数模 电梯模型
数学建模 电梯调度问题16

电梯调度问题商业中心某写字楼有二十二层地上建筑楼层和两层地下停车场,6部电梯,每部电梯最大载重是20个正常成人的体重总和。
工作日里每天早晚高峰时期均是非常拥挤,而且等待电梯的时间明显增加。
请你针对早晚高峰期的电梯调度问题建立数学模型,以期获得合理的优化方案。
1)请给出若干合理的模型评价指标。
2)暂不考虑该写字楼的地下部分,每层楼层的平均办公人数经过调查已知(见表1)。
假设每层楼之间电梯的平均运行时间是3秒,最底层(地上一层)平均停留时间是20秒,其他各层若停留,则平均停留时间为10秒,电梯在各层的相应的停留时间内乘梯人员能够完成出入电梯。
表1:该写字楼各层办公人数楼层人数楼层人数楼层人数1无9236 6172002 3 4 5 6 7 8208 52177222 5130181191236 7101112131415161392722722722703002641819202l22200200200207207请你针对这样的简化情况,建立你的数学模型(列明你的假设),给出一个尽量最优的电梯调度方案,并利用所提评价指标进行比较。
3)将你在第2问中所建立的数学模型进一步实际化,以期能够尽量适用于实际情况,用于解决现实的电梯调度问题。
问题备注:本题的评分标准按照以下先后顺序:逻辑的严谨程度-行文与模型描述的条理程度-模型和现实问题的接近程度-以及所用数学工具的理论程度。
摘要随着科技的发展,人们逐步加快了自己的步伐,高节奏的生活,对于时间的要求,越来越高,写字楼里的人来也匆匆去也匆匆,在高峰期时段对电梯的使用最多,电梯的合理化应用在此显得尤为重要,没有合理的优化方案,不仅影响了乘客的上班时间,同时,电梯的多次停顿也造成了一定程度的能源浪费,所以在此提出得到优化方案,并作出计算分析其优化程度。
本文首先根据电梯群控模型评价指标体系,从乘客者的候梯时间和乘梯时间和能耗三个角度考虑。
最初选定方案一电梯编号负责楼层1—2 2-103—4 11-175—6 18-22方案二电梯编号负责楼层1 2 3 4 5 62 7 8 9 103 11 12 134 14 15 165 17 18 196 20 21 22我们将建立一个多目标规划模型,对该模型的建立,分三个目标:乘客的平均候梯时间要短,乘客的平均乘梯时间要短,能源耗损要少。
数学建模例子详解-电梯控制问题

(3)或矩阵形式为:(4) Nhomakorabea即
(5)
其中 。
初始条件为: (6)
控制约束为: (7)
性能指标为: (8)
现求最优控制 ,把系统从初态 转移到终态 使 达到最小。
2.模型求解
该问题是有约束条件的泛函极值问题,由极小值原理
确定最优控制。
哈密尔顿函数为:
(9)
要使 全局最小,即 使最小,而 ,故可得最优控制为
电梯控制问题
在高为100米的观光塔内装有一电梯,问如何确定控制策略(电梯的动力),才能使游客从塔底到塔顶所化时间最少?
一、建模假设
1.假设电梯装满人后的总质量为 。
2.为了使乘客乘电梯感到舒适,假设电梯运行的加速度 ,且在从塔底到塔顶的整个过程中只有一个加速过程和一个减速过程。
3.假设电源提供的动力和电梯本身的设备在 时不受限制。
(10)
由协态方程得:
(11)
即
(12)
故
(13)
所以
(14)
由此可得
(15)
在 平面上, 是一直线,其四种形状以及相应的 如图所示。
由此可见,可供选择的最优控制有下列四种:
a. b.
c d.
切换次数最多一次,切换时间为 ,由该问题的实际推断可得:
(16)
又因为 ,故
由假设2,可设电梯在AB段加速运行,在BO段减速运行,切换点为B点。则AB段的加速度为:
4.假设重力加速度为 (常数)。
5.假设电梯在塔底时 米, ,电梯运行到塔顶时 (待求), 。其中 表示位移,表示 速度。坐标系如图1
6.假设电梯提供的动力为 。
二、模型的建立
根据假设问题的数学模型是:在控制条件
电梯最佳运行策略数学建模

电梯运转的最优策略摘要重点字:最优运转策略人流密度分段运送法均匀等候时间优化模型跟着高楼的愈来愈多,电梯愈来愈普及。
于是电梯的运转策略的优化愈来愈遇到人们的重视。
本文研究的就是居民楼电梯运转策略的最优化问题。
所谓电梯运转策略的优化,就是要使居民对乘坐电梯满意度最高。
即减少等待时间。
本文就是从这点出发追求电梯运转的最优策略。
第一依据居民楼电梯的使用规律,即人流密度,将电梯的使用分为五个时间段。
依据每个时间段的人流密度特色提出相应的运转策略。
其次我们运用两部电梯分段运送法,即第一部电梯负责运送下边一些楼层的居民,第二部电梯负责运送其余上边的那些楼层的居民。
成立相应的数学模型。
让每一时段的均匀等候时间最小。
而后以均匀每层居民的的等候时间为目标函数,成立优化模型。
运用MATLAB 软件在目标函数最小状况下求出两部电梯的分段工作的分界楼层,即可确定电梯的运转策略。
最后我们发现:清晨安闲时段第一部电梯应负责运送第14 层以下的居民下楼,不工作时停在第 7 层;第二部电梯应负责运送第14 层(含14 层)的居民下楼,不工作时停靠在20 楼。
上班顶峰期第一部电梯应运送第14 层以下的居民下楼,第二部电梯应运送第 14 层(含 14 层)居民下楼。
中间时段第一部电梯应停在第 1 层特意负责将居民送到楼上,同(上下楼概率相同)时负责将9层以下的居民送到楼下。
第二部电梯应停在第 17 层特意将第 9 层以上(含第 9 层)居民送到楼下。
下班顶峰期第一部电梯应运送第14 层以下的居民上楼,第二部电梯应运送第 14 层(含 14 层)居民上楼。
夜晚安闲时段第一部电梯应负责运送第14 层以下的居民下楼,;第二部电梯应负责运送第14 层(含 14 层)的居民下楼,不工作时都停靠在 1 楼。
而且经我们严格考证此运转策略是十分理想的。
于是我们得出结论:该运转策略能够除去居民乘电梯的烦忧。
........一、问题的提出某高层居民住所楼共有25 层,此中奇数层每层楼住有 4 户,偶数层每层楼住有 2 户,该住所楼安装了 2 部电梯供居民上下楼。
数学建模 电梯调度问题18

电梯调度方案问题摘要:本文是一个控制分析问题,通过对各种控制方法进行分析评价,得出优化的电梯调度方案。
针对具体问题,我们将电梯的运行时间作为目标函数, 在早晚高峰模式下对电梯群控的各部电梯进行分配,分别建立“跳跃式模型”和“连续型分阶段模型”,对每种模型,我们给出不同的电梯调度方案,通过对不同调度方案的分析、比较和优化,筛选出比较满意的调度方案。
结合实际情况,我们考虑到生活中存在的具体约束,并增加新的评价指标,完善模型,达到快速效应乘客需求、节能和提高电梯利用率的目的。
关键词:优化调度跳跃式模型连续型分阶段模型1.问题的提出与分析背景分析:随着社会的发展,高楼大厦不断兴建,电梯已经成为生产与生活中不可缺少的机电设备。
现阶段人们不断追求生活质量,对电梯运行的快速性、舒适性等都提出了更高的要求,如何让电梯更好的发挥其作用已成为备受关注的问题。
如何合理地调控使用现有电梯,提高电梯的服务效率,尽量减少人流的乘梯等待时间和乘梯时间,是电梯管理中的一个首要任务。
在电梯管理中,关于上班高峰期的电梯优化调度问题也一直是大家关心的焦点。
我们考虑商业中心某写字楼早晚高峰时期电梯合理调度的数学建模问题。
已知条件及要求:商业中心某写字楼共有22层地上建筑楼层和2层地下停车场,其内设有6部电梯。
工作日里,每天早晚高峰时期电梯非常拥挤,乘客等待电梯的时间很长,降低了电梯的服务质量。
该写字楼各层办公人数分布如下:楼层人数分布501001502002503003500510152025楼层人数系列1现要求考虑下列问题:(1)分析确定合理的评价指标体系,用以评价该问题的电梯调度模型的优劣。
(2)针对具体的简化情况建立数学模型,给出一个尽量最优的电梯调度方案,并利用所提评价指标进行比较分析。
(3)实际情况,将所建立的数学模型进一步实际化,用于解决现实的电梯调度问题。
问题分析:1、考虑到电梯的快速性和舒适性以及乘客的舒适度和满意度要求,评价调度方案优劣除了将减少侯梯时间作为评价指标外,还应考虑减少乘梯时间、减少乘客的长侯梯率以及减少电梯的能耗作为多目标的评价体系[1],即在保证乘客和侯梯者都满意的前提下, 提高电梯的运输效率和服务质量,有效地控制电能消耗。
数学建模例题之电梯问题

某教学和办公大楼有十一层高,教室安排在1到7层,办公室都安排在8,9,10,11层上,假设学生上课每层有300人,办公人员都乘电梯上楼,每层有60人办公,现有二台电梯A、B可利用,每层楼之间电梯的运行时间是3秒,最底层(一层)停留时间是20秒,其他各层若停留,则停留时间是10秒,每层电梯的最大的容量是10人。
为简单起见,假设早晨7:30-8:00以前学生和办公人员已陆续到达一层,能保证每部电梯在底层的等待时间内(20秒)能达到电梯的最大容量,电梯在各层的相应的停留时间内办公人员能完成出入电梯,当无人使用电梯时,电梯应在底层待命。
问:1:把这些人都送到相应的办公楼层,要用多少时间?2:怎样调度电梯能使得办公人员到达相应楼层所需总的时间尽可能的少?为简单起见,现作如下假设:1.早晨8点以前办公人员已陆续到达最底层。
2.每部电梯在底层的等待时间内(20秒)能达到电梯的最大容量,电梯在各层的相应的停留时间内(10秒)办公人员能完成出入电梯。
其余时间,如电梯开关门的时间则忽略不记。
3.当电梯下降时,没有人员在其中,电梯直接从原目标层回到最底层。
4.电梯是匀速运行的,启动、停止时的加速度忽略不记。
5.当无人使用电梯时,电梯应在底层待命。
6.电梯只能运送目标层在工作区间内的员工,而不能运送其他员工,即使它已经处在待命状态。
2. 变量说明Tk 电梯在一种模式下完成工作的耗时(k=1, (6)a 电梯在底层停顿的时间b 电梯在每层(除底层)停靠所需要的时间p 电梯运行的最高目标层m 各层需要运送的人数n 电梯的单位运输能力v 电梯的运行速度3. 对问题的枚举式分析3.1.1 先假设只有一台电梯在工作。
CASE 1 如果在电梯一次运行过程中,每一层的人员均含两名,那么,电梯完成所有运送任务并回到最底层待命所需的时间:Ta=30*(20+2*3*10+5*10)=3900秒=65分钟CASE 2 如果在电梯一次运行过程中,电梯中的人员均在同一层办公,那么,电梯完成所有运送任务并回到最底层待命所需的时间:Tb=∑6*[20+2*3*(n-1)+10]=2340秒=39分钟3.1.2 假设三台电梯工作模式完全相同(即A、B、C三台同升同降,同开同关)。
数模

电梯运行问题【问题提出】某办公楼有11层高,办公室分别安排在7,8,9,10,11层上.假设办公人员都乘电梯上楼,每层有60人办公.现有三部电梯A,B,C可供使用,每层楼之间电梯的运行时间为3秒,最底层(1层)的停留时间为20秒,其他各层若停留,则停留时间为10秒.每台电梯的最大容量是10人,在上班前电梯只在7,8,9,10,11层停留.请问:怎样调度电梯能使得办公人员到达相应楼层所需总的时间最少?试给出一种具体实用的电梯运行方案.【模型假设】(1)办公人员都乘电梯上楼;(2)早晨8:00以前办公人员已陆续到达一层;(3)保证每部电梯在底层等待时间内(20秒)都能达到电梯的最大容量;(4)电梯在各层相应的停留时间内,办公人员能够完成出入电梯的动作;(5)当无人使用电梯时,电梯在底层待命.【模型建立】(1)电梯运行配置方案一容易想到的一个运行方案是,将5×6=300名办公人员平均分配给三部电梯运送,每部电梯运送100人,每趟运送10人,需运送10趟.每趟运行因有往返,故电梯待命及人员出人时间为20+5×10=70 秒,在途中运行时间为6×10=60 秒,总计一趟运行耗时130秒.由于三部电梯彼此独立运行,因此,若它们同时开始运行,将300人运送完总耗时应为10×130=1300 秒,约21.7分钟.(2)对电梯运行方案一的改进为了改进电梯的运行方案,首先推导一部电梯运行一趟耗时的计算公式.假设该电梯在第一层楼以外停留的次数是N,最高到达的层数是F,则其一趟运行耗时为 T=20+6(F-1)+10N(秒). (1) 其中7≤F≤11,1≤N≤5.从公式(1)可以看到,要使电梯运行的时间T变小,关键是减少N(即减少中途无谓的开门次数).由此想到一种最极端的电梯运行方案,即每部电梯每次运行只去某一特定的楼层,以保证中途仅开门一次.为了电梯运行时间均匀起见,三部电梯各去每层楼两趟,依照这种运行方案,每部电梯赴7,8,9,10,11层楼分别用时66,72,78,84,90秒.总计用时为:2×(66+72+78+84+90)=780(秒)=13 (分钟).这也许是最省时间的运行方案了.下面的两种方案(见表一,表二),你觉得哪一种更好些?表一电梯运行配置方案二表二电梯运行配置方案三通过对比可以看出,表一简单明了、便于操作,但是它使高层的办公人员等待时间较长,同时由于它是从低层到高层运人,容易发生电梯等人(因为目标楼层的人员可能未到齐)的现象,或者使较低楼层的人员由于稍来迟一点而没有电梯可乘.表二对这方面的考虑要好一些,它使各层人员的平均等待时间大体相当,并且目标分布比较均匀,但控制起来不太方便.(3)从统计角度出发设计电梯运行配置方案通过一段时间的观察统计,发现这300人不都是按时上班的。
数学建模 电梯调度问题14

电梯优化方案摘要商用写字楼的电梯拥挤情况给公司及个人都带来了严重的不便。
所以,对于一个商用写字楼,对电梯进行合理的调度是至关重要的。
本文的目的就是建立合理的电梯调度方案,以解决某写字楼的电梯拥挤情况。
对于问题一:尽快把乘客送到目的地,是考察电梯调度优劣的主要方面。
因此我们把乘客的等待时间作为主要评价指标。
对于问题二:首先确定采用分区调度的方法建立模型。
第一步根据宗群《基基于排队论的上班高峰电梯群调度的研究》确定电梯平均运行时间的公式。
第二步利用用matlab软件,利用Newton迭代方法,可以具体算出在所有的分区情况下的电梯运行时间,从而求出电梯平均载客量,从而确定合理的分区。
第三步,进一步优化,确定分区的具体楼层。
用matlab软件,利用Newton迭代方法,可以具体算出在所有的分区情况下的电梯运行时间,从而求出电梯平均载客量。
用MATLAB软件编程,对分区个数进行讨论,逐步搜索最佳分区。
并在最佳分区的前提下,综合价格因素,寻找各个区域所需最佳类型电梯及其数目。
关键词:排队论动态规划等待时间 matlab模拟1问题重述1.1问题背景商业中心某写字楼有二十二层地上建筑楼层和两层地下停车场,设有6部电梯,每部电梯最大载重是20个正常成人的体重总和。
工作日里每天早晚高峰时期均非常拥挤,而且等待电梯的时间明显增加,电梯显得供不应求,乘客极度不满,电梯运行效率亟待提高。
在电梯运行速度既定的情况下,合理安排电梯调度是解决这一问题的唯一出路。
本文针对早晚高峰期的电梯调度问题建立数学模型,以期获得合理的优化方案。
1.2问题(1)从乘客的满意度、电梯运行效率角度,分析确定合理的模型评价指标体系。
(2)根据第2问给出的条件,针对经简化的情况,建立分区调度的数学模型,设计出合理的电梯调运方案,使得在早晚高峰期尽可能的把各层乘客快速送达各自目标楼层,以缓解电梯前的拥挤现状,尽量减少各层乘客的候梯时间。
(3)将第2问中所建立的数学模型进一步实际化,以期能够尽量适用于实际情况,用于解决现实的电梯调度问题。
数学建模-电梯群控问题

由图可知,根据电梯运行的实际情况,我们规定:当 t1 取 20 s 时,满意度
Y1 为 1;当 t1 取 30 s 时,满意度 Y1 为 0.
◆乘客的平均乘梯时间 t 同样,由于乘客满意度 Y2 与 t 负相关,我们建立 Z 型隶属度函数来反映二 者之间的关系: 满意度 Y2 与 t 的函数图像如下:
由图可知,根据电梯运行的实际情况,我们规定:当 t 取 20 s 时,满意度
Y2 为 1;当 t 取 45 s 时,满意度 Y2 为 0.
◆电梯停靠总次数 Q 根据实际生活情况可知,电梯的停靠次数 Q 越大,则电梯群控系统的运载 效率越低,耗能会相应增加;并且随着 Q 的增大,相应的加速阶段也会随之 增多,造成能耗的进一步加大。因此,可以认为对电梯停靠总次数的满意度
电梯调动过程中只考虑直达的交通流其他形式的交通流不予考虑四符号说明n乘坐电梯的乘客总数ijt电梯由第i层直接到第j层所经过的时间iv乘客i早晨到达门厅的时间iv乘客i上行时的目标楼层iw乘客i下行前到达所在楼层电梯入口的时间iw乘客i下行前所在楼层t所有乘客的平均等待时间t所有乘客的平均乘梯时间1t所有乘客上楼时的平均等待时间1t所有乘客上楼时的平均乘梯时间2t所有乘客下楼时的平均等待时间2twait乘客i在上楼时进入电梯之前的等待时间仅当乘客需要排队等待所有乘客下楼时的平均乘梯时间i电梯时计算iwait乘客i在下楼时进入电梯之前的等待时间仅当乘客需要排队等待电梯时计算ielevator乘客i在上楼时在电梯内的乘梯时间ielevator乘客i在下楼时在电梯内的乘梯时间sszz电梯上行时走过的总的路程电梯下行时走过的总的路程电梯上行时的平均停靠次数电梯下行时的平均停靠次数iq电梯i在上行过程中总的停靠次数iq电梯i在下行过程中总的停靠次数1y乘客对平均等待时间的满意度2y乘客对平均乘梯时间的满意度3y对电梯停靠总次数的满意度4y对电梯运行总路程的满意度y电梯群控模型调度方案的综合评价指标五电梯群控模型评价指标体系的建立在电梯的群控模型中不同的电梯调度方案会产生不同的调度结果
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题背景:现代高层商务楼中一般都配套了多台电梯,因此如何安排好各台电梯的运行方式,既能保证大楼内各公司员工的正常工作和出行,又能降低能耗,节约成本,是大楼物业管理中的重要内容之一。
在一般高层商务楼中,经常采用的是分层次或单双层的运行方式,或者某部电梯直达某高层以上的方法,试从节约能源和尽力满足客户需求这两个角度,具体评价这些方案的优劣。
实际问题探讨现有一商务楼,层高25层,每层的员工数在220-260之间,员工上班时间均为上午9时至下午17:30分。
大楼内有客用电梯6台,另有一台消防电梯。
电梯运行速度大约为1.7m /s,大楼的层高为3.2m(装修以后的,装修前为4.1m ),试建立一个合适的电梯运行方案(包括闲时和忙碌时),使尽可能降低能耗但又不至于使用户有较大的不舒服。
若大楼另有两层底下车库,方案该做如何调整?摘要:本文针对高层商务楼中的电梯运行管理方案设计问题,分析了影响电梯耗能和用户满意度的主要因素,运用规划论和计算机仿真的方法,分别给出了忙碌时和空闲时的电梯运行方案以及有地下车库时的改进方案,并对运行方案做出定量的实例分析。
在评价指标的选择上,我们充分考虑到了指标的全面性、独立性和易获取性。
在优化模型的求解中,给出动态规划算法,大大降低了计算复杂性。
针对问题(1):我们以乘客的平均侯梯时间、平均乘梯时间,电梯运行时间,总的运行距离,总的电梯停靠次数作为衡量电梯耗能和乘客满意度的主要指标,同时还结合最长侯梯时间以保证单个乘客的侯梯时间不会太长。
针对问题(2):在上行高峰的条件下对电梯随机、单双层和分区运行3 种方式进行优劣比较,以电梯运行时间和电梯停靠耗能作为其评价指标,以“电梯运行周期与运行总时间之比等于电梯在一个周期内运送的乘客数与乘客总数之比”和“一个周期内的停靠耗能与电梯停靠总耗能之比等于电梯在一个周期内运送的乘客数与乘客总数之比”的“比例”原则为依据,对3 种电梯运行方式建立了简易的数学模型进行描述与比较,确定分区运行为最佳方案。
针对问题(3):电梯忙时主要有上行高峰和下行高峰两种情况,由于两者具有对称性,故仅考虑上行高峰的情形。
基于问题(2)的结论,忙时我们采用分区运行的方式。
关键的任务是确定出最佳分区方案。
通过对上行高峰时段电梯运行情况的分析,利用概率论的方法得到电梯往返运行一次的时间,以电梯运行总距离短、电梯停靠总次数少、电梯运行时间短、人均侯梯与乘梯总时间短为目标,建立了电梯优化调度的数学模型,且采用动态规划算法求得电梯在上行高峰条件下的最优调度方案。
最后对各楼层人数给定下的实例进行计算,算得25 层楼的最优分组为2—6,7 11,12 15,16—19,20—22,23—25 。
针对问题(4):电梯闲时的主要任务是负责层间运行,由于电梯响应任务不繁忙,从能耗的角度考虑需将部分电梯暂时停掉,解题的关键就是确定实际所需的电梯数量。
本文在电梯数量变化的基础上给出了几种闲时调度方案以及方案选择准则。
在具体比较各方案时,根据时间步长法的思路,设计详细的仿真流程,借助C++编程对系统进行仿真。
在给定交通流为10人/min的条件下,需要开启的最佳电梯数目为3台。
该电梯调度方法有效地避免了电梯“空驶现象”。
针对问题(5):大楼有地下车库与原先的主要差别在于,乘客有多个入口进入大楼。
在这种情况下,最关键的就是确定出用几台电梯为地下两层服务,剩余几台电梯为地上员工服务。
在这种情况下,以两者运行时间的“最大最小”原则作为其评价指标,建立规划模型,确定出服务于门厅和服务于地下车库的电梯数。
最后具体给出各楼层中在门厅侯梯的乘客人数,确定出最佳方案如表—6所示。
关键词:指标体系运行方案优化模型计算机仿真随着社会的发展,高层建筑和智能化建筑不断出现,作为垂直运输工具的电梯得到了越来越广泛的应用,人们对电梯提出的要求越来越高。
从服务质量的角度说,人们总是希望候梯时间与乘梯时间的总和越短越好;从输送能力的角度说,要求电梯系统有较高的运送处理能力;从运营成本的角度说,要求电梯避免空驶,减少启停车次数,降低系统能耗。
为了能尽量满足上述要求,其关键在于设计理想的电梯管理方案。
现有一商务楼,层高25层,每层的员工数在220-260之间,我们给出各层具体人数如表—1所示,总人数为6000人。
在该层商务楼中,员工上班时间均为上午9时至下午17:30分。
大楼内有客用电梯6台,另有一台消防电梯。
电梯运行速度大约为1.7m/s,装修前大楼的层高为4.1m。
根据国家相关规定,消防电梯只能在紧急救援中投入使用,因此在电梯运行方案设计中不将消防电梯考虑在内。
我们希望通过数学建模方法寻找出相对理想的电梯运行方案,使尽可能降低能耗,同时尽力满足客户需求。
本文具体要研究如下问题:(1)衡量电梯运行能耗和用户满意度的指标有很多,综合考虑指标的全面性、独立性和易获取性,分析确定合理的评价指标体系。
(2)影响一个电梯系统运行效果的主要因素是电梯的运行方式。
一般高层商务楼中,经常采用的是分层次或单双层的运行方式,或者某部电梯直达某高层以上的方法。
分析确定合理的评价指标体系,用以评价这些方案的优劣。
(3)同时考虑能耗和用户满意度,建立一个忙时的电梯运行方案。
忙时主要有上行高峰和下行高峰两个情况。
考虑到上行时人群由一层分散至其他各层的过程与下行时人群由各层集中至一层的过程对称,我们只须制定上行高峰时段的电梯运行方案。
(4)同时考虑能耗和用户满意度,建立一个闲时的电梯运行方案。
交通空闲期即是整个大厦中搭乘电梯的乘客很少,电梯响应任务不繁忙。
在这种交通情况下,只须确定实际所需电梯数量,将不需要的电梯暂时停掉,以此来大幅度减少能耗。
(5)若大楼另有两层地下车库时,客流输入发生变化,需要对原先调度方案进一步调整。
2.1 模型的假设(1)所有员工必须乘坐电梯到达目标层,不出现步行的情况;(2)电梯内每位员工在各楼层下电梯的概率相等,且相互独立;(3)电梯的停止和启动认为是瞬时的,不考虑加速度;(4)员工在呼叫电梯时,不考虑呼梯错误的情况;(5)如果将所有的电梯分为若干组,各组服务的方案不同,而每一组内的若干台电梯服务方案是一致的;(6)垂直运输过程中不考虑其他随机因素对电梯运行的干扰;(7)在任何情况下,电梯都不能出现超载的情况;(8)每位乘客上下电梯所用时间为常数,电梯开关门所用时间也为常数。
(注:还有一些重要的假设将在各部分给出并作出说明)N商务楼的楼层高度U大楼总的员工人数U第j层楼的员工人数jC电梯的最大容量L服务于这栋大楼的电梯数h相邻楼层间高度v电梯运行的平均速度t每个乘客上下电梯所用时间pt开关电梯门所用时间s3.1 评价指标体系的建立随着建筑物高度的增加,建筑物内的交通情况变得越来越复杂,对电梯运行安排的性能要求越来越高。
在电梯数目一定的条件下,电梯的运行安排需要考虑两个方面,分别是办公人员对电梯的满意程度和电梯的运行能耗。
3.1.1 时间指标办公人员对电梯的满意程度包括生理和心理两方面。
生理满意一般包括:电梯在启动和暂停时的加速度不致让人感到不适。
心理满意包括:尽可能短的等待时间,尽可能短的乘电梯时间。
假设中已经给出了电梯的运行参数,忽略了电梯启动、暂停时的加速度,那么我们只须再给出时间指标即可。
关于时间指标有以下定义,在解决具体的问题时,可以有选择性的采用。
(1)平均候梯时间aw T∑==U i caw x T U T 1)(1,其中U 代表总的乘客人数,)(x T w 表示第x 个乘客实际的候梯时间。
(2)平均乘梯时间ac T∑==Ui c ac x T U T 1)(1,其中)(x T c 表示第x 个乘客实际的乘梯时间。
(3)平均花费时间aa Tac aw aa T T T +=(4)候梯最长时间mw T),...,1|)(m ax (U x x T T w mw ==(5)电梯运行时间tr Tstart stop tr T T T -=,其中start T 指电梯运行开始时刻,stop T 指电梯运行停止时刻。
3.1.2能耗指标电梯耗费的能量越低,则相应的运行费用越低,电梯的能耗与电梯的运行距离密切相关。
在电梯运行过程中,启动的加速阶段和停靠的减速阶段产生较大的 能耗,所以电梯的能耗与电梯的停站次数也密切相关。
(1)总的运行距离e H∑==Ly e y H H 1)(其中,L 表示服务于这栋大楼的电梯数,)(y H 是指第y 台电梯的运行总距离。
(2)总的电梯停靠次数e S∑==Ly e y S S 1)(其中,)(y S 是指第y 台电梯的总停靠次数。
3.2几种电梯运行方式的比较(1)衡量电梯运行能耗和用户满意度的指标有很多,综合考虑指标的全面性、独立性和易获取性,分析确定合理的评价指标体系。
(2)影响一个电梯系统运行效果的主要因素是电梯的运行方式。
一般高层商务楼中,经常采用的是分层次或单双层的运行方式,或者某部电梯直达某高层以上的方法。
分析确定合理的评价指标体系,用以评价这些方案的优劣。
高层办公大楼中一般都会配套使用多部电梯,经常采用的电梯运行方式是随机、单双层、分区运行。
本部分对上行高峰时电梯运行效果进行具体分析,从能源和满足客户需求两个角度评价这些方法的优劣。
在这里我们做出以下假设:大楼的层数为N ,记)1(+=m N (其中1≥m );电梯每次上行均在第一层满载,最大载客量为C ,下行不载客;电梯内每位员工在各楼层下电梯的概率相等,且相互独立;大楼总的员工人数为U ,电梯需要向各层运送乘客数是j U ,假设各层人数相等则需电梯运送的乘客总数为j mU ;电梯每次停靠的能耗为e ,将电梯运行的总能耗记为E ;忽略电梯启动和制动时的加速和减速过程,即电梯始终以速度v 匀速运行;电梯运行中经过各层的时间为常数,记为1t 秒;考虑到运行安全,电梯停靠时电梯门都缓慢的打开和关闭,可认为乘客出入电梯的时间为常数且与出入电梯的人数无关,记为2t 。
为简化描述同时不失一般性,我们假设有两台电梯同时独立运行。
电梯运行方案的比较有多种标准,这里我们同时考虑能源和客户需求,选取电梯运行时间tr T 和电梯停靠次数e S 作为标准,并利用“比例”原则对常见的三种运行模式进行描述,具体的比例如下:电梯运行总时间电梯的运行周期=乘客的总数数一个周期内运送的乘客=电梯运行总的停靠耗能一个周期内的停靠耗能 3.2.1 随机运行方案该方案允许电梯在向上运行过程中可以在任意层停靠,由于电梯是随机运行的,两台电梯的平均运行周期均为)2(21mt mt +,两台电梯共运送乘客C 2,等待运用的乘客的总数为j mU ,所用的时间为tr T ,e S 为电梯随机停靠次数(m S e 2=),按照比例关系可以得到: Ee S T mt mt mU c e tr j =+=2122,即C t t U m T j tr 2)2(212+=,C e mU S E j e 2= 3.2.2单双层运行方案该方案要求两台电梯中的一台向上运行时停靠奇数层,另一台向上运行时停靠第一层和偶数层,这里要考虑 m 的奇偶性进行讨论。