边上一点,则按照顺序,线段AD 分别是ABC 的()A .①中线,②角平分线,③高线B .①高线,②中线,③角平分线C .①角平分线,②高线,③中线D .①高线,②角平分线,③中线【详解】解:①由作图方法可知,AD 是BC 边上的垂线,即AD 为△ABC 的高;②由作图方法可知AD 是∠BAC 的角平分线;③由作图方法可知D 在BC 的垂直平分线上,即AD 是BC 的中线;故选D .16.(2022·山东)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若ABC 的周长为12,5AB ,则ADC 的周长为()A .10B .9C .8D .7【详解】根据题意可知MN 是AB 的垂直平分线,∴AD=BD .∵△ABC 的周长为12,∴AB+BC+AC=12.∵AB=5,∴BC+AC=7,即AC+CD+BD=7,∴AC+CD+AD =7,所以△ADC 的周长为7.17.(2022·福建)如图,已知△ABC .(1)求作BC 边上高AD ,交BC 于点D ,∠BAC 的平分线AE ,交BC 于点E (要求:尺规作图,不写作法,保留作图痕迹).(2)若∠B =35°,∠C =65°,求∠DAE 的度数.【答案】(1)解:如图,线段AD ,线段AE 即为所求.(2)解:∵∠CAB =180°-∠B -∠C =80°,AE 平分∠CAB ,∴∠CAE =12∠CAB =40°,∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C =25°,∴∠DAE =∠CAE -∠CAD =15°.18.按要求完成下列作图,不要求写作法,只保留作图痕迹.(1)已知:线段AB ,作出线段AB 的垂直平分线MN .(2)已知:∠AOB ,作出∠AOB 的平分线OC .【解答】解:(1)如图(1),MN为所作;(2)如图(2),OC为所作;19.(2020·北京)如图,已知∠BAC及两点M、N.求作:点P,使得PM=PN,且P到∠BAC两边的距离相等.【详解】解:作∠BAC平分线,再作线段MN的垂直平分线EF交于点P,如图,点P即为所求.理由:过点P作PG⊥AC于点G,PH⊥AB于点H,连接PM,PN,∵AP平分∠BAC,∴PG=PH,∵EF垂直平分MN,∴PM=PN.题型四最短路径问题=,AD、CE是△ABC的两条中线,P是AD上一个动点,20.(青竹湖)如图,在△ABC中,AB AC则下列线段的长度等于BP EP+最小值的是()A.BCB.CEC.ADD.AC【解答】解:B点的对称点为C,再连接E,C,故选:B.21.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40°B.100°C.140°D.50°【解答】解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠APO+∠BPO=100°.故选:B.22.(2020·北京)如图,在平面直角坐标系xOy中,点O(0,0),A(-1,2),B(2,1).(1)在图中画出△AOB关于y轴对称的△A1OB1,并直接写出点A1和点B1的坐标;(不写画法,保留画图痕迹)(2)在x 轴上画出点P ,使得PA +PB 的值最小.(1)解:如图所示,即为所求,由图形知,()112,A ,()121B -,;(2)解:如图,作点B 关于x 轴的对称点B ′,连接AB ',与x 轴的交点,即为点P ,23.(北雅)阅读下列一段文字:已知在平面内两点P 1(x 1,y 1)、P 2(x 2、y 2),其两点间的距离P 1P 2=问题解决:已知A (1,5),B (7,3)(1)试求A 、B 两点的距离;(2)在x 轴上找一点P (不求坐标,画出图形即可),使PA +PB 的长度最短,求出PA +PB 的最短长度.(3)在x 轴上有一点M ,在y 轴上有一点N ,连接A 、N 、M 、B 得四边形ANMB ,若四边形ANMB 的周长最短,请找到点M 、N (不求坐标,画出图形即可),求出四边形ANMB 的最小周长.【解答】解:(1)∵A (1,5)、B (7,3),∴AB ===2,即A 、B 两点的距离为:2;(2)如右图1所示,作点A 关于x 轴的对称点A ′,∵A (1,5)、B (7,3),∴A ′(1,﹣5),∴A ′B ==10,即PA +PB 的最短长度是10;(3)作点A 关于y 轴的对称点A ′,作点B 关于x 轴的对称点B ′,连接A ′B ′于y 轴交于点N ,与x 轴交于点M ,如图2所示,∵A (1,5)、B (7,3),∴A ′(﹣1,5),B ′(7,﹣3),∴AB =2,A ′B ′==8,∴四边形ANMB 的最小周长是8+2.题型五等腰三角形的性质与判定1.定义:两条边相等的三角形是等腰三角形。
专题2.5 轴对称中最短路径问题

【教学目标】1【教学重难点】12【知识亮解】知识点在直线l上找一点P,使得PA+PB的和最小。
点P在锐角∠AOB的内部,在OA边上找一点C,在OB边上找一点D,,使得PC+PD+CD的和最小。
直线m∥n,在m,n上分别求点M、N,使MN⊥m,MN⊥n,且AM+MN+BN的和最小。
A.750米B.1000米【典例2】如图所示,45MON Ð=°,点P 为MON Ð内一点,点P 关于OM ON 、对称的对称点分别为点12P P 、,连接11212OP OPPP PP PP 、、、、,12PP 分别与OM ON 、交于点A B 、,连接AP BP 、,则APB Ð的度数为( )A .45°B .90°C .135°D .150°【典例3】如图,在锐角三角形AB C 中,AB =8,△ABC 的面积为40,BD 平分∠ABC ,若M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值为 _____.【典例4】如图,有一条笔直的河流,两岸EF ∥GH ,在河岸EF 的同侧有一个管理处A 和物资仓库B ,管理人员每天需要从管理处A 出发,先到物资仓库B 领取物资,接着到达河岸EF 上的C 点,乘坐停放在C 点的快艇,把物资送到对岸GH 的对接点D ,然后调头返回河岸EF 上的C 点,再返回管理房A .请你设计一条线路,使得管理员每天经过的路程最短.若用作图的方式来确定点C 和点D ,则确定点C 和点D 的步骤是:_____________.【典例5】如图,在锐角三角形AB C中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N 分别是BD和BC上的动点,则CM+MN的最小值是_____.【典例6】如图,点P是∠AOB内部一定点(1)若∠AOB=50°,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连OP1、OP2,则∠P1OP2=___.(2)若∠AOB=α,点C、D分别在射线OA、OB上移动,当△PCD的周长最小时,则∠CPD=___(用α的代数式表示).【亮点训练】1、如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?2、如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?3、如图,等腰△ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D 为BC边上的中点,M为线段EF上一动点,则△BDM的周长最小值为________ cm.4、如图,四边形ABC D中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为()A.130° B.120° C.110° D.100°6、如图,是等边三角形,长最小时,的度数是______.如图,在△AB C 中,已知ABC D AD FDE ÐA .(BM 垂直于a )B .(AM 不平行BN )C .(AN 垂直于b )D .(AM 平行BN )9、五羊大学建立分校,校本部与分校隔着两条平行的小河,如图12l l ∥表示小河甲,34l l ∥表示小河乙,A 为校本部大门,B 为分校大门。
苏科版八年级数学上册第二章轴对称平面展开-最短路径专题

八上第二章轴对称平面展开-最短路径专题一、选择题(本大题共 6 小题,共 18.0 分)1. 如图是一块长,宽,高分别是和 3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点 A 处,沿着长方体的表面到长方体上和 A 相对的顶点 B 处吃食物,那么它需要爬行的最短路径的长是( )A.B.C.D.2. 如图是一块长,宽,高分别是 6cm,4cm 和 3cm 的长方体木块,一只蚂蚁要从长方体木块的一个 顶点 A 处,沿着长方体的表面到长方体上和 A 相对的顶点 B 处吃食物,那么它需要爬行的最短 路径的长是( )A.B.C.D.cm3. 如图,一只蚂蚁沿棱长为 1m 的正方体表面从顶点 A 爬到顶点 B,它经过的最短路程为( )A.B.C. 3mD.4. 某正方体盒子棱长为 2,如图左边下方 A 处有一只蚂蚁从盒子表面 A 处爬行到侧棱 GF 上的中点 M 点处,蚂蚁爬行最短距离为( ).A. B. C. D.5. 长方体敞口玻璃罐,长、宽、高分别为 16cm、6cm 和 6cm,在罐内点 E 处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形 ABCD 中心的正上方 2cm 的 H 处,则蚂蚁到 达饼干的最短距离是多少 ( )A.B.C. 24cmD.二、填空题(本大题共 6 小题,共 18.0 分)6. 如图,已知圆柱底面周长是 4dm,圆柱的高为 3dm,在圆柱的侧面上,过点 A 和点 C 嵌有一圈金属丝,则这圈金属丝的周长最小为______dm.7. 如图,已知长方体的三条棱 AB、BC、BD 分别为 4,5,2,蚂蚁从 A 点出发沿长方体的表面爬行到 M 的最短路程的平方是________.8. 如图,长方体的底面长、宽分别为 和 ,高为 若一只蚂蚁从 点开始经过 个侧面爬行一圈到达 点,则蚂蚁爬行的最短路径长为________ .9. 如图,在一个长方形草坪 ABCD 上,放着一根长方体的木块,已知米,米,该木块的较长边与 AD 平行,横截面是边长为 1 米的正方形,一只蚂蚁从点 A 爬过木块到达 C 处需要走的最短路程是________米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填空题
6.如图,要从村庄P修一条连接公路 的最短的小道,应选择沿线段________修建,理由是________.
7.如图,等腰△ABC的底边BC的长为2cm,面积是6cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F.若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为____________cm.
7.7
【解析】
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC= BC•AD= ×2×AD=6,解得AD=6cm,
∵EF是线段AB的垂直平分线,
∴点B关于直线EF的对称点为点A,
∴AD的长为BM+MD的最小值,
∴△BDM的周长最短=(BM+MD)+BD=AD+ BC=6+ ×2=6+1=7cm.
故答案为7cm.
【点睛】
本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
(3)直接写出A1B1C1三点的坐标.
12.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?
(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.
(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意.
13.如图,已知 .
(1)画 关于x轴对称的 ;
(2)在 轴上画出点 ,使 最短.
故选D
考点:轴对称,一次函数的性质
6.PC垂线段最短
【解析】
【分析】
根据垂线段的性质:垂线段最短,进行判断即可.
【详解】
解:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,
∴过点P作PC⊥l于点C,这样做的理由是垂线段最短.
故答案为:PC,垂线段最短.
【点睛】
本题主要考查了垂线段的性质,从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.
故选C.
3.B
【解析】
【分析】
分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于点M,交OB于点N,则此时 周长的最小值等于线段P1P2,只要证明△OP1P2为等边三角形,即可求解.
【详解】
解:如图,分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于点M,交OB于点N,
八年级数学轴对称最短路径题专题难点训练
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,从A到B最短的路线是()
A. B. C. D.
2.如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是( )
4.B
【解析】
如图,PB是点P到a的垂线段,
∴线段中最短的是PB.ຫໍສະໝຸດ 故选B.5.D【解析】
试题分析:
作点N关于y轴的对称点N1(-1,-1),连接N1M交x轴于P,
∵M的坐标是(3,2),
∴直线N1M的函数解析式为y= x- ,
把P点的坐标(0,n)代入解析式可得n=- .
∴点P的坐标是(0,- ).
根据轴对称的性质,则
OP1=OP=OP2,∠P1OA=∠POA,∠P2OB=∠POB,MP=MP1,NP=NP2,
∴△PMN的周长的最小值= P1P2,
∵ ,
∴∠P1OP2=2∠AOB=60°,
∴△OP1P2为等边三角形,
∴P1P2=OP1=OP2=OP=8;
故选择:B.
【点睛】
本题考查了等边三角形的判定和性质,以及轴对称的性质,解题的关键是熟练掌握轴对称的性质进行求三角形周长的最小值.
8.5
【解析】
【分析】
根据比例可设 分别为k、2k、3k,然后根据三角形的内角和为180°,求得各角的度数,再根据直角三角形中30°所对直角边为斜边的一半即可得解.
【详解】
∵ ,
∴设 分别为k、2k、3k,
∵k+2k+3k=180°,
∴k=30°,
∴∠A=30°,∠B=60°,∠C=90°,
∵最长边为 ,
A. B. C. D.
3.已知 ,点 在 的内部, ,在 、 上分别取点 、 ,使 的周长最短,则 周长的最小值为()
A.4B.8C.16D.32
4.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )
A.PAB.PBC.PCD.PD
5.已知M(3,2),N(1,-1),点P在 轴上,且PM+PN最短,则点P的坐标是()
8.若 中, ,且最长边为 ,则最短边长为______ .
三、解答题
9.如图,已知 ,请你用尺规在 边上找一点 ,使得 的长度最短.
10.在△ABC中,已知∠A= ∠B= ∠C,它的最长边是8 cm,求它的最短边的长.
11.如图
(1)画出△ABC关于y轴对称的图形△A1B1C1;
(2)在x轴上是否存在点P,使得PA+PB最短,最短距离是多少?
故答案是:见解析
【点睛】
此题主要考查了过一点作直线的垂线、垂线段最短,熟练掌握基本作图方法是解决问题的关键.
10.4cm
【解析】
【分析】
设∠A=x,则∠B=2x,∠C=3x,根据三角形的内角和定理求得每个角的度数,从而得出三角形是直角三角形,再由在直角三角形中,30°的锐角所对的直角边等于斜边的一半求得答案即可.
参考答案
1.C
【解析】
【分析】
根据两点之间线段最短判断路线即可.
【详解】
根据两点之间线段最短,可知从A点到E点最短路线是:A-F-E,则A到B最短路线是:A-F-E-B.
故选C.
【点睛】
本题考查最短路径的应用,关键在于牢记基础知识.
2.C
【解析】
根据对称的性质以及两点之间线段最短可知选项C是正确的.
∴最短边长= .
故答案为:5.
【点睛】
本题主要考查含30°角的直角三角形的性质:在直角三角形中,30°角所对直角边等于斜边的一半.
9.见解析
【解析】
【分析】
过点 作 的垂线交 于点 ,垂线段 即为所求.
【详解】
解:①以 为圆心,以任意长为半径画弧,交 于点 、点 ;②分别以点 、点 为圆心,大于 的长为半径画弧,两弧交于点 ;③作垂线 交 于点 ,垂足为点 ,垂线段 即为所求.