人教版八年级上册数学课本知识点归纳完整版

合集下载

人教版小学八年级上册数学知识点总结

人教版小学八年级上册数学知识点总结

人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。

当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。

2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。

•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。

•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。

3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。

(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。

一般形式为ax^2 + bx + c = 0(a≠0)。

2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。

•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。

•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。

•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。

3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。

通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。

(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。

分式是不同于整式的一类代数式。

2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。

初二数学上册知识点总结(人教版)

初二数学上册知识点总结(人教版)

初二数学上册知识点总结(人教版)初二数学上册知识点总结(人教版)本文档总结了初二数学上册的重要知识点。

以下是每个章节的主要内容概述。

第一章:有理数- 有理数的概念和性质- 有理数的加法、减法、乘法和除法运算- 有理数的大小比较和绝对值- 有理数的混合运算第二章:平方根和立方根- 平方根和立方根的概念和性质- 求平方根和立方根的方法- 平方根和立方根的运算法则第三章:比例与相似- 比例的概念和性质- 求解比例的方法- 相似的概念和性质- 判断两个图形是否相似的方法第四章:代数式- 代数式的概念和表达方法- 代数式的加法、减法、乘法和除法运算- 多项式的概念和运算法则- 代数式的应用问题第五章:一次函数与方程- 一次函数的概念和性质- 一次函数的图像和性质- 解一元一次方程的方法- 一次函数与方程的实际应用第六章:一次不等式和不等式组- 不等式及其解集的概念- 解一元一次不等式的方法- 解不等式组的方法- 不等式和不等式组的应用第七章:平面图形的认识- 平面图形的基本概念和性质- 三角形的分类和性质- 四边形的分类和性质- 平行线和垂直线的判定方法第八章:平面图形的应用- 通过条件画图的方法- 图形的旋转、翻折和滑动变换- 图形的对称性和轴- 图形的符号表示和坐标表示第九章:数据的处理- 数据的收集和整理方法- 数据的统计和分析方法- 数据的图表表示和解读- 数据的应用问题以上是初二数学上册的知识点总结。

希望对你的学习有所帮助!。

人教版八年级数学上册知识点

人教版八年级数学上册知识点

人教版八年级数学上册知识点人教版八年级数学上册知识点概述一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正有理数、0和负有理数。

- 无理数:无限不循环小数称为无理数,如圆周率π。

2. 实数的运算- 加法、减法、乘法和除法的运算规则。

- 正数和负数的运算。

- 绝对值的概念及运算。

3. 估算和有效数字- 近似数的估算方法。

- 有效数字的计算和应用。

4. 实数的性质和比较大小- 实数的性质。

- 实数大小的比较方法。

二、代数表达式1. 代数式的概念- 单项式和多项式的定义。

- 同类项和合并同类项。

2. 代数式的运算- 整式的加减法。

- 乘法公式,包括平方差公式、完全平方公式等。

- 多项式的乘除法。

3. 因式分解- 提公因式法。

- 公式法。

- 十字相乘法。

三、方程与不等式1. 一元一次方程- 方程的建立和解法。

- 方程的解的检验。

2. 一元一次不等式- 不等式的概念和性质。

- 不等式的解集表示。

- 不等式的解法。

3. 二元一次方程组- 方程组的建立。

- 代入法和消元法解方程组。

四、几何1. 平行线与角- 平行线的判定和性质。

- 角的概念,包括同位角、内错角、同旁内角。

2. 三角形- 三角形的基本性质。

- 等腰三角形和等边三角形的性质。

- 三角形的内角和外角性质。

3. 四边形- 四边形的定义和分类。

- 矩形、菱形、正方形的性质。

4. 圆的基本性质- 圆的定义和圆心、半径、直径的概念。

- 弦、弧、切线的概念和性质。

五、统计与概率1. 统计- 数据的收集和整理。

- 频数和频率的概念。

- 统计图表的绘制,包括条形图、折线图和饼图。

2. 概率- 随机事件的概念。

- 概率的计算方法。

- 等可能事件的概率。

以上是人教版八年级数学上册的主要知识点概述。

在学习过程中,学生应该掌握每个知识点的定义、性质、公式和解题方法,以便能够熟练地解决相关问题。

教师和家长应鼓励学生通过练习题和实际应用来巩固和深化这些概念。

人教版八年级数学上册 全册知识点归纳

人教版八年级数学上册    全册知识点归纳

2021年人教版八年级上册数学知识点总结归纳1第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段〔1〕三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

〔2〕在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

〔3〕从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线〔简称三角形的高〕。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在消费生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:〔1〕三角形有三条线段〔2〕三条线段不在同一直线上三角形是封闭图形〔3〕首尾顺次相接三角形用符号“∆〞表示,顶点是A、B、C的三角形记作“∆ABC〞,读作“三角形ABC〞。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形〔有一个角为直角的三角形〕三角形锐角三角形〔三个角都是锐角的三角形〕斜三角形钝角三角形〔有一个角为钝角的三角形〕把边和角联络在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论〔1〕三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

〔2〕三角形三边关系定理及推论的作用:①判断三条线段能否组成三角形②当两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

人教版八年级上数学知识点总结

人教版八年级上数学知识点总结

人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。

人教版数学八年级上册全册知识点汇总

人教版数学八年级上册全册知识点汇总

人教版数学八年级上册全册知识点汇总一、概念1.沿着直线折叠图表。

如果直线两边的部分可以完全重叠,那么这个图形叫做轴对称图形。

这条直线是它的对称轴。

这时我们也说这个图形是关于这条直线(轴)对称的。

★2.沿着直线折叠图表。

如果它能与另一个图形完全重合,则称这两个图形关于这条直线对称。

这条直线叫做对称轴。

折叠后重叠的点就是对应点,叫做对称点。

★3、轴对称图形与两个图形成轴对称的区别和联系:(1)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;两个图形形成的对称性是指两个图形之间的位置关系,沿对称轴折叠后可以重叠。

★(2)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;当两个对称的图形被看作一个整体时,它就是一个轴对称图形。

★4、轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

★5、等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等★二、线段的垂直平分线1.过一条线段的中点并垂直于这条线段的直线称为这条线段的中垂线,也叫中垂线。

★2、线段垂直平分线上的点与这条线段的两个端点的距离相等。

★3.线段两端点距离相等的点在该线段的中垂线上。

★三、作轴对称图形1.制作轴对称图形:围绕对称轴制作原图形中某些点的对应点,然后将这些对应点连接起来,得到原图形的轴对称图形。

(注意特殊点)★2、点(x , y)关于x轴对称的点的坐标为:(x,-y)点(x , y)关于y轴对称的点的坐标为:(-x,y)★3、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等★四、等腰三角形1、等腰三角形的性质:①等腰三角形的两个底角相等(“等边对等角”)②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合★2、等腰三角形是轴对称图形,三线合一所在直线是其对称轴(只有1条对称轴)★3、等腰三角形的判定:①如果一个三角形有两条边相等②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)★五、等边三角形1、等边三角形:三条边都相等的三角形;(等边三角形是特殊的等腰三角形)★2、等边三角形的性质:①等边三角形的三个内角都是60°②等边三角形的每条边都存在三线合一★3、等边三角形是轴对称图形,对称轴是三线合一所在直线(有3条对称轴)★4、等边三角形的判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角形③有一个角是60°的等腰三角形是等边三角形★5、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2023年人教版八年级上册数学课本知识点归纳

2023年人教版八年级上册数学课本知识点归纳

人教版八年级上册数学书本知识点归纳第十一章全等三角形一、全等形可以完全重叠旳两个图形叫做全等形。

二、全等三角形1. 全等三角形: 可以完全重叠旳两个三角形叫做全等三角形。

(两个三角形全等, 互相重叠旳顶点叫做对应点, 互相重叠旳边叫做对应边, 互相重叠旳角叫做对应角。

)2. 全等三角形旳符号表达、读法: △ABC与△A′B′C′全等记作△ABC≌△A′B′C′, “≌”读作“全等于”。

(两个三角形全等时, 一般把对应顶点旳字母写在对应旳位置上, 这样对应旳两个字母为端点旳线段是对应边;对应旳三个字母表达旳角是对应角)。

3.全等三角形旳性质:全等三角形旳对应边相等, 对应角相等。

二、三角形全等旳鉴定:1. 三边对应相等旳两个三角形全等, 简写成“边边边”或“SSS”。

2. 两边和他们旳夹角对应相等旳两个三角形全等, 简写成“边角边”或“SAS”。

3. 两角和他们旳夹边对应相等旳两个三角形全等, 简写成“角边角”或“ASA”。

4. 两个角和其中一种角旳对边对应相等旳两个三角形全等, 简写成“角角边”或“AAS”。

5. 斜边和一条直角边对应相等旳两个直角三角形全等, 简写成“斜边、直角边”或“HL”。

(SSA、AAA不能识别两个三角形全等, 识别两个三角形全等时, 必须有边旳参与, 假如有两边和一角对应相等时, 角必须是两边旳夹角。

)三、角旳平分线旳性质1. 性质: 角平分线上旳点到角旳两边距离相等。

2. 逆定理:在角旳内部, 到角旳两边距离相等旳点在角平分线上。

(3.三角形旳内心:运用角旳平分线旳性质定理可以导出:三角形旳三个内角旳角平分线交于一点, 此点叫做三角形旳内心, 它到三边旳距离相等。

)第十二章轴对称一、轴对称1.轴对称图形: 假如一种图形沿一条直线折叠, 直线两旁旳部分可以互相重叠, 这个图形就叫做轴对称图形, 这条直线就叫做对称轴。

折叠后重叠旳点是对应点, 叫做对称点。

2. 线段旳垂直平分线: 通过线段中点并且垂直于这条线段旳直线, 叫做这条线段旳垂直平分线3. 轴对称旳性质:1.假如两个图形有关某条直线对称, 那么对称轴是任何一对对应点所连线段旳垂直平分线。

人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

-按角分类:锐角三角形、直角三角形、钝角三角形。

-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。

3. 三角形的内角和与外角和-三角形内角和为180°。

-三角形的外角等于与它不相邻的两个内角之和。

三角形外角和为360°。

4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。

-全等三角形的对应边相等、对应角相等。

2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。

- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。

- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

-线段垂直平分线上的点与这条线段两个端点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学课本知识点归纳
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
第十五章整式的乘除与因式分解一、整式的乘法
1.同底数幂的乘法:a m·a n=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。

2.幂的乘方法则:(a m)n=a mn(m,n都是正整数)幂的乘方,底数不变,指数相乘。

3.积的乘方法则:(ab)n=a n·b n(n为正整数)积的乘方=乘方的积4.单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式
5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。

6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式
1.平方差公式:(a+b)(a-b)=a2-b2。

2.完全平方公式:(a±b)2=a2±2ab+b2
口诀:前平方,后平方,积的两倍中间放,中间符号看情况。

(这个情况就是前后两项同号得正,异号得负。


3.添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。

三、整式的除法
1.a m÷a n==a m-n(a≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减。

2.a0=1(a≠0)任何不等于0的数的0次幂都等于1。

3.单项式除以单项式:(1)系数相除(2)同底数幂相除(3)只在被除式里的幂不变
4.多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加。

四、因式分解
1.因式分解:把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2.公因式:一个多项式中各项都含有的相同的因式,叫做这个多项式的公因式。

3.分解因式方法:
(1)提公因式法: ma+mb+mc =m(a+b+c)。

(2)运用公式法:把整式中的乘法公式反过来使用;
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2;a2+b2=(a+b)2-2ab
a2-2ab+b2=(a-b)2;a2+b2=(a-b)2+2ab
③立方差公式: x3-y3=(x-y)(x2+xy+y2)
a 1 c 1
a 2 c 2
X (3)①十字相乘法1(二次项系数是1): x 2+(p+q)x+pq= (x+p)(x+q)。

①二次项系数是1;②常数项是两个数之积;③一次项系数是常数项的两个因数之和。

②十字相乘法2(二次三项式):
即将二次三项式ax 2+bx+c 的系数a 分解成a 1a 2,常数项c 分解成c 1c 2,并且把a 1a 2,c 1c 2排列如下: 这里按斜线交叉相乘,再相加得到a 1 c 2+ a 2 c 1,如果它
正好等于b
( a 1 c 2+ a 2 c 1=b),那么ax 2+bx+c 就可以分解成(a 1x+ c 1)( a 2x+ c 2)。

评注:利用十字相乘法分解因式的关键是把二次三项式中二次项系数和常数项分解因式,使得它们按斜线交叉相乘之积的和刚好等于原二次三项式中一次项的系数。

④十字相乘法3(二次六项式):又叫双十字相乘法。

对于某些二次六项式ax 2+bxy+cy 2+dx+ey+f 。

可以看做关于x 的二次三项式,ax 2+ (by+ d) x + (cy 2+ey+f) 。

先用十字相乘法将常数项(cy 2+ey+f)分解,再利用十字相乘法将关于x 的二次三项式分解。

(4)分组分解法:(1)定义:分组分解法,适用于四项以上的多项式,例如a 2b 2+a?b ,既没有公因式,又不能直接利用公式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

再提公因式,即可达到分解因式的目的。

例如:
a2b2+a?b=( a2b2) +( a?b) =( a?b) ( a+b) +( a?b) =( a?b)
( a+b+1),这种利用分组来分解因式的方法叫分组分解法。

(5) 待定系数法:即先假定一个含有待定系数的恒等式,然后根据各项恒等的性质,列出几个含有待确定系数的方程组,解之求得待定系数的值;或者从方程组中消去这些待定系数,求出原来那些已知系数间所存在的关系,从而解决问题。

整体换元法;巧选主元法;活用配方法;求根公式法。

相关文档
最新文档