脂肪酸甲酯化方法
脂肪酸甲酯化方法

一、主题内容与适用范围本标准适用于所有的动植物油脂和脂肪酸。
二、目的油脂及脂肪酸(特别是12 碳以上的长碳链脂肪酸) 一般不直接进行气相色谱分析,其原因是脂肪酸脂肪酸及油脂的沸点高,高温下不稳定,易裂解,分析中易造成损失。
因此,对脂肪酸及油脂的脂肪酸组分分析时,先将脂肪酸或油脂与甲醇反映,制备脂肪酸甲酯,降低沸点,提高稳定性,然后进行气相色谱分析。
三、BF3甲酯化法1、仪器(1)50ml及100ml磨口圆底烧瓶(2)回流冷凝器(长度20〜30cm,有磨口连接,与烧瓶配套)( 3) 250ml 分液漏斗( 4)滴管( 5)带磨口玻璃塞的试管( 6) 10ml 移液管( 7)沸石2、试剂( 1 )正庚烷,色谱纯(2)轻汽油(沸程40〜60 C)( 3)无水硫酸钠,分析纯( 4) 0.5M 的氢氧化钠甲醇溶液(不用标定) ,配制如下:称取2g NaOH溶于100ml甲醇中(甲醇的含水量不得超过0.5%<m/m>),该溶液放置一段时间后会出现白色沉淀,这不影响脂肪酸甲酯化制备。
(5)12〜25%( m/m ) BF3的甲酯溶液;(6)饱和的NaCI水溶液(7)甲基红指示剂:用60%的乙醇配置0.1%的甲基红溶液( 8)氮气:含氧量低于5mg/kg3、操作方法,(1)取大约350mg油样加入50ml烧杯中,移取6ml 0.5M的NaOH于油样中,并加入几粒沸石,连接回流装置,开始加热回流,回流过程中要不断摇动烧瓶。
(2)当烧瓶内的油珠消失,溶液变得透明时(大约需要5〜10分钟),从冷凝器上端加7ml BF3甲醇溶液于烧杯内(用移液管移取),然后继续回流1分钟。
(3)然后从冷凝管上端加入2〜5ml 正庚烷后,再回流 1 分钟。
(4)撤离火源,取出烧瓶,向烧瓶中加入一定量的饱和NaCI溶液,轻轻上下颠倒数次后,静置分层。
(5)从烧杯内的上层溶液中取出约1ml 转移到磨口试管中,并加入适量的无水硫酸钠,以去除痕量的水分,得到的此甲酯化样品以备气相色谱分析用。
甲酯化方法

一、主题内容与适用范围本标准适用于所有的动植物油脂和脂肪酸。
二、目的油脂及脂肪酸(特别是12碳以上的长碳链脂肪酸)一般不直接进行气相色谱分析,其原因是脂肪酸脂肪酸及油脂的沸点高,高温下不稳定,易裂解,分析中易造成损失。
因此,对脂肪酸及油脂的脂肪酸组分分析时,先将脂肪酸或油脂与甲醇反映,制备脂肪酸甲酯,降低沸点,提高稳定性,然后进行气相色谱分析。
三、BF3甲酯化法1、仪器(1)50ml及100ml磨口圆底烧瓶(2)回流冷凝器(长度20~30cm,有磨口连接,与烧瓶配套)(3)250ml分液漏斗(4)滴管(5)带磨口玻璃塞的试管(6)10ml移液管(7)沸石2、试剂(1)正庚烷,色谱纯(2)轻汽油(沸程40~60℃)(3)无水硫酸钠,分析纯(4)0.5M的氢氧化钠甲醇溶液(不用标定),配制如下:称取2g NaOH溶于100ml甲醇中(甲醇的含水量不得超过0.5%<m/m>),该溶液放置一段时间后会出现白色沉淀,这不影响脂肪酸甲酯化制备。
(5)12~25%(m/m)BF3的甲酯溶液(6)饱和的NaCl水溶液(7)甲基红指示剂:用60%的乙醇配置0.1%的甲基红溶液(8)氮气:含氧量低于5mg/kg3、操作方法,(1)取大约350mg油样加入50ml烧杯中,移取6ml 0.5M的NaOH于油样中,并加入几粒沸石,连接回流装置,开始加热回流,回流过程中要不断摇动烧瓶。
(2)当烧瓶内的油珠消失,溶液变得透明时(大约需要5~10分钟),从冷凝器上端加7ml BF3甲醇溶液于烧杯内(用移液管移取),然后继续回流1分钟。
(3)然后从冷凝管上端加入2~5ml正庚烷后,再回流1分钟。
(4)撤离火源,取出烧瓶,向烧瓶中加入一定量的饱和NaCl溶液,轻轻上下颠倒数次后,静置分层。
(5)从烧杯内的上层溶液中取出约1ml转移到磨口试管中,并加入适量的无水硫酸钠,以去除痕量的水分,得到的此甲酯化样品以备气相色谱分析用。
几种脂肪酸甲酯化方法的比较

几种脂肪酸甲酯化方法的比较脂肪酸甲酯化方法是将脂肪酸与甲醇反应,生成相应的脂肪酸甲酯。
脂肪酸甲酯的应用广泛,常用于制备生物柴油、乳化剂、护肤品等。
下面将对几种常用的脂肪酸甲酯化方法进行比较。
1.酸催化甲酯化酸催化甲酯化是最常见的脂肪酸甲酯化方法之一、它通过在反应体系中加入酸催化剂,促进脂肪酸与甲醇的酯化反应。
常见的酸催化剂有硫酸、硫酸氢钠、硫酸铵等。
该方法具有操作简单、反应速度较快、成本较低等优点。
然而,酸催化条件下易产生酸水解反应和酸催化剂的脱水反应,会降低脂肪酸的收率和质量。
2.酶催化甲酯化酶催化甲酯化是一种绿色、高效、具有较高反应选择性的脂肪酸甲酯化方法。
常用的酶催化剂有脂肪酶、酶和蛋白酶等。
酶具有良好的催化活性、高化学稳定性和多次重复使用的能力。
相比于其他方法,酶催化甲酯化更环保,不会产生有毒废物和大量的反应副产物。
然而,酶催化甲酯化的反应速度较慢,酶催化剂价格较高,对反应温度和pH值较为敏感。
3.碱催化甲酯化碱催化甲酯化是一种常用的酯化方法。
它通过在反应体系中加入碱催化剂,如氢氧化钠、氢氧化钾等,促进脂肪酸与甲醇的酯化反应。
碱催化甲酯化反应速度快、转化率高,并且生成脂肪酸甲酯的收率高。
然而,碱催化甲酯化会形成大量的碱皂,需要进行酸化处理和中和,产生大量废液,增加了生产成本。
4.带电催化甲酯化带电催化甲酯化是一种新兴的脂肪酸甲酯化方法。
它是利用带电催化剂催化脂肪酸与甲醇的酯化反应,不需要加入酸或碱催化剂。
带电催化剂在反应体系中不断进行离子交换,从而提高反应速率和产率。
该方法具有催化效率高、废液产生少的优点。
然而,带电催化剂的合成和回收较为困难,仍需要进一步的研究和改进。
二、总结不同的脂肪酸甲酯化方法各有优点和限制。
酸催化甲酯化方法操作简单、成本低,但容易产生酸水解反应和产生废弃物。
酶催化甲酯化方法具有高效、选择性好、环保等特点,但反应速度较慢,酶催化剂价格较高。
碱催化甲酯化反应速度快、转化率高,但会产生大量废液和碱皂。
气质联用仪脂肪酸甲酯化方法

脂肪酸甲酯化方法:称取60 mg油脂样致具塞试管中。
用移液管或移液器移取4 ml异辛烷溶解试样,必要时可以微微加热使试样溶解。
用微量移液器加入200 ul氢氧化钾甲醇溶液,盖上玻璃塞猛烈震摇30 s,后静置至澄清。
向溶液中加入约1 g硫酸氢钠,猛烈震摇,中和氢氧化钾。
待盐沉淀后,将含有甲酯的上层溶液倒入4 ml玻璃瓶中,得到的异辛烷溶液中甲酯含量约为15 mg/mL。
直接取液态上清样品(过膜)注入气象色谱-质谱仪中分析。
氢氧化钾甲醇溶液:约2 mol/L。
将13.1 g氢氧化钾溶于100 mL无水甲醇中,可轻微加热,加入无水硫酸钠干燥,过滤,即得澄清溶液。
溶液存放一段时间后,可能会形成少量沉淀,用上清液测定不影响测定。
仪器:
1具塞试管:4/8根
2移液管或移液器、微量移液器加入200 ul
试剂:
1异辛烷
2氢氧化钾甲醇溶液:约2 mol/L(将13.1 g氢氧化钾溶于100 mL无水甲醇中,可轻微加热,加入无水硫酸钠干燥,过滤,即得澄清溶液)
3无水硫酸钠1g
4硫酸氢钠1g。
食用油的反式脂肪酸含量分析方法

食用油的反式脂肪酸含量分析方法食用油中的脂肪酸是人体所需的重要营养物质,但某些油脂加工过程中会产生一种被称为"反式脂肪酸"的物质,其摄入过多可能对健康产生负面影响。
因此,准确测定食用油中的反式脂肪酸含量至关重要。
本文将介绍两种主要的分析方法——气相色谱法和高效液相色谱法,旨在为食用油生产与质量监测提供指导。
一、气相色谱法分析食用油中反式脂肪酸含量1. 样品准备首先,取食用油样品,通过加热至适当温度使样品液化。
然后使用无水醇(如甲醇或乙醇)将非脂类物质从样品中提取出来。
待提取完成后,将样品转移至小瓶中,用氮气吹干。
2. 反式脂肪酸甲酯化将样品中的脂肪酸转化为甲酯形式,以方便后续的气相色谱分析。
这一步骤通常采用甲醇和硫酸催化进行。
3. 气相色谱分析将甲酯化样品注入气相色谱仪,通过设定合适的温度梯度和流速条件,将样品中的反式脂肪酸分离出来。
根据分离出的峰面积和已知标准样品建立标准曲线,以确定样品中反式脂肪酸的含量。
二、高效液相色谱法分析食用油中反式脂肪酸含量1. 样品准备将食用油样品中的纯油脂取出,通过加热使其溶解。
然后,用乙腈等有机溶剂提取样品中的非脂类物质,待提取完成后,经氮气冲洗,使残留的溶剂蒸发。
2. 脂肪酸乙酯化将样品中的脂肪酸转化为乙酯形式,以方便后续的高效液相色谱分析。
这一步骤通常采用甲醇和硫酸催化进行。
3. 高效液相色谱分析将乙酯化样品注入高效液相色谱仪,通过控制流速、检测波长和列温等参数,将反式脂肪酸定量分离和测定。
同样利用标准曲线来计算样品中反式脂肪酸的含量。
三、结论通过气相色谱法和高效液相色谱法可以准确测定食用油样品中的反式脂肪酸含量。
两种分析方法均需要样品的预处理和适当的仪器设备,对于食用油生产厂商和院校实验室而言,能够选择合适的方法进行分析,以提高产品质量,确保人们的健康。
反式脂肪酸含量的准确测定对于开发和改进食用油生产工艺、质量监测以及相关法规的实施具有重要意义。
_植物油脂肪酸甲酯化方法比较与含量测定

钟左右的效果为最佳。
参考文献:[1]唐勤学,陶小林,黎司.有机磷农药残留速测仪的研究进展[J].化工时刊,2008,22(9):68[2]蔡建荣,张东升,赵晓联,等.食品中有机磷农药残留的几种检测方法比较[J].中国卫生检验杂志,2002,12(6):750-752[3]袁东,封雪松,付大友,等.饲料中总磷、无机磷和有机磷的含量测定[J].四川轻化工学院学报,2002,15(4):42-46[4]武汉大学等校编.分析化学实验[M].北京:高等教育出版社,1985:21[5]刘德生.环境监测[M].北京:化学工业出版社,2001:176[6]于景荣,陈兵.磷钼蓝光度法测定锰铁矿中的磷[J].理化检验-化学分册,1998,34(12):563-564[7]朱静平,刘兴艳,马建华,等.应用磷钼蓝分光光度法测定红橘中有机磷[J].广西农业科学,2005,36(4):351-352[8]桑宏庆,于秋生.紫外分光光度法测定甜蜜素[J].饮料工业,2006,9(11):27-29收稿日期:2013-12-02植物油脂肪酸甲酯化方法比较与含量测定伍新龄1,2,王凤玲1,2,*,关文强1,2(1.天津市食品生物技术重点实验室,天津300134;2.天津商业大学生物技术与食品科学学院,天津300134)摘要:通过比较不同甲酯化方法、气相色谱升温程序,确定了植物油中脂肪酸成分的气相色谱分析方法,并对5种食用植物油的主要脂肪酸含量进行了分析和比较。
结果表明:三氟化硼-甲醇快速甲酯化法具有操作简单、时间短、甲酯化率高的优点。
利用CP-Sill 88高极性气相色谱柱,优化的升温程序为:初始温度170℃,保持1min ,以10℃/min 升温速率升至200℃,再以1℃/min 升温速率升至220℃,保持3min ,20min 内即可有效分离6种脂肪酸。
用建立的方法测定5种食用植物油6种脂肪酸的含量,标准曲线的相关性好,相关系数范围为0.9994~0.9999,检出限低。
脂肪酸酯化方法

脂肪酸极性很强,是一种热敏性物质,在高温下容易发生聚合、脱羧、裂解等副反应。
直接进行分析,柱温很高,高温固定相难以选择,色谱峰易拖尾,保留时间不重复,有时有假峰出现等。
对脂肪酸的色谱分析,一般都需要进行前处理。
C5以下的脂肪酸可先转变为乙酯、丙酯或苯甲酯,C6以上的脂肪酸可先转变为甲酯,这样除可降低脂肪酸的极性外,还有利于选择固定相和色谱分析操作。
甲酯化方法:
取500mg脂肪酸样品于酯化烧瓶中,加入7mL BF3甲醇溶液(14%BF3甲醇溶液),装上冷凝器,沸腾2分钟后,从冷凝器上部加入5mL己烷,再沸腾1min,停止加热,将酯化瓶取下,加入氯化钠饱和溶液至己烷达到瓶口,取出约1mL己烷溶液于试管中,加入少量的无水硫酸钠,取上层液体直接注入色谱仪。
当样品中有C6及C8脂肪酸时,按上述方法酯化后,加入50mL 氯化钠饱和溶液,盖上瓶塞,振动20次,放置1min后,分离出上层己烷液,在下层中加入5mL己烷,同上操作。
合并己烷溶液,加入无水硫酸钠干燥后,取己烷溶液直接注入色谱仪。
脂肪酸甲酯化验方法

脂肪酸甲酯化验方法
实验材料:
1.涂丙醇。
2.氯仿。
3.甲酸。
4.液态稳定剂。
5.洗涤剂。
实验步骤:
步骤1:收集样本。
收集你要测试的样本。
脂肪酸甲酯化通常用于检测血清或组织样本中的脂肪酸浓度。
你可以使用毛细管或注射器直接收集血液样本,或者使用拉丁方格收集组织样本。
步骤2:加入涂丙醇和氯仿。
将样品移至样品管中,加入2毫升涂丙醇和2毫升氯仿。
然后使用液态稳定剂将液体混合。
步骤3:加入甲酸。
加入0.2毫升甲酸。
覆盖并用手轻轻摇动,使液体混合均匀。
将样品保存在黑暗中静置一段时间。
步骤4:沉淀。
将样品离心,分离下层脂肪酸甲酯。
将它们移到新的样品管中。
步骤5:洗涤。
加入适量的洗涤剂混合均匀,然后再次离心。
分离下层脂肪酸甲酯,
并将其移到新的样品管中。
步骤6:检测。
使用气相色谱仪测量你提取的脂肪酸甲酯,并与标准曲线比较。
标准
曲线将显示不同的脂肪酸甲酯峰的相对强度。
这将允许你确定样品中有多
少脂肪酸。
总之,脂肪酸甲酯化实验方法是一项非常有用的技术,可用于确定不
同样品中的脂肪酸浓度。
使用上述简单步骤可以快速、准确地完成此实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脂肪酸甲酯化方法
1.酸催化法:酸催化法是最常用的脂肪酸甲酯化方法之一、在这种方
法中,常用的酸催化剂有硫酸、盐酸、硫酸铵等。
具体操作时,将脂肪酸
和甲醇加入反应器中,加入适量的酸催化剂,并加热反应混合物。
随着反
应的进行,脂肪酸与甲醇发生酯化反应生成甲酸酯。
最后,通过蒸馏纯化
产物即可得到脂肪酸甲酯。
2.碱催化法:碱催化法是另一种常用的脂肪酸甲酯化方法。
在这种方
法中,常用的碱催化剂有氢氧化钠、氢氧化钾等。
与酸催化法类似,将脂
肪酸和甲醇加入反应器中,加入适量的碱催化剂,并加热反应混合物。
碱
催化法的优点是反应速度较快,但在酯化反应结束后,需要采取一系列中
和和纯化的步骤来去除催化剂和不溶性的杂质。
3.酶催化法:酶催化法是一种可溶性酶或固定化酶催化的甲酯化反应。
这种方法的优点是选择性高,反应条件温和,并且生成的产物通常不需要
进一步纯化。
常见的酶催化剂包括脂肪酶、酵母等。
在酶催化法中,将脂
肪酸、甲醇和酶一起置于反应器中,并加入适量的缓冲液进行反应。
酶催
化法能够在常温下进行,并且不会产生废弃物。
脂肪酸甲酯化反应的影响因素主要包括反应温度、催化剂用量、底物
摩尔比等。
较低的反应温度和较高的催化剂用量通常能够提高反应速率和
产率。
此外,在脂肪酸甲酯化反应中,质子酸和碱酸催化通常比酶催化产
生更高的产率,但酶催化法通常更适用于在温和条件下进行选择性的甲酯化。
在实际应用中,脂肪酸甲酯化反应广泛应用于生物燃料的合成、香料
和化妆品的制造等领域。
研究人员也在不断改进脂肪酸甲酯化反应的方法,以提高产率和选择性,并减少催化剂的使用量和反应条件的能耗。