波分基本原理

合集下载

分光器和波分原理

分光器和波分原理

分光器和波分原理是两种不同的光学器件,它们的基本原理和应用有所不同。

分光器的物理原理是利用光的不同波长(频率)具有不同的传播速度,在介质界面上会发生折射现象。

当入射光线从一种介质进入另一种介质时,其入射角和折射角之间存在一个角度关系,即斯涅尔定律。

分光器利用这个原理将入射的混合光束(包含不同波长的光)分为不同波长的光。

它通常由一个入口端和两个或多个出口端组成。

入射的光线会经过一组透镜或反射镜,这些光学元件可以根据光的波长将光分离成不同的方向。

最常见的分光器是光栅分光器,其中光栅是一种具有平行凹槽的光学元件,当光入射到光栅上时,栅的结构会使不同波长的光线在不同的角度上折射或反射出来,从而实现光的分离。

分光器的物理原理可以应用于许多领域,如光谱分析、光通信、光学仪器等。

而波分器的原理则是通过衍射效应来分离不同波长的光,实现不同波长光在不同的通道中进行分离。

具体来说,当不同波长的光经过波分器时,波分器内部的光学元件会根据光的波长将其分离到不同的通道中。

由于不同波长的光在波分器中的衍射角度不同,因此它们会被导向不同的方向,从而实现光的分离。

波分器的分离效果比分光器更加细致,因为它可以根据光的波长将光分成不同的通道。

此外,由于波分器的技术要求较高,制造成本也相对较高。

波分器主要应用于光通信领域,可以将不同波长的光信号分离到不同的通道中,实现高速、大容量的光通信传输。

总的来说,分光器和波分器都是光学器件,但它们的原理和应用有所不同。

分光器主要利用光的折射原理将混合光束分离成不同波长的光,而波分器则是通过衍射效应实现不同波长光的分离。

在实际应用中,应根据不同的需求选择相应的器件。

60分钟学会波分基本原理

60分钟学会波分基本原理

近红外区域:780 ~ 2526nm范围内的电磁波 WDM使用的波长范围:1260 ~ 1611 nm
肉眼勿看,安全第一 !
禁止用眼直接观察光口,避 免激光伤害眼睛
波分复用:Wavelength-Division Multiplexing
把工作在不同载波波长上的多路光信号复用进一根光纤中传输,并能够 在接收端实现各信道分离的光通信系统称为波分复用系统。
波分技术基础原理
课程介绍
• 内容简介:
• 主要向合作伙伴介绍WDM&OTN技术原理
• 课程面向对象:
• 合作伙伴售前L2、L3人员
• 课程目标:
• 通过本课程, 合作伙伴可以了解到WDM原理、WDM系统受限因素及补 偿、WDM系统的主要构成,以及OTN基本原理、基本特性以及关键特性 和相关产品
• 版本信息:
合波后 连接OTU板线路侧 的信号
OADM 功能 MUX+DEMUX 但是一次性上下的波道数量较少
WDM引入的初衷是替代光纤
• 业务提升,部署的光纤会很快就用完。
• 例如:原来部署了6芯的光缆,DSL 数据业务用了一对,SDH又用了 一对,还要留一对预留。现在宽带上网的人多了,要增加DSLAM, 可是没有光纤资源了,该怎么办呢?

OTU3 λn
光缆
WDM 把光纤 资源释放 出来了!
DSLAM
纤芯(6芯)
WDM 还能完成可靠保护、故障定位
WDM 能完成性能监测(如:光功率、误码指示等)。在出现故障情况下,可识别链路 的故障是由光纤物理故障引起,还是由设备(SDH、路由器等)引起的。
WDM可以提供多少波长?相当于多少根光纤?
1571nm
P.10 距离,P.12光口参数

波分原理

波分原理

WDM系统组成
O OTU OTU …… OTU ESC • • • • M U / O A OSC OSC OSC OA O A / O D U OTU ESC OTU OTU ……
OTU:波长转换单元,将非标准波长转换为符合ITU-T规范的标准波长,应用 光/电/光转换进行调制,不同的业务信号有不同的OTU板一一对应 OMU/ODU:光合波/分波单元,用于将不同波长的光信号进行混合或分离, 其核心单元是无源器件,对经过的光信号有插入损耗 OA:光放大单元,可分为预放(PA)、线放(LA)、功放(BA),用于不同场合 OSC:光监控信道,是为光信道监控设置的,有1510nm和1625nm两个波道, 速率是2Mbit/s,该信道接收灵敏度很高(-48dbm),不参与任何光放大过程; ESC是电监控信道,是靠OTU帧空闲字节来传递监控信息,不能反映光通道 的实际情况,是低成本应用下的一种监测方式
波分原理
传输技术发展史
数字传输 (全光网络OTN) 1600Gbit/s 320Gbit/s 80Gbit/s
数字传输 (波分复用WDM) 光缆传输 数字传输 (时分复用) SDH 电缆传输 数字传输
(时分复用)PDH
40Gbit/s 10Gbit/s 2.5Gbit/s 622Mbit/s 155Mbit/s 140Mbit/s 8448kbit/s 2048kbit/s 64kbit/s
O T U
O T U
• • •
单纤双向系统:一根光纤实现两个方向的光信号同时传输,两个方向信号安 排在不同波长上 优点:节省光纤资源 缺点:光放站必须用双向光纤放大器及光环形器等器件,噪声系数较差,系 统设计复杂
应用模式 • 根据应用模式的不同,波分系统分为开放式系统和集成式系统 • 两者的区别是是否对客户信号有要求。开放式系统本身有OTU单元, 对符合ITU-T建议的光接口信号均可接入,集成式系统没有OTU单元, 要求用户接入的信号必须符合WDM相关规范并且不同信号接入的波 长也不能相同 • WDM系统采用开放式还是集成式可以根据实际需要决定,也可以混 合使用 • 随着器件性能不断提高,一些设备的光接口具备了定波长输出功能, 这样的光接口可以不经过OTU单元直接上合波单元

波分基本原理

波分基本原理
光纤是由圆柱形玻璃纤芯和玻璃包层构成,最外层是一种弹性耐磨 的塑料护套,整根光纤呈圆柱形。
全反射
折射 n2
θ
n1
包层 纤芯
护套
光纤的传输特性
损耗 色散 非线性
光纤的损耗特性
光纤的损耗主要包含:
吸收损耗 散射损耗 弯曲损耗
光纤损耗计算公式为:
光纤损耗(dB) = 光纤长度(Km) * 光纤损耗系数(dB/Km)
光波分复用解复用主要参数: 插入损耗 通道隔离度 通道带宽 偏振相关损耗
光监控通道
对光监控的要求:
不应限制OA上的泵浦光波长; 不应限制未来1310nm波长的业务; OA失效时仍有效; 可超长传输;具有分段双向传输功能。
采用1510/1625nm波长 信号速率为2.048Mb/s 接收机灵敏度:-48dBm 信号码型: CMI 信号发送功率: 0 -- -7dBm
C
OTU3
C
OTU4
WDM的受限因素
WDM 网络 受限因素
光功率
色散
光信噪比
D非H线D 性JG效D应J DJ
光功率预算
光纤损耗 (dB) = P输出 (dBm) - P输入 (dBm) = 距离 (km) x a (dB/km)
a:损耗系数
在1550nm窗口,G.652和G.655光纤的损耗系数:a = 0.22dB/km
S P输出
站点 A
距离L (km)
R P输入
站点 B
色散
色度色散(ps/nm)= 距离(km)x 色散系数(ps/nm.km)
G.652光纤:色散系数 = 17ps/nm.km G.655光纤:色散系数 = 4.5ps/nm.km
实际工程中主要考虑色度色散。 在长距离传输的情况下,采用色散补偿模块(DCM)进行色散补偿。

波分基本原理

波分基本原理
什么是波分复用?
加油站 高速公路
巡逻车
WDM的定义
把不同波长的光信号复用到同一根光纤中进行传送,这种方式我们 把它叫做波分复用( Wavelength Division Multiplexing )
SDH signal IP package ATM cells
1
1 2
n
2


n
WDM的系统结构
波段划分
波段 O波段 E波段 S波段 C波段 L波段 U波段
说明 原始 扩展 短波长 常规波长 长波长 超长波长
范围(nm) 1260~1360 1360~1460 1460~1525 1525~1565 1565~1625 1625~1675
带宽(nm) 100 100 65 40 60 50
因为C波段和L波段这两个传输窗口的传输衰耗最小,所以DWDM系统中信号光选择在C波段和L波段。 粗波分由于传输距离短,衰耗并非主要限制因素,所以CWDM系统中信号光跨越多个波段(1311~1611nm)。
光波分复用解复用主要参数: 插入损耗 通道隔离度 通道带宽 偏振相关损耗
光监控通道
对光监控的要求:
不应限制OA上的泵浦光波长; 不应限制未来1310nm波长的业务; OA失效时仍有效; 可超长传输;具有分段双向传输功能。
采用1510/1625nm波长 信号速率为2.048Mb/s 接收机灵敏度:-48dBm 信号码型: CMI 信号发送功率: 0 -- -7dBm
OSC
F
F
S C C
OTU1
I
I
OTU2
M
U
U
OTU3 OTU4
4 0
M 4 0
OSC
OTU1

[WDM] 波分原理基础学习PPT

[WDM] 波分原理基础学习PPT

损耗 3-附加损耗
附加损耗
由于光纤经过集束制成光缆,在各种环境下进行光缆 敷设、光纤接续以及作为系统的耦合与连接等引起的 光纤附加损耗
光纤/光缆的弯曲损耗、微弯损耗
光纤线路中的连接损耗 光器件之间的耦合损耗等
损耗谱
理论值:0.19-0.35dB/km 工程值:0.275dB/km
3.0
2.5
OM/OD技术-OM/OD器件类型
光栅型光波分复用器 介质薄膜滤波器型(DTF) 耦合器型(熔锥型) 阵列波导光栅型(AWG)
OM/OD器件类型 1-光栅型滤波器
l1,2,3,...n
l l l l ln
OM/OD器件类型 1-光栅型复用器
原理
– 属于角色散型器件,当光到光栅上后,由于光栅的角色散作用,使 不同的光信号以不同的角度出射,然后经过透镜会聚 到不同的输出 光纤,从而完成波长选择和分离的作用,反之就可以实现波长的合 并。
DWDM的基本原理
课程内容
DWDM系统概述 光纤的基本特性 DWDM系统关键技术 DWDM系统的技术规范
光纤传输网的复用技术
光纤传输网的复用技术经历了三个阶段:
空分复用(SDM) 时分复用(TDM) 波分复用(WDM)
DWDM产生背景
从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手 段
波长λ
DWDM技术是在波长1550nm窗口附近,在EDFA能提供增益的波长范围内,选用密集 的但相互又有一定波长间隔的多路光载波,这些光载波各自受不同数字信号的调制,复 合在一根光纤上传输,提高了每根光纤的传输容量。
DWDM系统基本结构
光发射机
信道1 光转发器1 λ1 光
BA
输入

华为OptiX BWS 1600G波分原理52页PPT文档

华为OptiX BWS 1600G波分原理52页PPT文档

1
1 2
n
2



n
第7页
1、波分复用技术
华为公司WDM产品的演变
160×10Gb/s 32×10Gb/s 32×2.5Gb/s 16×2.5Gb/s 4×2.5Gb/s
第8页
1、波分复用技术
单向WDM
光源λ1
光源λ2



OA

OA
OA
光源λN
λ1~λN
光检测 器λ1
光 解 复
光检测 器λ2
WDM为运营商提供了经济的传 输网络组网方式;目前华为公司 商用的波分容量已经达到 1600Gbit/s。而实验室中还在进 行更大容量的WDM实验。
全光网络、网络融合、MSTP、光交 叉连接与波长路由器已经问世。未 来网络中数据与光将结合,向光组 网的转变是宽带革命的核心 。
第4页
1、波分复用技术
第18页
2、传输媒质
传输媒质分类
G.652光纤:大量铺设,传高 速信号需色散补偿
17
色散系数 (ps/nm·km)
1310
G.653光纤:1550nm波长区混频 严重,不适合DWDM
正色散系数G.655光纤
1550
波长λ(nm)负色散系 数G.655光纤
1.1550nm 波 长 区 具 有 最 小 色 散 和 衰 减 , 适 合 DWDM系统、高速信号传输 2.应用:TrueWave真波光纤(正色散区的SPM效 应有利于传输);LEAF-大有效面积光纤(克服非 线性效应)
华为OptiX BWS 1600G波分培训
传输部 2019年5月30日
第1页
目录
一、波分原理 二、系统硬件 三、设备原理及组网 四、信号流及光功率计算 五、网络设计

波分ASON原理介绍及分析

波分ASON原理介绍及分析

ASON原理介绍及分析目录12ASON控制平面原理3ASON解决方案及主要特性传送网络的发展历程DCN QX网管DCN网管DCNPCEP/OSPF应用层控制器网管只有传送平面和管理平面集中控制+GMPLS 123传统波分网ASON 网络SDN 网络ASON智能光网络通过网管自动发现自动连接自动修复●智能网元自动发现●控制链路自动发现●TE链路自动发现●拓扑自动发现ASON是通过能提供自动发现和动态建立连接等功能的分布式控制平面,在OTN基础网络之上,可实现动态的、基于GMPLS协议和策略驱动来自动控制的一种网络机制。

从而在Mesh组网下具备抗多次断纤的自愈能力。

●业务路由自动计算●业务路径自动建立●断纤后能够重路由恢复●故障消除后可自动返回到原始路由ASON 使能自动恢复网络,大幅减少业务中断损失印尼断纤频繁(2018年1~2月,总计断纤22次)缩短中断时间节约赔偿支出=ASON 提升业务可靠性,减少业务中断损失超40M USDASON 使能自动化运维,大幅减轻维护压力Without ASON●运维机制:7X24小时●业务恢复:小时级●业务发放:小时级With ASON●运维机制:5X8小时●业务恢复:秒级●业务发放:分钟级ASON 自动化运维手工运维自动化运维断纤故障或割接中断秒级恢复,运维效率提升20%资源自动发现网络拓扑、路径、链路等自动发现,提前预知保护路由好坏业务自动部署业务(波长\ODUk)路由、时延自动计算,自动倒换业务自动恢复断纤位置自动提醒,故障消除自动感知,业务路由自动恢复业务可靠性差异化服务,增强网络竞争力高品质业务随时申请高品质的网络来保障永久1+11+1重路由静态1+1重路由无保护OLT家庭宽带ASON 提供永久1+1网络资源共享,打造高性价比的可靠网络网络资源利用率提升20%,TCO 节省30%PE1PE2100G100GIP+光协同保护,打造高性价比的可靠网络●可用率:99.9%●资源利用率:< 50%●网络TCO :IP 1+1保护●可用率:99.9%●资源利用率:>70%●网络TCO :节省30%IP 1+1保护IP + ASON 保护从L0到L3,部署成本依次升高IP MPLS MPLS-TPOTN L3L2L1L0CostWDM目录1ASON特征和价值23ASON解决方案及主要特性ASON 总体架构和网络模型ASON 整体框架由ITU-T 制定,并由IETF 指定了一系列的通用多标签交换协议(LMP , RSVP-TE, OSPF) 由IETF 制定,并已日趋完善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S P输出
站点 A
距离L (km)
R P输入
站点 B
色散
色度色散(ps/nm)= 距离(km)x 色散系数(ps/nm.km)
G.652光纤:色散系数 = 17ps/nm.km G.655光纤:色散系数 = 4.5ps/nm.km
实际工程中主要考虑色度色散。 在长距离传输的情况下,采用色散补偿模块(DCM)进行色散补偿。
光波长转换单元(OTU); 波分复用器:分波/合波器(ODU/OMU); 光放大器(BA/LA/PA); 光/电监控信道(OSC/ESC)。
OTU
OTU
O
OTU
M
BA
LA
U
O
PA D
OTU
U
OTU
OTU
OSC
OSC
OSC
传输模式
单纤单向
MUX
M
O
4
T
0
U
M 4 0
DEMUX
O T U
传输模式
站点 A
OMS 距离L (km)
站点 B
谢谢观赏
OSC
F
F
S C C
OTU1
I
I
OTU2
M
U
U
OTU3 OTU4
4 0
M 4 0
OSC
OTU1
S
OTU2
C
OTU3
C
OTU4
电监控信道
特点:
结构简单,成本低; 支持冗余备份; 改善光功率预算; 降低系统复杂度。
S C C
OTU1
OTU2
M
OTU3 OTU4
4 0
M 4 0
OTU1
S
OTU2
单纤双向
MUX/DEMUX
M
O
4
T
0
U
M 4 0
DEMUX/MUX
O T U
应用模式
开放式系统
O T U
客户设备
MUX
M 4 0
M 4 0
DEMUX
O T U
客户设备
WDM的优势
超大容量 数据透明传输 长距离传输 兼容已有光纤 灵活组网 经济性和可靠性 平滑扩容能力
光纤的结构
WDM的定义
把不同波长的光信号复用到同一根光纤中进行传送,这种方式我们 把它叫做波分复用( Wavelength Division Multiplexing )
SDH signal IP package ATM cells
1
1 2
n
2


n
WDM的系统结构
N路波长复用的WDM系统的总体结构主要有:
光纤是由圆柱形玻璃纤芯和玻璃包层构成,最外层是一种弹性耐磨 的塑料护套,整根光纤呈圆柱形。
全反射
折射 n2
θ
n1
包层 纤芯
护套
光纤的传输特性
损耗 色散 非线性
光纤的损耗特性
光纤的损耗主要包含:
吸收损耗 散射损耗 弯曲损耗
光纤损耗计算公式为:
光纤损耗(dB) = 光纤长度(Km) * 光纤损耗系数(dB/Km)
波段划分
波段 O波段 E波段 S波段 C波段 L波段 U波段
说明 原始 扩展 短波长 常规波长 长波长 超长波长
范围(nm) 1260~1360 1360~1460 1460~1525 1525~1565 1565~1625 1625~1675
带宽(nm) 100 100 65 40 60 50
因为C波段和L波段这两个传输窗口的传输衰耗最小,所以DWDM系统中信号光选择在C波段和L波段。 粗波分由于传输距离短,衰耗并非主要限制因素,所以CWDM系统中信号光跨越多个波段(1311~1611nm)。
光放大器
EDFA
Hale Waihona Puke 掺饵光纤放大器RFA
拉曼光纤放大器
光放
光放大器的应用
OTU
M
M
U4
OA
OA4
X0
0
OTU
OTU
M
MD
OA4
4M
0
0U
X
OTU
BA功率放大器
LA线路放大器
PA前置放大器
光复用器与解复用器
复用器
解复用器
fiber
光波分复用解复用技术: 衍射光栅技术 介质薄膜技术 耦合技术 阵列波导技术
常规光纤的损耗系数-波长曲线图
Multi-mode 850~900nm
dB/km 5
4

3
2
O
E SC L U
band
OH-
1

900
nm
1200 1300 1400 1500 1600 1700
波带不同,损耗系数不同 1380nm附近由于氢氧根粒子吸收,光纤损耗急剧加大,俗称水峰 容易看出,在O~U这六个波段中,C波段和L波段损耗系数最小
C
OTU3
C
OTU4
WDM的受限因素
WDM 网络 受限因素
光功率
色散
光信噪比
D非H线D 性JG效D应J DJ
光功率预算
光纤损耗 (dB) = P输出 (dBm) - P输入 (dBm) = 距离 (km) x a (dB/km)
a:损耗系数
在1550nm窗口,G.652和G.655光纤的损耗系数:a = 0.22dB/km
光波分复用解复用主要参数: 插入损耗 通道隔离度 通道带宽 偏振相关损耗
光监控通道
对光监控的要求:
不应限制OA上的泵浦光波长; 不应限制未来1310nm波长的业务; OA失效时仍有效; 可超长传输;具有分段双向传输功能。
采用1510/1625nm波长 信号速率为2.048Mb/s 接收机灵敏度:-48dBm 信号码型: CMI 信号发送功率: 0 -- -7dBm
相关文档
最新文档