聚合物研究方法
聚合物材料的多尺度分析及其认识技术研究

聚合物材料的多尺度分析及其认识技术研究一、聚合物材料简介聚合物材料是指由分子量较高的有机分子通过聚合反应生成的材料。
聚合物材料广泛应用于工业、农业、医药、电子、能源等领域,其性能优异,使用方便,且环保可持续。
二、聚合物材料的多尺度分析1. 分子尺度聚合物材料的分子尺度是指聚合单体在化学反应中发生聚合反应形成线性、支化、交联等分子结构的尺度。
对聚合物材料的性能和结构进行研究可以使用分子动力学等理论模型来模拟聚合反应过程,直观表现聚合合成高分子聚合物的过程。
例如,对于聚苯乙烯这种高分子材料,通过基于分子间相互作用力场的分子动力学模拟可以得出不同外力条件下聚合物溶液的表观粘度,从而探讨其分子链的结构、动力学行为及力学性质。
2. 微观尺度聚合物材料的微观尺度是指单个分子结构之间的相互作用,包括分子结构的形状、大小、组成等信息。
在微观尺度上,使用核磁共振光谱、等离子体质谱等技术可以探测分子间的相互作用,以及检测到聚合物中可能存在的化学变异和异质现象,从而探讨聚合物的结构表征与材料性能之间的关系。
例如,使用原子力显微镜联合光学显微镜对聚合物力学性能进行研究,可以在微小的尺度上探测到聚合物分子链的结构和动力学行为,从而精确研究聚合物的分子链信息及力学性质。
3. 细观尺度聚合物材料的细观尺度是指在多个分子结构之间形成的相互作用和结构,包括宏观形状、形态等信息。
在细观尺度上,使用扫描电镜、荧光下漆等技术可以对聚合物材料的总体形状形态、表面特性及潜在性能进行研究。
例如,通过荧光共振能量转移实验结合动态光散射等技术可以对聚乙烯醇(PVA)系列材料进行探测,研究其中的羟基异构体构象和组成变异对PVA微乳液固定化过程的影响和动态变化的过程,从而精确分析PVA材料的结构及性能表现与对应应用之间的关系。
三、多尺度分析技术的研究针对聚合物材料多尺度分析,各路科学家在不断探索新的技术及理论模型。
在分子尺度上,基于计算机模拟技术的精密模拟方法成为研究热点。
研究聚合物结晶形态的主要方法

研究聚合物结晶形态的主要方法:电子显微镜法、偏光显微镜法、小角光散射法等,其中偏光显微镜法是常用的方法。
球晶中聚合物分子链的取向排列引起了光学的各向异性,在分子链轴平行于起偏器或检偏器的偏振面的位置将发生消光现象。
在球晶生长过程中晶片以径向发射状生长,导致分子链轴向方向总是与径向垂直,因此在显微镜的视场中有四个区域分子链轴的方向与起偏器或检偏器的偏振面平行,形成十字形消光图像。
所以在正交偏光显微镜下,球晶呈现特有的黑十字消光图案,有时在球晶的偏光显微镜照片上,还可以清晰地看到黑十字消光图像上重叠有一系列明暗相间的同心圆环,那是由于球晶中径向发射堆砌的条状晶片按一定周期规则地扭转的结果。
因此利用偏光显微镜可以观察出球晶的形态、大小等。
表征方法及原理(1)结晶度Wc的表征表示质量分率结晶度,下标c为结晶度,另一下国际应用化学联合会(IUPAC)1988粘推荐用W c,a标字母a代表用不同方法测得的质量分率结晶度,方法不同下标a将分别是其他字母。
①广角X射线衍射(WAXS)测聚合物结晶度W c,x用广角X射线衍射仪,对样品做出不同2θ角的衍射曲线,将衍射曲线的峰分解为结晶峰面积和非晶区(下标x代表X射线衍射方法)面积,结晶峰面积与总衍射面积之比,即为W c,x②密度测量法计算聚合物的结晶度W e,d在密度梯度管中配置自上而下密度连续变化的密度梯度液体,并用标准密度的玻璃小球标定密度梯度管不同位置高度的密度值,将待测聚合物样品投入标定后的密度梯度管中,测出聚合物样品的密度,其倒数即为聚合物样品的比容。
再用X射线衍射测得的该聚合物的晶胞参数,计算得到该聚合物“纯晶体“的比容;由膨胀计法测定不同温度下该聚合物熔体的密度,外推到聚合物样品测密度时温度下该聚合物非晶区的比容,按下式计算结晶度:(有时聚合物的,值可从专业手册中查到)③量热法计算聚合物的结晶度的Wc,h用示差扫描量热仪(DSC),测定聚合物样品的熔融热焓(熔融峰的面积)ΔH m,从手册中查找该聚合物100%结晶时的熔融热焓值ΔHm标准,则ΔH m标准也可采用下述方法求得,即用其他方法(如广角X光衍射法WAXD,密度法等)已测得结晶度的该类聚合物的不同样品,分别用DSC法测不同样品的熔融热焓,以测得的熔融焓ΔH m值对结晶度作图,外推到100%结晶度时的熔融热焓值即为ΔH m标准。
聚合物研究方法

1.课堂讲过的所有仪器的中英文名称,及其具体概念,用途。
(1)差示扫描量热仪:DSC,在程序控制温度下,定量测量试样的热效应大小与温度之间关系的一种技术。
用途:维持样品和参比物处于相同温度所需要的能量差△W,反映了样品热焓的变化。
(2)差热分析仪:DTA,在程序控制温度下,测量试样与参比物之间的温差随温度或时间的变化。
用途:测量物品热量变化,物质的晶态转换,玻璃化转变,热容变化。
(3)热重分析仪:TG,在程序控制温度下,测量物质的质量随温度或时间的变化关系。
用途:研究聚合物的固化,聚合物中添加剂的作用,聚合物的降解反应动力学。
(4)旋转式流变仪:通过旋转来测量高分子材料流变性能的仪器。
用途:法相应力差的测定,凝胶化浓度的测定,凝胶变化时间的测定。
控制应力流变仪CS 控制速率流变仪 CR(5)偏光显微镜:POM,在普通光学显微镜上分别在试样台上各加一块偏振片,下偏振片叫起偏片,上偏振片叫检偏片。
用途:高分子结晶中球晶的观察(球晶的形态,成核生长),共聚物,共混物和复合材料的多相结构。
(6)原子力显微镜:AFM,利用原子之间的范德华力作用开呈现样品的表面特性。
用途:研究表面摩擦力,分子间作用力,纳米加工。
(7):透射电镜:TEM,主要由光源,物镜和投影镜组成,电子束代替光束,用磁透镜代替玻璃透镜。
用途:看到在光学显微镜下无法看清的小于0.2um的细微结构,这些结构称为亚显微结构或超微结构。
(8)扫描电镜:SEM,用二次电子加背景散射成像。
用途:表面形貌的研究。
2.红外光谱的谱图特点及其所能提供的信息是什么?对应不同的结构特征产生相应的吸收带。
对聚合物的化学性质、立体结构、构象、序态、取向等提供定性和定量的信息。
在鉴定聚合物的主链结构、取代基位置、双键位置、侧链结构以及老化和降解机理的研究中已得到广泛的应用。
对高分子材料、黏合剂及涂料等组分的定性定量分析,红外光谱也是一种十分有效的手段。
3.红外解析的三要素是什么,分别用于给出什么信息谱峰位置:对官能团进行定性分析的基础,依照特征峰的位置,可确定聚合物的类型。
聚合物研究方法考试整理

聚合物研究⽅法考试整理⼀、红外光谱1、红外应⽤:对聚合物的化学性质、⽴体结构、构象、序态、取向等提供定性和定量的信息。
在鉴定聚合物的主链结构、取代基位置、双键位置、侧链结构以及⽼化和降解机理的研究中已得到⼴泛的应⽤。
对⾼分⼦材料、黏合剂及涂料等组分的定性定量分析,红外光谱也是⼀种⼗分有效的⼿段。
2、红外光谱的特点:(1)除少数同核双原⼦分⼦如O2,N2,Cl2等⽆红外吸收外,⼤多数分⼦都有红外活性,有机化合物的红外光谱能提供丰富的结构信息。
(2)任何⽓态、液态和固态样品均可进⾏红外光谱测定,这是其它仪器分析⽅法难以做到的。
(3)常规红外光谱仪器结构简单,价格不贵,样品⽤量少,可达微克量级。
3、红外光谱的表⽰⽅法(1)透光度T%=I/I0×100%(I0-⼊射光强度;I-⼊射光被样品吸收后透过的光强度)(2)、吸光度 A=lg(1/T)=lgI0/I(横坐标:表⽰波长或波数;波数是波长的倒数)4、红外光谱的原理(1)、能量在4,000 ~ 400cm-1的红外光不⾜以使样品产⽣分⼦电⼦能级的跃迁,⽽只是振动能级与转动能级的跃迁。
(2)、由于每个振动能级的变化都伴随许多转动能级的变化,因此红外光谱也是带状光谱。
(3)、分⼦在振动和转动过程中只有伴随净的偶极矩变化的键才有红外活性。
因为分⼦振动伴随偶极矩改变时,分⼦内电荷分布变化会产⽣交变电场,当其频率与⼊射辐射电磁波频率相等时才会产⽣红外吸收。
(4)、因此,除少数同核双原⼦分⼦如O2,N2,Cl2等⽆红外吸收外,⼤多数分⼦都有红外活性。
5、红外基团特征频率4000~3000:O-H,N-H伸缩振动3300~2700:C-H伸缩振动2500~1900:-C≡C-、-C≡N、-C=C=C-、C=C=O、-N=C=O伸缩振动1900~1650:C=O伸缩振动及芳烃中C-H弯曲振动的倍频和合频1675~1500:芳环、C=C、C=N-伸缩振动1500~1300:C-H⾯内弯曲振动1300~1000:C-O、C-F、Si-O伸缩振动,C-C⾻架振动1000~650:C-H⾯外弯曲振动、C-Cl伸缩振动6、.红外光谱仪基本结构:(光源、单⾊器、吸收池、检测器)(1)、红外光谱仪与紫外可见分光光度计的⽐较(2)、傅⽴叶变换红外光谱仪的优点:a⼤⼤提⾼了谱图的信噪⽐;bFT-IR仪器所⽤的光学元件少,⽆狭缝和光栅分光器,因此到达检测器的辐射强度⼤,信噪⽐⼤;c波长(数)精度⾼(±0.01cm-1),重现性好;d分辨率⾼;e扫描速度快。
聚合物合成反应的机理和研究方法

聚合物合成反应的机理和研究方法聚合物是由不同的小分子单元通过化学键结合而形成的高分子化合物,它广泛应用于医学、化工、材料科学等领域。
在聚合物的制备过程中,聚合物合成反应是非常重要的一步。
本文将探讨聚合物合成反应的机理以及研究方法。
一、聚合物合成反应的机理聚合物合成反应是指将单体分子缩合成链状高分子化合物的反应过程,其机理包括自由基聚合、离子聚合、羰基聚合、酰胺聚合等。
1.自由基聚合自由基聚合是最常见的聚合物合成反应,其机理是在反应中发生自由基的链式反应。
首先,引发剂(如温度、光或化学物质)会将单体分子中的一个或多个电子从共价键中打出,形成自由基。
接着,自由基与另一个单体分子的双键结合,形成一个新的自由基。
这种机理将循环重复,直到形成长链状的高分子化合物。
2.离子聚合离子聚合是将离子性单体分子缩合成离子链的反应。
这种机理主要有阴离子聚合和阳离子聚合两种。
在阴离子聚合中,引发剂引发了阴离子的形成,这些离子与单体分子结合并释放出负离子,形成更多的阴离子并最终生成一个长链状的高分子化合物。
而在阳离子聚合中,正离子与单体分子结合进一步释放出正离子,周而复始直到形成长链状高分子化合物。
3.羰基聚合羰基聚合是一种重要的聚合物合成反应,其机理是在酰基或酯基的存在下,通过核酸加成,使单体中的羰基上的氧原子与其他单体缩合,依次形成长链状的高分子化合物。
此外,还可以在氰基聚合中使用氰基作为单体。
4.酰胺聚合酰胺聚合是通过在酰胺键的存在下,将含有官能基的单体与偶联剂结合形成长链状高分子化合物的反应。
此外,还可以通过其他官能基的反应,如酯化、亲核取代等反应实现聚合物的制备。
二、聚合物合成反应的研究方法1.光谱分析光谱分析是一种无损检测技术,被广泛应用于聚合物合成反应的机制研究中。
例如,利用红外光谱、核磁共振等分析方法,可以对反应物在反应过程中发生的化学变化进行跟踪,帮助确认反应物种类、反应程度、质量分数等信息。
2.热分析热分析是聚合物反应机制研究的另一种常见方法。
聚合物的制备方法与性质研究

聚合物的制备方法与性质研究一、聚合物的制备方法1、聚合反应聚合反应是通过热稳定性聚合物的非可逆结合来制备聚合物的方法。
在这个过程中,单体以可被聚化的聚合试剂形式存在,这些试剂分子随着反应进行而结合起来形成高分子聚合物。
聚合反应根据聚合反应过程中引发聚合的引发剂类型,分为自由基聚合和离子聚合。
其中自由基聚合是最常用的方法。
2、缩合反应缩合反应是通过可逆结合来制备聚合物的方法。
在这个过程中,单体以微观上的单体形式存在,在引发物存在的情况下,单体被连接,形成宏观上的聚合物。
在这个过程中反应物是相对简单的有机分子,因此缩合反应可以用比聚合反应更多的有机化学反应代替或添加以制备新材料。
缩合反应可以使用的引发性物质非常多,这给了材料科学家无数的可能性。
3、重均聚合反应重均聚合反应是通过反应OCN同分异构体(O-双异氰酸酯N-丙基)向异构化或解聚来进行的。
双异氰酸酯(compare zu Isocyanaten)在空气中具有容易的水解反应和缓慢的反应,因此需要使用有机溶剂作为催化剂来加速反应。
这个过程是以催化剂催化下的双异氰酸酯在溶液中短暂缩合,并与催化剂形成烷氨基化物。
随着反应的继续,形成的化合物经过断裂、重组和缩合等环节,形成高分子聚合物。
二、聚合物的性质研究1、热稳定性聚合物的热稳定性是指聚合物在高温下的稳定性。
这个概念在塑料和橡胶等材料中尤其重要。
高温性能的改进是在工程耐热塑料和“连续使用温度”等材料中的最主要目标。
2、机械性能聚合物的机械性能是指聚合物在机械应力和塑性变形下的性能。
聚合物的强度和刚性与其化学组成和聚合方式有关。
线性聚合物和两互连聚合物由于其结构不同,其机械性能也不同。
3、耐老化性能聚合物的耐老化性能是指聚合物在持久暴露于紫外线和其他辐射下的性能。
例如,聚合物的颜色及其外观是对其耐老化性能的一个指示。
4、稳定性聚合物的稳定性是指聚合物在光、热和其他特定条件下的稳定性。
仅有部分聚合物具有较高的稳定性。
高分子聚合物单体合成及性能研究

高分子聚合物单体合成及性能研究高分子聚合物是一种重要的材料,具有广泛的应用领域。
聚合物的制备方法和性能研究一直是化学领域的热点研究,其关系到聚合物的结构与性能、合成反应条件优化、聚合物材料设计等问题。
本文将从聚合物单体的合成方法、聚合反应机理、高分子聚合物的理化性质和应用等方面进行介绍和分析。
一、聚合物单体合成方法聚合物单体是合成聚合物的基本单元,其种类和结构对聚合物的性质有很大影响。
目前常见的单体合成方法有以下几种。
1. 自由基聚合法自由基聚合法是一种常见的聚合物单体合成方法,其基本原理是在自由基引发剂的引发下进行单体的自由基聚合。
该方法具有反应速度快、适用范围广等优点,且不需要高温高压反应条件,成本低廉。
但是,由于自由基引发剂的引发作用是不特异的,容易引起聚合反应的竞争性副反应,产生一些杂质物,导致聚合物的粘度增大,物理性质下降。
2. 阴离子聚合法阴离子聚合法是利用阴离子酸或碱作为引发剂引发单体链的聚合。
该方法具有选择性强、反应速度快、过程稳定等优点。
但是,由于引发剂的引发作用是一种特异性反应,所以要求单体分子上必须含有活性基团,限制了其应用范围。
同时,由于反应中释放出的离子对聚合物的物理性质也有影响,因此阴离子聚合法有一定局限性。
3. 阳离子聚合法阳离子聚合法是利用阳离子反应剂引发单体分子链的聚合反应。
该方法具有选择性强、反应速度快、过程稳定等优点。
但是,由于引发剂的引发作用是一种特异性反应,所以要求单体分子上必须含有活性基团,限制了其应用范围。
4. 串联聚合法串联聚合法是将不同的单体分子通过化学键相互连接起来形成高分子材料。
该方法能够实现单体分子的高度定制和功能化,提高了聚合物的物理性能和化学稳定性。
但是,其反应困难,需要高纯度的反应物,且反应过程中易形成杂质,对反应条件要求较高。
二、聚合反应机理高分子聚合物的形成是通过单体分子间的化学键连接而成的,反应机理与其他有机化学反应相似,但聚合反应涉及较多分子之间的反应,过程较为复杂。
聚合物研究方法-绪论

单元活化所需要的能量称为活化能) 2.温度升高,体积膨胀,提供了运动单元可以活动的自由空
间
三态两区
Strain-temperature
Modulus-temperature 33
三态两区分子运动特点
A: Glass region 玻璃态: 链段几乎无运动,聚合物类似 玻璃,通常为脆性的,模量为104~1011Pa。
B: Glass transition 玻璃化转变: 整个大分子链还无法运动, 但链段开始发生运动,模量下降3~4个数量级,聚合物行为与 皮革类似。
C: Rubber elastic region 高弹态: 链段运动激化,但分子链 间无滑移。受力后能产生可以回复的大形变,称之为高弹 态,为聚合物特有的力学状态。模量进一步降低,聚合物 表现出橡胶行为。
71
共聚物的图谱解析:
2 930~2 850 cm-1处为饱和C-H伸缩振ν=CH; 2 240 cm-1处为叁键-C≡N的伸缩振动νC≡N; 1 957 cm-1处为苯环=CH面外弯曲振动的倍频峰
γ=CH; 1 600,1 580,1 458 cm-1处为苯环的骨架振动; 760,703 cm-1处为苯环单取代=CH面外弯曲振动
DMA用来测
量材料对机械 形变的响应能 力,即材料的 粘弹性能随温 度和频率的变 化。 如热膨胀 系数、软化点 、玻璃化转变 温度、相变温 度、热固化形 变、模量柔量 等等。
59
凝胶色谱仪 Gel Permeation Chromatograph
60
原子力显微镜 Atomic Force Microscope
以A1/A2为纵坐标,1/xAN为横坐标可得一直线。 直线的截距为-ε1/ε2,斜率为ε1/ε2 对 而未可知求样出只共需聚测物出 中丙A1烯/A腈2,即的可含由量标。准曲线查得1/xAN,从
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构 状态、性能 反应和变化过程
高聚物结构
高聚物由很多大分子组成,大分子由许多重复 单元组成 一次结构(近程结构)、二次结构(远程结 构)、三次结构(或聚集态结构)、高次结构
一次结构
大分子的化学组成 均聚或共聚 分子量 直链、支化、交联 立体构型 全同、间同、无规 顺式、反式
高聚物状态与性能
Mechanisms of Ion Mobility in “Dry” Polymers - Amorphous Phase
O O Li + O O O
O Li OO
&gmental Motion - related to glass transition temperature, Tg
Arrhenius Control -related to solvation
高聚物反应和变化过程
高分子反应过程的变化规律
聚合反应、固化过程、老化过程、成型加工过程 晶体生长 相变、相转换
物理变化过程:
均聚与共聚
链状分子形态
烯类单体聚合物的结构异构体
乙烯基、亚乙烯基单体:头-尾、尾-尾
烯类单体聚合物的结构异构体
共轭双烯:1,4、1,2、3,4
立体异构(顺反)
立构规整性
全同
间同
无规
二次结构
单个分子的形态
三次(或高次)结构
单个分子聚集态的结构,是分子的 “社会”结构。
自组装结构
课程简介
60学时讲授+20学时试验 4学分 周1+周3(3、4) 教室:1204
参考书
聚合物近代仪器分析 聚合物红外光谱分析和鉴定 聚合物物理化学手册 -聚合物的红外和核磁共 振谱 聚合物研究方法 高分子结构研究中的光谱方法
绪论
用现代分析技术研究高分子结构,并确定结构 与性能关系。 重视“表征”,不是培养实验员! 主要研究对象: