解析几何知识点总结(高考复习)

合集下载

平面解析几何-高考复习知识点

平面解析几何-高考复习知识点

平面解析几何 高考复习知识点一、直线的倾斜角、斜率1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。

2、直线的斜率(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。

例题:例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析: ∵, ∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.类型二:斜率定义例2.已知△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 思路点拨:本题关键点是求出边AB 与AC 所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan150°= k AC =tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.类型三:斜率公式的应用例3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.例4、过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或. 经检验不适合,舍去. 故.例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.思路点拨:如果过点AB ,BC 的斜率相等,那么A ,B ,C 三点共线.解析:∵A 、B 、C 三点在一条直线上,∴k AB =k AC .即二、直线方程的几种形式1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。

解析几何知识点总结大全

解析几何知识点总结大全

解析几何知识点总结大全几何学问点总结大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的全部线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行8假如两条直线都和第三条直线平行,这两条直线也相互平行 9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角 21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的全部点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和高相互重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的全部点的集合42定理1关于某条直线对称的两个图形是全等形43定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a+b=c47勾股定理的逆定理假如三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线相互平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线相互平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线相互垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线相互垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh83(1)比例的基本性质假如a:b=c:d,那么ad=bc假如ad=bc,那么a:b=c:d84(2)合比性质假如a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质假如a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相像91相像三角形判定定理1两角对应相等,两三角形相像(ASA) 92直角三角形被斜边上的高分成的两个直角三角形和原三角形相像93判定定理2两边对应成比例且夹角相等,两三角形相像(SAS) 94判定定理3三边对应成比例,两三角形相像(SSS)95定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相像96性质定理1相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比97性质定理2相像三角形周长的比等于相像比98性质定理3相像三角形面积的比等于相像比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的.点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同始终线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d?r②直线L和⊙O相切d=r③直线L和⊙O相离d?r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论假如两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134假如两个圆相切,那么切点肯定在连心线上135①两圆外离d?R+r②两圆外切d=R+r③两圆相交R-r?d?R+r(R?r)④两圆内切d=R-r(R?r)⑤两圆内含d?R-r(R?r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积3a/4a表示边长143假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)解析几何方法总结然而相对于导数需要较强的技巧和想法来讲,解析几何更重要考察的是心里素养。

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。

下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。

2.平面与平面的位置关系:两个平面可以相交、平行或重合。

二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。

2.向量的表示方法:向量可以用有向线段或坐标表示。

3.向量的加法:向量的加法满足平行四边形法则。

4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。

5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。

6.向量的乘法运算法则:分配律、结合律和交换律。

三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。

2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。

3.直线的性质:平行、垂直、斜率、倾斜角等。

4.直线的位置关系:两条直线可以相交、平行或重合。

四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。

2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。

3.曲线的性质:焦点、准线、离心率等概念的理解。

4.曲线的位置关系:两条曲线可以相交、相切或没有交点。

五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。

2.空间直线的位置关系:两条空间直线可以相交、平行或重合。

3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。

六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。

2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。

七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。

2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。

高三数学解析几何知识点总结大全

高三数学解析几何知识点总结大全

高三数学解析几何知识点总结大全解析几何是高中数学中的一门重要学科,对于高三的学生来说尤为关键。

掌握解析几何的知识点,不仅可以帮助解决实际问题,还可以提高数学思维能力。

本文将对高三数学解析几何的知识点进行全面总结和归纳。

1. 坐标系在解析几何中,坐标系起到了重要的作用。

常见的坐标系有直角坐标系和极坐标系。

直角坐标系由两条互相垂直的坐标轴组成,分别为x轴和y轴。

点的位置可以通过坐标表示,比如(x, y)表示点在x轴和y轴上的坐标值。

极坐标系由极轴和极角组成,极轴是一条直线,极角是与极轴的夹角。

2. 点、直线和平面的方程在解析几何中,点、直线和平面可以通过方程来表示。

点的坐标可以通过坐标轴的交点得到。

直线的方程可以使用一般方程、点斜式方程和两点式方程来表示。

平面的方程可以使用一般方程和法向量方程来表示。

3. 距离和斜率在解析几何中,距离和斜率是常见的概念。

距离可以用两个点的坐标表示,可以用勾股定理求得。

斜率表示直线的倾斜程度,可以通过两点之间的坐标差值求得。

4. 直线和平面的交点直线和平面的交点可以通过直线的方程和平面的方程求得。

将直线的方程代入平面的方程,解方程组得到交点的坐标。

5. 直线与直线的关系两条直线可以相交、平行或重合。

可以通过斜率来判断直线的关系。

斜率相等的直线平行,斜率互为倒数的直线相交。

6. 直线与平面的关系直线与平面可以相交,平行或重合。

可以通过直线的方程和平面的方程来判断直线与平面的关系。

将直线的方程代入平面的方程,解方程组判断是否有解。

7. 圆的方程圆的方程可以通过圆心和半径来表示。

圆心的坐标可以通过坐标轴的交点得到。

半径可以通过圆上两点的距离来求得。

8. 镜面对称和轴对称镜面对称和轴对称是解析几何中的重要概念。

镜面对称是指图形对于一条直线左右对称,轴对称是指图形对于一点对称。

可以用坐标变换的方式来判断一个图形是否具有镜面对称或轴对称性。

9. 三角函数与向量三角函数和向量是解析几何中的重要内容。

高中解析几何知识点

高中解析几何知识点

解析几何知识点一、基本内容(一)直线的方程1、直线的方程确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.2、两条直线的位置关系两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠外注意到角公式与夹角公式的区别.(2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断.(二)圆的方程(1)圆的方程1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22D E --,半径。

3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x r =条件时,能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切.4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ),1PA PB k k =-求出圆方程(x-x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式(三)曲线与方程(1)求曲线方程的五个步骤:(1)建立适当的直角坐标系,用(x ,y )表示曲线上任意一点M 的坐标;建标(2)写出适合条件P 的点M 的集合P ={M |P (M )}; 设点(3)用坐标表示条件P (M ),列出方程f (x ,y )=0 列式(4)化方程f (x ,y )=0为最简方程 化简(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.除个别情况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),直接列出曲线方程.(2)求曲线方程主要有四种方法:(1)条件直译法:如果点运动的规律就是一些几何量的等量关系,这些条件简单、明确,易于表达,我们可以把这些关系直译成含“x ,y ”(或ρ,θ)的等式,我们称此为“直译法”.(2)代入法(或利用相关点法):有时动点所满足的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.如果相关点满足的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.(3)几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律.(4)参数法:有时很难直接找出动点的横纵坐标之间关系.如果借助中间参量(参数),使x,y之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线(1)椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.这里应特别注意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.(2)椭圆的标准方程之所以称它为标准方程,是因为它的形式最简单,这与利用对称性建立直角坐标系有关.同时,还应注意理解下列几点,1)标准方程中的两个参数a和b,确定了椭圆的形状和大小,是椭圆的定形条件.2)焦点F1,F2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.5)焦半径:椭圆上任一点到焦点的距离为焦半径.如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.6)|A1F1|=a-c|A1F1|=a+c10)椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结解析几何是数学中的一个重要分支,它是几何和代数的结合,通过代数方法研究几何问题。

在高中数学学习中,解析几何是一个重要的知识点,它涉及到直线、圆、曲线等图形的性质和相关定理。

下面将对高中数学解析几何的知识点进行总结。

一、直线的方程。

1.点斜式方程。

点斜式方程是解析几何中直线的一种常见方程形式,它的形式为y-y₁=k(x-x₁),其中(x₁,y₁)为直线上的一点,k为直线的斜率。

利用点斜式方程,可以方便地确定直线的位置和性质。

2.一般式方程。

一般式方程是直线的另一种常见方程形式,它的形式为Ax+By+C=0,其中A、B、C为常数且A和B不同时为0。

一般式方程可以直接得到直线的斜率和截距,方便进行直线的分析和运算。

二、圆的方程。

1.标准方程。

圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

通过标准方程,可以直接得到圆的圆心和半径,方便进行圆的性质和位置分析。

2.一般方程。

圆的一般方程是x²+y²+Dx+Ey+F=0,其中D、E、F为常数。

一般方程可以通过配方和化简得到圆的标准方程,也可以直接得到圆的圆心坐标和半径长度。

三、曲线的方程。

1.抛物线的方程。

抛物线的一般方程为y=ax²+bx+c,其中a、b、c为常数且a≠0。

抛物线是解析几何中的重要曲线,通过抛物线的方程可以确定抛物线的开口方向、顶点坐标等重要性质。

2.椭圆的方程。

椭圆的一般方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a、b分别为椭圆在x轴和y轴上的半轴长度。

椭圆是解析几何中的另一种重要曲线,通过椭圆的方程可以确定椭圆的中心、长短轴长度等重要性质。

综上所述,高中数学解析几何知识点总结包括直线的方程、圆的方程和曲线的方程。

通过对这些知识点的学习和掌握,可以帮助学生更好地理解和运用解析几何知识,提高数学解题能力。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、基本概念1. 点、直线和平面•点:在平面上,点是最基本的几何对象,可以用坐标表示。

在空间中,点可以用三维坐标表示。

•直线:由无数个点连成的无限延伸的轨迹,可以由两个不重合的点唯一确定。

•平面:由无数点在同一平面上组成。

2. 基本图形•线段:连接两点的线段,有起点和终点,可以用线段的长度表示。

•射线:一个起点和一个终点在同一条直线上的线段,有起始点但没有终结点。

•角:由两条半直线和公共端点组成,以顶点为中心点,夹在两条半直线之间。

二、坐标系与向量1. 坐标系•笛卡尔坐标系:直角坐标系,是一个由两条垂直的坐标轴组成的平面,用于表示点的位置。

•极坐标系:以一个点为极点,在此点设一根射线作为极轴,并规定每一个点到该射线的距离和与该射线正方向所成角度来表示该点的坐标。

2. 向量•向量的定义:向量是有大小和方向的量,表示一段膨胀或者收缩的箭头。

•向量的运算:向量可以做加法和乘法运算,具备平移、缩放和旋转的特性。

•向量的表示:向量可以用有序数组、列矩阵或坐标表示。

三、直线与圆1. 直线的方程•点斜式方程:通过已知点和斜率来表示直线的方程。

•斜截式方程:通过截距和斜率来表示直线的方程。

•两点式方程:通过两个已知点来表示直线的方程。

•一般式方程:直线的一般方程为Ax + By + C = 0。

2. 圆的方程•标准方程:圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)为圆心坐标,r为半径长度。

•一般方程:圆的一般方程为x2+y2+Dx+Ey+F=0。

四、曲线与曲面1. 二次曲线•椭圆:由平面上到两个定点的距离之和为常数的点的轨迹组成。

•抛物线:由平面上到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。

•双曲线:有两个定点F1和F2称为焦点,对于任意一点P的到两个焦点的距离之差是常数。

2. 二次曲面•椭球面:由空间中到两个定点的距离之和为常数的点的轨迹组成。

•抛物面:由空间中到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。

数学作为高考的一门重要科目,解析几何是其中的一个重点内容。

为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。

1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。

根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。

1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。

2. 空间几何体2.1 球球是解析几何中的一个重要概念。

其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。

2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。

通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。

掌握其特点和方程形式,对于解析几何的学习非常重要。

3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。

根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。

3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。

根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。

4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。

通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。

4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。

对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 直线与方程
1、倾斜角与斜率:1
21
2tan x x y y k −−==α
2、直线方程:
⑴点斜式:()00x x k y y −=− ⑵斜截式:b kx y +=
⑶两点式:
121
121y y y y x x x x −−=−− ⑷截距式:
1x y a b
+= ⑸一般式:0=++C By Ax
3、对于直线:
222111:,:b x k y l b x k y l +=+=有: ⑴
≠=⇔21
2
121//b b k k l l ; ⑵1l 和2l 相交12k k ⇔≠; ⑶1l 和2l 重合
==⇔21
2
1b b k k ;
⑷12121−=⇔⊥k k l l .
4、对于直线:
:,0:22221111=++=++C y B x A l C y B x A l 有:

≠=⇔122
11
22121//C B C B B A B A l l ;
⑵1l 和2l 相交1221B A B A ≠⇔;
⑶1l 和2l 重合 ==⇔1
2211
221C B C B B A B A ;
⑷0212121=+⇔⊥B B A A l l .
5、两点间距离公式:
()()21221221y y x x P P −+−=
6、点到直线距离公式:
2
2
00B
A C
By Ax d +++=
7、两平行线间的距离公式:
1l :01=++C By Ax 与2l :02=++C By Ax 平行,
则2
2
21B
A C C d +−=
2. 圆与方程
1、圆的方程:
⑴标准方程:()()2
2
2
r b y a x =−+−
其中圆心为(,)a b ,半径为r .
⑵一般方程:022=++++F Ey Dx y x . 其中圆心为(,)22
D
E



半径为r =2、直线与圆的位置关系
直线0=++C By Ax 与圆222)()(r b y a x =−+−的位置关系有三种:
0<∆⇔⇔>相离r d ;
0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .
弦长公式:2
2
2d r l −=
=3、两圆位置关系:21O O d = ⑴外离:r R d +>; ⑵外切:r R d +=;
⑶相交:r R d r R +<<−; ⑷内切:r R d −=; ⑸内含:r R d −<.
3、空间中两点间距离公式:
()()()21221221221z z y y x x P P −+−+−=
3.椭圆
4.双曲线
5.抛物线
图形
若干公式
1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB −+−=
2、 平行线间距离:若0C By Ax :l ,
0C By Ax :l 2211=++=++,则:2
2
21B
A C C d +−=
3、 点到直线的距离: 2
2
B
A C
By Ax d +++=
o o
4、 直线与圆锥曲线相交的弦长公式:
=+=0
)y ,x (F b
kx y 则:2122))(1(x x k AB −+=
5、 若A ),(),,(2211y x B y x ,P (x ,y )。

P 在直线AB 上,且P 分有向线段AB 所成的比为λ,

λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且
+=+=2
221
21y y y x x x 变形后:y y y y x x x x −−=λ−−=λ2121或
6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2
11
21tan k k k k +−=
α
若l 1与l 2的夹角为θ,则=
θtan 21211k k k k +−,]2
,0(π
∈θ
注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。

(2)l 1⊥l 2时,夹角、到角=
2
π。

(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

7、 (1)倾斜角α,),0(π∈α;
(2)]0[,π∈θθ→
→,,夹角b a ;
(3)直线l 与平面2
0[π∈ββα,,的夹角;
(4)l 1与l 2的夹角为θ,∈θ]2
0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,,
8、 直线的倾斜角α与斜率k 的关系
a) 每一条直线都有倾斜角α,但不一定有斜率。

b )若直线存在斜率k ,而倾斜角为α,则k=tan α。

相关文档
最新文档