【数学】第二章《平面向量全章小结》教案(新人教A版必修4)
人教A版高中数学必修4《二章 平面向量 小结》优质课教案_12

学校:学科:高中数学姓名:教学内容:平面向量数量积复习(教案)一、教学内容解析向量是近代数学基本和重要的数学概念之一,有着极其丰富的实际背景,它具有代数和几何的双重身份,是沟通代数、几何的桥梁。
它能与中学数学中许多教学内容许多主干知识相结合,形成知识交汇点。
而且初中课本里已经对平面向量做了简单的介绍,再次将平面向量坐标表示引入高中课程,是现行数学教材的重要特色之一。
人教版《高级中学课本数学必修四》中第二章《平面向量坐标表示》涉及到了向量的坐标表示及运算(2课时)、向量的数量积(2课时)、平面向量的分解定理(2课时)、向量的应用(2课时)。
其中平面向量的数量积是继向量的线性运算之后的又一个重要运算,也是高中平面向量教学中的一个重要概念,既有对几何的体现,也有其对应的特殊性质和运算律。
因此它在数学、物理等学科中应用十分广泛。
本节平面向量数量积的复习课在教学内容方面不仅有对于向量相关知识的回顾,也有对于数量积求法的总结,也涉及到向量数量积的应用;课堂中也很好的融入了数形结合的数学思想和化归思想。
二、教学目标设置《高级中学数学教学参考资料》(人教版)在教学设计建议中提到:向量是沟通代数、几何的一种工具。
向量有非常直观的几何意义,是数与形的完美结合。
一方面,它可以把几何问题转化为坐标的代数运算;另一方面,它还可以结合图形对向量的有关问题进行分析求解。
向量是解决数学问题和实际问题的有力工具。
所以,对于向量的数量积复习课而言,希望可以从定义的梳理展开,结合图形将向量数量积相关问题的求解方法进行归纳总结,并且让学生体会到向量数量积如何成为解决数学问题的有力工具入手完成这节课。
综上所述,结合《全国中小学课程标准》要求和学生实际,制定本节课的教学目标和教学重难点。
教学目标:1.掌握平面向量数量积的概念,回顾梳理与平面向量数量积相关的知识点。
2.通过体验、归纳,总结求解平面数量积的方法,同时提高对题目的反思重解能力。
人教A版高中数学必修4《二章 平面向量 小结》优质课教案_17

规律方法小结:
五、学习反思与总结:
通过本节课的学习你得到了什么?
.
课题:平面向量的综合应用(第一课时)
一、学习目标:
巩固向量的数量积的知识;能借助向量的知识实现平面向量与函数、平面向量与三角函数、平面向量与解析几何的转化。
重点:平面向量的数量积。难点:平面向量与函数、三角函数、解析几何的综合。
二、知识点回顾
定义
(1)a·b=
(2)规定:0·a=
坐标表示
a·b=
运算律
3、已知向量a=(1,2),向量b=(x,-2),且a⊥(a-b),则实数x等于()
A、9 B、4 C、0 D、-4
4、(2011.江西)已知|a|=|b|=2,(a+2b)·(a-b)=-2,则a与b的夹角为
5、已知a与b两个非零向量,且|a|=|b|=|a-b|,则a与a+b的夹角为
四、例题精选
(1)a·b=b·a
(2)(λa)·b==
(3)(a+b)·c=
a在b方向上的投影
b在a方向上的投影
a·b的几何意义
数量积a·b等于a的长度|a|与
已知两个非零向量a、b,a=(x1,y1),b=(x2,y2)
结论
几何表示
坐Байду номын сангаас表示
模
|a|=
夹角
cosθ=
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
|a·b|与|a||b|的关系
|a·b|≤|a||b|
|x1x2+y1y2|≤
三、基础巩固练习
1、已知|a|=3,|b|=2,若a·b=-3,则a与b的夹角为( )
高中数学 第二章 平面向量教案 新人教A版必修4

aaa平面向量复习教案一、教学目标1.知识与技能:通过复习本章知识点,提高综合运用知识的能力”. 2.过程与方法:通过知识回顾,例题分析,强化训练,体现向量的工具作用. 3.情感态度与价值观:通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段. 三、重点难点教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题. 教学难点:如何将几何等实际问题化归为向量问题. 四、教学设想一、基础知识:(一)平面向量的计算及其性质: (1)+=+;(2)(-+=-;平行四边形法则三角形法则(3))(,≠=λ⇔和共线;(4的模(即长度)0≥(5+≤+≤-+≤-≤-。
(6)θcos =⋅,其中θ为向量a 和b 的夹角。
==(7)()()⋅+⋅+⋅+⋅=+⋅+;那么()()___=+⋅- (8)⊥⇔=⋅0 (二)向量的坐标表示和运算:在平面中,若,不共线(可作为平面的一组基底),则任意向量,有且只有一组数(y x ,)使得y x +=当我们选定的一组基为直角坐标系上两互相垂直的单位向量和j ,则平面任意向量c 可以表示成j y i x c +=,那么任意向量和坐标平面上的一个点坐标相对应,如图所示,即),(y x =, (1)设),(),,(2211y x y x ==则=+=-=λ=⋅=;若//,则;⊥,则;(填坐标关系)(2)已知点),(11y x A 、),(22y x B 则向量==; 二、例题选讲 (一)加减运算例1、(1)在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =()A .2133b c + B .5233c b -C .2133b c - D .1233b c +(2)已知ABC ∆和点M 满足0MA MB MC --→--→--→+=+.若存在实数m 使得AB AC AM m --→--→--→+=成立,则m=()A .2B .3C .4D .5(3)已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为() A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),练习:1、如图1所示,D 是ABC ∆的边AB 上的中点,则向量CD = A.12BC BA -+B. 12BC BA -- C. 12BC BA - D. 12BC BA + 2、在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =_______。
高中数学:第二章《平面向量》教案(新人教A版必修4)

第二章平面向量第12课时复习课一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4. 了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,a·b=|a||b|cos =x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、典型例题例1.对于任意非零向量a与b,求证:||a|-|b||≤|a±b|≤|a|+|b|证明:(1)两个非零向量a与b不共线时,a+b的方向与a,b的方向都不同,并且|a|-|b|<|a±b|<|a|+|b|(3)两个非零向量a与b共线时,①a与b同向,则a+b的方向与a.b相同且|a+b|=|a|+|b|.②a与b异向时,则a+b的方向与模较大的向量方向相同,设|a|>|b|,则|a+b|=|a|-|b|.同理可证另一种情况也成立。
例2 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c i j解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是a =i -3j , b =j , c =-3i 所以-3a =33b +c |即c =3a -33b例3.下面5个命题:①|a ·b |=|a |·|b |②(a ·b )2=a 2·b 2③a ⊥(b -c ),则a ·c =b ·c ④a ·b =0,则|a +b |=|a -b |⑤a ·b =0,则a =0或b =0,其中真命题是( ) A ①②⑤ B ③④ C ①③ D ②④⑤巩固训练1.下面5个命题中正确的有( ) ①a =b ⇒a ·c =b ·c ; ②a ·c =b ·c ⇒a =b ;③a ·(b +c )=a ·c +b ·c ; ④a ·(b ·c )=(a ·b )·c ; ⑤b a a ba 2=⋅.A..①②⑤B.①③⑤C. ②③④D. ①③2.下列命题中,正确命题的个数为( A ) ①若a 与b 是非零向量 ,且a 与b 共线时,则a 与b 必与a 或b 中之一方向相同;②若e 为单位向量,且a ∥e 则a =|a |e ③a ·a ·a =|a |3④若a 与b 共线,a 与c 共线,则c 与b 共线;⑤若平面内四点A.B.C.D ,必有AC +BD =BC +ADA 1B 2C 3D 43.下列5个命题中正确的是①对于实数p,q 和向量a ,若p a =q a 则p=q ②对于向量a 与b ,若|a |a =|b |b 则a =b ③对于两个单位向量a 与b ,若|a +b |=2则a =b ④对于两个单位向量a 与b ,若k a =b ,则a =b4.已知四边形ABCD 的顶点分别为A(2,1),B(5,4),C(2,7),D(-1,4),求证:四边形ABCD 为正方形。
人教A版高中数学必修4《二章 平面向量 小结》优质课教案_24

授课主题平面向量复习教学目的掌握向量的加法,主要考查运算法则、几何意义;平面向量的数量积、坐标运算、两向量平行与垂直的充要条件是命题的重点内容,主要考查运算能力和灵活运用知识的能力;教学重点平面向量与三角函数、解析几何相结合教学内容1. 平面向量中的五个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0. (2)长度等于1个单位长度的向量叫单位向量,a 的单位向量为a|a |. (3)方向相同或相反的向量叫共线向量(平行向量).(4)如果直线l 的斜率为k ,则a =(1,k )是直线l 的一个方向向量. (5)向量的投影:|b |cos 〈a ,b 〉叫做向量b 在向量a 方向上的投影. 2. 平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一一个实数λ,使b =λa .(2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 3. 平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则: (1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 4. 平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.考点一 平面向量的概念及线性运算例1 (1)(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE→=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.(2)△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0且|OA →|=|AB →|,则向量CA →在CB →上的投影为( )A. 3 B .3 C .- 3 D .-3 答案 (1)12 (2)A解析 (1)如图,DE→=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,λ1+λ2=12. (2)由OA →+AB →+AC →=0, 得AB→+AC →=AO →. 又O 为△ABC 外接圆的圆心,OB =OC , ∴四边形ABOC 为菱形,AO ⊥BC . 由|OA→|=|AB →|=2, 知△AOC 为等边三角形.故CA→在CB →上的投影为|CA →|cos ∠ACB =2cos π6= 3. (1)在一般向量的线性运算中,只要把其中的向量当作字母,其运算就类似于代数中合并同类项的运算;有的问题采用坐标化解决更简单.(2)运用向量加减法解决几何问题时,要善于发现或构造三角形或平行四边形,使用三角形法则时要特别注意“首尾相接”.运用平行四边形法则时两个向量的起点必须重合.(1)已知△ABC 和点M 满足MA→+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m 的值为( )A .2B .3C .4D .5(2)如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB → (λ,μ∈R ),则λ+μ的值为________. 答案 (1)B (2)6解析 (1)∵MA→+MB →+MC →=0,∴点M 是△ABC 的重心. ∴AB→+AC →=3AM →,∴m =3. (2)方法一 如图,OC →=OB →1+OA →1,|OB →1|=2,|OA →1|=|B 1C →|=4, ∴OC →=4OA →+2OB →. ∴λ+μ=6.考点二 平面向量的数量积例2 (1)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.(2)若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2D .2答案 (1)2 (2)B 解析 (1)方法一 坐标法.以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,则 A (0,0),B (2,0),E (2,1),F (x,2). 故AB→=(2,0),AF →=(x,2),AE →=(2,1), BF→=(x -2,2), ∴AB →·AF →=(2,0)·(x,2)=2x . 又AB →·AF →=2,∴x =1. ∴BF→=(1-2,2). ∴AE →·BF →=(2,1)·(1-2,2)=2-2+2= 2. (2)方法一 由题意知a 2=b 2=c 2=1,又a ·b =0,∵(a -c )·(b -c )=a ·b -a ·c -b ·c +c 2≤0, ∴a ·c +b ·c ≥c 2=1,∴|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =3-2(a ·c +b ·c )≤1, ∴|a +b -c |≤1.(1)(2013·山东)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB→+AC→,且AP →⊥BC →,则实数λ的值为________.答案 (1)712 解析 (1)由AP →⊥BC →知AP →·BC →=0,即AP →·BC →=(λAB →+AC →)·(AC →-AB →) =(λ-1)AB →·AC →-λA B →2+AC→2 =(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-λ×9+4=0,解得λ=712.考点三 平面向量与三角函数的综合应用例3 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值; (2)若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值. 解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4,∴f (x )=b ·c=cos x sin x +2cos x sin α+sin x cos x +2sin x cos α =2sin x cos x +2(sin x +cos x ). 令t =sin x +cos x ⎝ ⎛⎭⎪⎫π4<x <π,则2sin x cos x =t 2-1,且-1<t < 2.则y =t 2+2t -1=⎝ ⎛⎭⎪⎫t +222-32,-1<t <2,∴t =-22时,y min =-32,此时sin x +cos x =-22, 即2sin ⎝ ⎛⎭⎪⎫x +π4=-22, ∵π4<x <π,∴π2<x +π4<54π, ∴x +π4=76π,∴x =11π12.∴函数f (x )的最小值为-32,相应x 的值为11π12. (2)∵a 与b 的夹角为π3,∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α). ∵0<α<x <π,∴0<x -α<π,∴x -α=π3.∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝ ⎛⎭⎪⎫2α+π3+2sin 2α=0.∴52sin 2α+32cos 2α=0,∴tan 2α=-35.例4在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值. 解 (1)因为cos A 2=255,所以cos A =2cos2A 2-1=35,sin A =45, 又由AB →·AC →=3,得bccos A =3,所以bc =5, 所以S △ABC =12bcsin A =2.(2)对于bc =5,又b +c =6,所以b =5,c =1或b =1,c =5,由余弦定理得,a2=b2+c2-2bccos A =20,所以a =2 5.在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.已知向量a =⎝ ⎛⎭⎪⎫sin x ,34,b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin 2x 的值;解 (1)∵a ∥b ,∴34cos x +sin x =0,∴tan x =-34. ∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85.考点四:结合向量平移问题,考查三角函数解析式的求法【例】将π2cos 36xy ⎛⎫=+ ⎪⎝⎭的图象按向量,24π⎛⎫=-- ⎪⎝⎭a 平移,则平移后所得图象的解析式为( ) A.2cos 234x y π⎛⎫=+- ⎪⎝⎭B.π2cos 234xy ⎛⎫=-+ ⎪⎝⎭ C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭【解答】∵,24π⎛⎫=-- ⎪⎝⎭a ,∴平移后的解析式为π2cos 23612x y π⎛⎫=++- ⎪⎝⎭2cos 234x π⎛⎫=+- ⎪⎝⎭,选A .【评析】理清函数()y f x ω=按向量(,)h k =a 平移的一般方法是解决此类问题之关键,平移后的函数解析式为[()]y f x h k ω=-- 考点五:求夹角范围已知||2||0a b =≠,且关于x 的方程2||0x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是 ( )A.[0,6π] B.[,]3ππ C.2[,]33ππD.[,]6ππ 解析:由关于x 的方程0||2=⋅++b a x a x 有实根,得:2||4a a b -⋅≥021||4a b a ∴⋅≤.设向量,a b 的夹角为θ,则cos θ=||||a ba b ⋅⋅,又,0||2||≠=b a 221||14cos 12||2a a θ∴≤=,∴θ∈],3[ππ.[答案] B.【名师指引】要求两向量夹角θ的取值范围,可先求cos θ的取值范围. 变式训练设非零向量a =)(x x 2,,b =)(2,3x -,且a ,b 的夹角为钝角,求x 的取值范围[解析] a ,b 的夹角为钝角, ()⋅+-⋅=⋅∴x x x b a 2304322<+-=x x解得0<x 或 34>x (1) 又由b a ,共线且反向可得31-=x (2)由(1),(2)得x 的范围是 ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31 考点六:平面向量中的三角形“四心”问题 1.“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA +GB +GC =0或PG =13(PA +PB +PC )(其中P 为平面内任意一点).反之,若GA +GB +GC =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33.(2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA ·HB =HB ·HC =HC ·HA 或HA 2+BC 2=HB 2+CA 2=HC 2+AB 2.反之,若HA ·HB =HB ·HC =HC ·HA ,则H 是△ABC 的垂心.(3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC |·IA +|CA |·IB +|AB |·IC =0.反之,若|BC |·IA +|CA |·IB +|AB |·IC =0,则点I 是△ABC 的内心. (4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA +OB )·BA =(OB +OC )·CB =(OC +OA )·AC =0或|OA |=|OB |=|OC |.反之,若|OA |=|OB |=|OC |,则点O 是△ABC 的外心.2.关于“四心”的典型例题[例1] 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________心.[解析] 由原等式,得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),根据平行四边形法则,知AB +AC 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心. [例2] 已知△ABC 内一点O 满足关系OA +2OB +3OC =0,试求S △BOC ∶S △COA ∶S △AOB 之值.[解] 延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1,如图所示,则1OB =2OB ,1OC =3OC ,由条件,得OA +1OB +1OC =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积,所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3.[点评] 本题条件OA +2OB +3OC =0与三角形的重心性质GA +GB +GC =0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.1. 当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易出错,向量AB →=OB →-OA → (其中O为任意一个点),这个法则就是终点向量减去起点向量.2. 根据平行四边形法则,对于非零向量a ,b ,当|a +b |=|a -b |时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a +b |=|a -b |等价于向量a ,b 互相垂直. 3. 两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.4. 平面向量的综合运用主要体现在三角函数和平面解析几何中,在三角函数问题中平面向量的知识主要是给出三角函数之间的一些关系,解题的关键还是三角函数问题;解析几何中向量知识只是给出一些几何量的位置和数量关系,在解题中要善于根据向量知识分析解析几何中的几何关系.一、选择题1. 下列命题中正确的是( )A .若λa +μb =0,则λ=μ=0B .若a ·b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a |D .若a ⊥b ,则a ·b =(a ·b )2 答案 D解析 根据平面向量基本定理,必须在a ,b 不共线的情况下,若λa +μb =0,则λ=μ=0;选项B 显然错误;若a ∥b ,则a 在b 上的投影为|a |或-|a |,平行时分两向量所成的角为0°和180°两种;a ⊥b ⇒a ·b =0,(a ·b )2=0.3. (2013·湖北)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB→在CD →方向上的投影为( )A.322B.3152C. -322D .-3152答案 A解析 AB→=(2,1),CD →=(5,5),∴AB →在CD →方向上的投影为AB →·CD →|CD →|=2×5+1×552+52 =1552=322. 4. (2013·福建)在四边形ABCD 中,AC→=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5B .2 5C .5D .10 答案 C解析 ∵AC →·BD→=0, ∴AC ⊥BD .∴四边形ABCD 的面积S =12|AC →||BD →|=12×5×25=5.5. (2013·湖南)已知a ,b 是单位向量,a ·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( ) A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .[1,2+2]答案 A 解析 ∵a ·b =0,且a ,b 是单位向量,∴|a |=|b |=1.又∵|c -a -b |2=c 2-2c ·(a +b )+2a ·b +a 2+b 2=1,∴2c ·(a +b )=c 2+1.∵|a |=|b |=1且a ·b =0,∴|a +b |=2,∴c 2+1=22|c |cos θ(θ是c 与a +b 的夹角).又-1≤cos θ≤1,∴0<c 2+1≤22|c |,∴c 2-22|c |+1≤0,∴2-1≤|c |≤2+1.6. 若点M 是△ABC 所在平面内的一点,且满足5AM→=AB →+3AC →,则△ABM 与△ABC 的面积比为( ) A.15B.25C.35D.925答案 C解析 设AB 的中点为D ,由5AM →=AB →+3AC →,得3AM →-3AC →=2AD →-2AM →,即3CM→=2MD →. 如图所示,故C ,M ,D 三点共线,且MD →=35CD →,也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积比为35.二、填空题7. (2013·安徽)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________.答案 -13解析 由已知条件得a 2=(a +2b )2,即a ·b =-|b |2,cos 〈a ,b 〉=a ·b |a ||b |=-13.8. (2013·北京)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为原点建直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2)有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.三、解答题11.(2013·江苏)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.(1)证明 由|a -b |=2,即(cos α-cos β)2+(sin α-sin β)2=2,整理得cos αcos β+sin αsin β=0,即a ·b =0,因此a ⊥b .(2)解 由已知条件⎩⎨⎧cos α+cos β=0sin α+sin β=1,又0<β<α<π,cos β=-cos α=cos(π-α),则β=π-α,sin α+sin(π-α)=1,sin α=12,α=π6或α=5π6,当α=π6时,β=5π6(舍去)当α=5π6时,β=π6.12.(2012·湖北)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx ,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1. (1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的取值范围. 解 (1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ. 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝ ⎛⎭⎪⎫2ωπ-π6=±1, 所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56. 故T =2π2ω=65π.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0, 即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=- 2. 故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6- 2.由0≤x ≤3π5,有-π6≤53x -π6≤5π6,所以-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1,。
高中数学 第二章 平面向量章末小结与测评教学案 新人教A版必修4

第二章平面向量1.平面向量的线性运算及运算律(1)向量加法是由三角形法则定义的,要点是“首尾相连”,即向量加法的平行四边形法则:将两向量移至共起点,分别为邻边作平行四边形,则同起点对角线的向量即为向量的和.加法满足交换律、结合律.(2)向量减法实质是向量加法的逆运算,是相反向量的作用.几何意义有两个:一是以减向量的终点为起点,被减向量的终点为终点的向量;二是加法的平行四边形法则的另外一条对角线的向量.注意两向量要移至共起点.(3)数乘运算即通过实数与向量的乘积,实现同向或反向上向量长度的伸缩变换.2.向量共线及平面向量基本定理(1)共线向量定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 共线向量定理是证明平行的主要依据,也是解决三点共线问题的重要方法. 特别地,平面内一点P 位于直线AB 上的条件是存在实数x ,使,或对直线外任意一点O ,有(2)平面向量基本定理:如果向量e 1,e 2不共线,那么对于平面内的任一向量a ,有且只有一对实数 λ1,λ2,使a =λ1e 1+λ2e 2.其中e 1,e 2是平面的一组基底,e 1,e 2分别称为基向量.由定理可知,平面内任一向量都可以用两个不共线的向量表示出来,而且任意两个不共线的非零向量都可以作为基底.[典例1] 如图,梯形ABCD 中,AB ∥CD ,点M 、N 分别是DA 、BC 的中点,且DCAB=k ,设=e 1,=e 2,以e 1、e 2为基底表示向量、[对点训练](3)确定点P 在边BC 上的位置.所以⎩⎪⎨⎪⎧1-λ=13μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=45,μ=35.所以⎩⎪⎨⎪⎧-m =n 5-1,m =2n 5,解得⎩⎪⎨⎪⎧m =23,n =53.即BP PC=2,P 是边BC 上靠近C 的三等分点.若a =(a 1,a 2),b =(b 1,b 2),则 ①a +b =(a 1+b 1,a 2+b 2);②a -b =(a 1-b 1,a 2-b 2); ③λa =(λa 1,λa 2); ④a ·b =a 1b 1+a 2b 2;⑤a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R ),或a 1b 1=a 2b 2(b 1≠0,b 2≠0); ⑥a ⊥b ⇔a 1b 1+a 2b 2=0; ⑦|a |=a ·a =a 21+a 22; ⑧若θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=a 1b 1+a 2b 2a 21+a 22b 21+b 22. [典例2] (1)已知点A (1,3),B (4,-1),则与向量同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 (2)已知向量a =(1,m ),b =(m ,2), 若a ∥b, 则实数m 等于( ) A .- 2 B. 2 C .-2或 2 D .0(3)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量在方向上的投影为( )A.322 B.3152C .-322D .-3152解析:(1)由已知,得=(3,-4),所以||=5,因此与同方向的单位向量是15=⎝ ⎛⎭⎪⎫35,-45.(2)a ∥b 的充要条件的坐标表示为1×2-m 2=0,∴m =±2,选C. (3)=(2,1),=(5,5),向量=(2,1)在=(5,5)上的投影为||cos,=||答案:(1)A (2)C (3)A [对点训练]2.(1)若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A .13B .-13C .9D .-9(2)已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( )A .30°B .60°C .120°D .150° 解析:(1) =(-8,8),=(3,y +6).∵∥,∴-8(y +6)-24=0.∴y =-9.(2)a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又θ∈[0°,180°],所以θ=120°. 答案:(1)D (2)C1.两向量的数量积及其运算律两个向量的数量积是a ·b =|a ||b |cos θ,θ为a 与b 的夹角,数量积满足运算律: ①与数乘的结合律,即(λa )·b =λ(a ·b ); ②交换律,即a ·b =b ·a ;③分配律,即(a +b )·c =a ·c +b ·c .2.平面向量的数量积是向量的核心内容,向量的平行、垂直是向量中最基本、最重要的位置关系,而向量的夹角、长度是向量的数量特征.3.利用向量的数量积可以证明两向量垂直、平行,求两向量的夹角,计算向量的长度等.[典例3] 已知c =m a +n b ,c =(-23,2),a ⊥c ,b 与c 的夹角为2π3,b·c =-4,|a |=22,求实数m ,n 的值及a 与b 的夹角θ.解:∵c =(-23,2),∴|c |=4. ∵a ⊥c ,∴a ·c =0.∵b·c =|b ||c |cos 2π3=|b |×4×⎝ ⎛⎭⎪⎫-12=-4,∴|b |=2.∵c =m a +n b ,∴c 2=m a ·c +n b ·c . ∴16=n ×(-4).∴n =-4. 在c =m a +n b 两边同乘以a , 得0=8m -4a ·b .①在c =m a +n b 两边同乘以b ,得m a ·b =12.② 由①②,得m =± 6.∴a ·b =±26.∴cos θ=±2622×2=±32.∴θ=π6或5π6.[对点训练]3.如图,在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则的最小值是________.答案:-2(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),=( )解析:选B ∵== .2.已知平面向量a=(1,2),b=(-2,m),且a∥b,则2a+3b=( ) A.(-5,-10) B.(-4,-8)C.(-3,-6) D.(-2,-4)解析:选B ∵a∥b,∴-21=m2,∴m=-4,∴b=(-2,-4),∴2a+3b=2(1,2)+3(-2,-4)=(-4,-8).3.已知平面向量a=(1,-3),b=(4,-2),若λa+b与a垂直,则λ的值是( ) A.-1 B.1 C.-2 D.2解析:选A 由题意可知(λa+b)·a=λa2+b·a=0.∵|a|=10,a·b=1×4+(-3)×(-2)=10,∴10λ+10=0,λ=-1.4.若|a|=2,|b|=2,且(a-b)⊥a,则a与b的夹角是( )A.π6B.π4C.π3D.π2解析:选B 由于(a-b)⊥a,所以(a-b)·a=0,即|a|2-a·b=0,所以a·b=|a|2=2,所以 cos〈a,b〉=a·b|a||b|=222=22,即a与b的夹角是π4.A.12B.-12C.32D.-326.已知向量满足:|a |=2,|b |=3,|a -b |=4,则|a +b |=( ) A. 6 B.7 C.10 D.11解析:选C 由题意|a -b |2=a 2+b 2-2a ·b =16, ∴a ·b =-32.∴|a +b |2=a 2+b 2+2a ·b =10, ∴|a +b |=10.A .内心B .外心C .垂心D .重心∴P 是△ABC 的垂心.8.平面向量a =(x ,-3),b =(-2,1),c =(1,y ),若a ⊥(b -c ),b ∥(a +c ),则b 与c 的夹角为( )A .0 B.π4 C.π2 D.3π4解析:选C 由题意知b -c =(-3,1-y ),a +c =(x +1,y -3),依题意得⎩⎪⎨⎪⎧-3x -3(1-y )=0,x +1+2(y -3)=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴c =(1,2),而b ·c =-2×1+1×2=0, ∴b ⊥c .9.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设=a ,=b ,则等于( )A.43a +23bB.23a +43bC.23a -43b D .-23a +43bA.⎝ ⎛⎭⎪⎫0,π3B.⎝ ⎛⎭⎪⎫π3,5π6C.⎝⎛⎭⎪⎫π2,2π3 D.⎝ ⎛⎭⎪⎫2π3,5π611.已知a =(-1,3),=a -b ,=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积是( )A. 3 B .2 C .2 2 D .4 解析:选D 由题意||=||且⊥,所以(a -b )2=(a +b )2且(a -b )·(a +b )=0, 所以a ·b =0,且a 2=b 2, 所以|a |=|b |=2,所以S △AOB =12||·||=12(a -b )2(a +b )2=12(a 2+b 2)2=4. 12.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1) 解析:选A 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ),所以⎩⎪⎨⎪⎧ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a (x -1)+by =0,ay +b (x -1)=0.由于对任意m =(a ,b ),都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0.所以p =(1,0).故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(2x +3,2-x ),b =(-3-x ,2x )(x ∈R ).则|a +b |的取值范围为________.解析:因为a +b =(x ,x +2),所以|a +b |=x 2+(x +2)2=2x 2+4x +4 =2(x +1)2+2≥2, 所以|a +b |∈[2,+∞). 答案:[2,+∞)14.设e 1,e 2为两个不共线的向量,若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ等于________.解析:因为a ,b 共线,所以由向量共线定理知,存在实数k ,使得a =k b , 即e 1+λe 2=-k (2e 1-3e 2)=-2k e 1+3k e 2 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧1=-2k ,λ=3k ,解得λ=-32.答案:-3215.在边长为2的菱形ABCD 中,∠BAD =60°,E 为CD 的中点,则=________.解析:以A 为原点,AB 所在的直线为x 轴,过A 且垂直于AB 的直线为y 轴建立平面直角坐标系.则由A (0,0),B (2,0),E (2,3),D (1,3,可得=1.答案:1答案:[1,4]三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1×(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4),∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.18.(12分)设向量a =(cos α,sin α)(0≤α<2π),b =⎝ ⎛⎭⎪⎫-12,32,且a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若向量3a +b 与a -3b 的模相等,求角α.解:(1)证明:由题意,得a +b =⎝⎛⎭⎪⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎪⎫cos α+12,sin α-32, 因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为向量3a +b 与a -3b 的模相等, 所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0,因为|a |=1,|b |=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫322=1, 所以|a |2=|b |2,所以a ·b =0, 所以-12cos α+32sin α=0,所以tan α=33, 又因为0≤α<2π,所以α=π6或α=7π6.19.(12分)如图,平行四边形ABCD 中,=a ,=b ,H ,M 是AD ,DC 的中点,BF =13BC ,(1)以a ,b 为基底表示向量(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求解:(1)∵M 为DC 的中点,(2)由已知得a ·b =3×4×cos 120°=-6,=12a 2+⎝ ⎛⎭⎪⎫1-112a ·b -16b 2=12×32+1112×(-6)-16×42 =-113.20.(12分)在边长为1的正△ABC 中,AD 与BE 相交于点F .解:(1)由题意,D 为BC 边的中点,而△ABC 是正三角形,所以AD ⊥BC ,=12(a +b )·⎝ ⎛⎭⎪⎫23b -a =13b 2-12a 2-16a ·b =13-12-16×1×1×12=-14.根据平面向量的基本定理有⎩⎪⎨⎪⎧-λ-22(λ+1)=-μ,λ2(λ+1)=2μ3,解得λ=4.21.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎪⎫0≤θ≤π2.∴t =-2k sin θ+16.∵t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k , ∵k >4,∴1>4k>0,当sin θ=4k 时,t sin θ取最大值为32k.由32k =4,得k =8,此时θ=π6,=(4,8),∴·=(8,0)·(4,8)=32.22.(12分)已知e 1,e 2是平面内两个不共线的非零向量,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求的坐标;(3)已知D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.解:(1)=(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2.∵A ,E ,C 三点共线,∴存在实数k ,使得,即e 1+(1+λ)e 2=k (-2e 1+e 2),得(1+2k )e 1=(k-1-λ)e 2.∵e 1,e 2是平面内两个不共线的非零向量,∴⎩⎪⎨⎪⎧1+2k =0,λ=k -1,解得k =-12,λ=-32.(2)=-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)∵A ,B ,C ,D 四点按逆时针顺序构成平行四边形,即点A 的坐标为(10,7).。
人教A版必修四第二章平面向量-章末小结
人教A版必修4第二章章末小结
三、知识方法总结与提升
平面向量
线性运算 熟悉一些常见平面向量的几何意义,形如
(1) a 1, a 1
(2)a 1 (b c) 2
(3)b ta, b ta , b ta min 1.利用定义
数量积
2.利用几何意义 3.利用运算性质(基底思想)
4.利用坐标表示
B. a b c d 0
D. a b c d 0
B
人教A版必修4第二章章末小结
二、重、难点平行四边形ABCD中,
M 和N分别是边CD和BC的中点,若AC AM AN ,
其中, R,则 ___ . 4
A
D3
M
B
N
C
人教A版必修4第二章章末小结
人教A版必修4第二章章末小结
一、回顾与思考
a b (x1 x2, y1 y2)
坐
大小
数 a b (x1 x2, y1 y2)
标
a (x1, y1)
运
a b x1x2 y1y2
算
向量
平面向量基本定理及其坐标表示 a (x1, y1),b (x2, y2)
ab 几
方向
形
ab
何
a
意
二、重、难点分析
2 数量积问题
例2. 已知向量a,b满足 a 2, b 1, a与b的夹角为 ,
3 则a b _____; a 2b _____; a与a 2b的夹角为 ______ .
人教A版必修4第二章章末小结
二、重、难点分析
2 数量积问题
例3. 已知RtABC的斜边AB的长为4,CB 2. 求CB BA
思想方法: 1. 数形结合 2.转化思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平面向量全章小结
(一)学习目标
1.进一步理解向量的有关概念;
2.掌握向量的线性运算,掌握向量数乘的运算,并理解其几何意义.
3.掌握平面向量的正交分解及其坐标表示以及相关应用.
4.掌握平面向量的数量积,并会应用其判断两个平面向量的垂直关系。
5.能够用向量解决一些具体问题,如平面几何中的一些问题和物理中的一些问题. (二)重点难点
1.重点是让学生理解向量的相关概念和向量的运算
2. 难点是如何向量方法解决一些问题. (三)教学过程 教学环节 教学内容
师生互动 设计意图 全章知识结构介绍
让学生根据表根中的各项要,回忆相关的概念
让学生从整体上对本章内容有一个宏观的了解
复习
例1.填空(向量的线性运算) 1.已知平行四边形ABCD,则
_______,=+AD AB ._______=-AD AB
2. ._______=-++BA CB AC AB
3. 已知)(2
1
OB OA OM +=
,则点M 是A,B 的_______;
若点A()7,1(),,5,2--B , 则 M 的坐 标为_________. 4.已知
OB OA OM 3
1
)311(+-=,则
._____AB AM =
5.已知)2,3(),1,2(--B A , AB AM 3
2
=, 则点M 的坐标为_______.
让学生自己先解决问题,让后
同学进行回答,教师
进行指导 说明:给出这组题的目的是,在复习向量的加减法,坐标运算和其相关的几何表示都要掌握,并且要会结合在一起使用.
例2.(向量的数量积)
说明:让学生首要
注意一些数据表明
平面向量、实际背景
向量及其基本概念 线性运算 向量的数量积
基本定理
坐标表示
向量的应用
(1)
已
知
)
1,3(),3,1(-==b a ,求
.,|,||,|,,>+<-+><a b a b a b a b a
(2)已知在ABC ∆中,有
A C O O OC O
B OB OA ⋅=⋅=⋅,问:点O 在
ABC ∆的什么位置.
的一些几何信息以及向量的代数式也可以告诉我们一些相关的几何信息,从而突出代数和几何关系.
例3.(向量基本定理) (1)给定一个基底},{j i 且
,312,3,4j i c j b j i a -==+=如果
b y a x
c +=,求y x ,.
(2)已知E,F 分别是∆ABC 边AB,AC 上的点,其EF//BC,AE=AB 3
1,如果
a =AE ,
b =AF ,用b a ,表示 .,,,CF EC BF BC
会让学生在给出基底的情况下表示其它向量.
例4.(向量的应用) (1)已知ABC ∆中,引中线AD,BE,CF,求证: 0=++CF BE AD ;
(2)若O 为ABC ∆的重心,求证:
0=++OC OB OA .
(根据此问让学生思考重心坐标公式) (3)用向量方法证明:平行四边形两条对 角线长度的平方和等于平行四边形四边 长度的平方和. (4)已知向量
OC
OB OA ,,满足
,0=++OC OB OA 1||||||===OC OB OA ,
求证:ABC ∆是等边三角形. (5)已知
R t c b a ∈==-=),1,3(),1,2(),2,3(.
求||b t a -的最小值和相应t 的值;
教师要对学生进行
适当的提
示.
这部分问题的对学生的要求较高,让学生会应用向量方法解决相关问题,而这包括用向量和坐标方法.
若b t
a 与c共线,求t的值.
归纳小结本节主要复习向量的概念和相关的运算, 如何用向量来解决问题
布置作业课本126页习题. 学生自主
完成
(四)教学资源建议
教材、教参、多媒体或实物投影仪、尺规
(五)教学方法与学习指导策略建议
向量是沟通代数,几何,三角函数的工具,掌握向量的解题技巧,方法显得非常重要.向量的解题方法有向量法和坐标法.而要熟练应用这些方法,学生应该对相应的基本概念比较清楚,因此教师在复习时,应该在引导学生得到结果基础之上,让同学理解相关的意义和了解其实际背景.应该把几何的直观性和向量的运算有机的结合在一起.运算和运算律是向量的灵魂,是连接数与形的纽带,教师应该突出这一点.因此,教师在讲授时,
(1)关注解题方法产生的思维过程
引导学生探究如何将把问题转化为向量问题,揭示解题方法产生的的思维过程,让学生体会解题思路的形成过程和数学思想方法的运用,从而提高学生综合运用知识分析和解决问题的能力.
(2)强化学生的应用意识
一是培养学生利用所学数学知识、用数学的思维与观点去观察和分析现实生活现象的习惯和意识,强化学生的应用意识;二是为学生提供充足的动手操作的机会,一旦形成解决问题的思路,后续的解题过程则放手让学生独立完成,让学生体验问题的解决过程,并在此过程中锻炼与提高数学能力.
(3)引导学生探究解题规律
指导学生做好解题后的反思,总结解题规律,从而培养学生理性的、条理的思维习惯,形成对通性通法的归纳意识.。