提高原油采收率原理 EOR第五章
提高采收率(ERO)

一、球形曲界面压力差
1、球形曲界面压差的实验证明
p1
p2
p1 p2
2、球形曲界面两侧压差产生原因
• 表面能趋于减少,气泡表面倾向于收缩,必 然会产生一种作用,去阻碍气泡表面增大, 即表面能趋于减少的倾向会对鼓泡的方向施 加压力,阻碍表面增大,称为表面收缩压。 • 表面收缩压与鼓泡的压力平衡 • Δp = p 1 – p2
2.4 润湿性对采收率影响
(82-36) /82=0.56
(65-20) /65=0.69
3、 流度比
λw k w k o M wo= = / λo μ w μo
生产井
流度:流体通过孔隙介质能力的一种量度 油
λ=
水 油
k
油
μ
注入井
水 油
调剖堵水 K2>K3>K1
聚合物驱、热采
4、毛管数 • 定义 无因次准数
油湿 大于90 大于140 大于100
中性润湿 90 90~140 60~100
2.2 Amott指数法
IA(w)>0:水湿; IA(w)=0:油湿; IA(w)接近于0为中性润湿 IA(o)>0:油湿; IA(o)=0:水湿; IA(o)接近于0为中性润湿
2.3 USBM方法
W=lg(A1/A2) W正值:水湿 W负值:油湿 W为零:中性
3、球形曲界面两侧压差公式推导
对于液体下的一个气泡,半径为r,在Δp作用下试 图增加其体积,半径增加dr,体积增加 dV=4πr2dr,表面积增加dA= 8πrdr 按照热力学,此过程作功
W=ΔpdV=Δp 4πr2dr
按照表面能的概念,表面能增加
σdA= σ 8πrdr
容积功=表面能增加 Δp 4πr2dr= σ 8πrdr
8.3.4 提高原油采收率技术简介.pdf

3 ASP三元复合驱技术中的几个问题
◎表面活性剂的筛选与研制 ◎减少化学剂的损失 ◎抑制复合体系的组分分离(色谱分离) ◎防垢、除垢 ◎采出液处理
五、混相驱
1 概念
混相是指相间界面消失。 混相驱是指以混相注入剂做驱油剂的驱油法。 混相注入剂则是指在一定条件下注入地层,能与 地层原油混相的物质。 油水界面张力为0,洗油效率高。
(1)高分子量:一般驱油用HPAM的分子量为1千万到几千 万; (2)多分散性:HPAM的分子量具有不均一性,是分子量 不等的同系聚合物的混合物; (3)几何结构多样化:聚合物的几何结构有线型、支型 和体型三种形态; (4)物化性能稳定:HPAM具有稳定的化学性质和特殊的 物理性能,以满足驱油的要求。
8 石油化学品与油田化学品
8.3.4 油层化学改造 (提高原油采收率技术简介)
原油采收率
原油采收率(ER)=采出储量(NR)/地质储量(N )×100% 水驱采收率(ER)=波及系数(EV)X 洗油效率(ED)×100%
波及系数:是指驱油剂波及到的油层容积与整 个含油容积的比值。
EV
V sw = V
2 黄胞胶(XC)(生物聚合物)
热稳定性差(71℃);生物稳定性差(24小时, 需加醛类杀菌剂);剪切稳定性好(支链)。
3、聚合物对水的稠化能力
增加水的粘度
◎ 超过一定浓度,聚合物分子互相纠缠
形成结构,产生结构粘度。 ◎聚合物链中的亲水基团在水中溶剂化 (水化)。 ◎若为离子型聚合物,则可在水中解离, 形成扩散双电层产生许多带电符号相 同的链段(由若干链节组成,是链中 能独立运动的最小单位),使聚合物 分子在水中形成松散的无规线团,因 而有好的增粘能力。
表面活性剂在水油界面吸附,可以降低水油界面张力 ▽降低岩石对原油的粘附力,提高洗油效率 ▽增大毛管数 ▽减少亲油油层的毛细管阻力
目前提高采收率(EOR)技术方法及其机理

目前EOR技术方法主要有哪些,分别论述其机理?1化学驱(Chemical flooding)定义:通过向油藏注入化学剂,以改善流体和岩石间的物化特征,从而提高采收率。
1.1聚合物驱(Polymer Flooding)(1)减小水油流度比M(2)降低水相渗透率(3)提高波及系数(4)增加水的粘度聚合物加入水中,水的粘度增大,增加了水在油藏高渗透部位的流动阻力,提高了波及效率。
高渗透部位流动时,水所受流动阻力小,机械剪切作用弱,聚合物降解程度低,则聚合物分子就易于缠结在孔隙中,增大高渗透部位的流动阻力。
反之,低渗透率部位,聚合物分子降解作用强,,反而容易通过低孔径孔隙,而不堵塞小孔径。
1.2表面活性剂驱(Surfactant Flooding)(1)降低油水界面张力表面活性剂在油水界面吸附,可以降低油水界面张力。
界面张力的降低意味着粘附功的减小,即油易从地层表面洗下来,提高了洗油效率;(2)改变亲油岩石表面的润湿性(润湿反转)一般驱油用表面活性剂的亲水性均大于亲油性,在地层表面吸附,可使亲油的地层表面反转为亲水,减小了粘附功,也即提高了洗油效率;(3)乳化原油以及提高波及系数驱油用的表面活性剂的HLB 值一般在7—18范围,在油水界面上的吸附,可稳定水包油乳状液。
乳化的油在向前移动中不易重新粘附润湿回地层表面,提高了洗油效率。
此外,乳化的油在高渗透层产生贾敏效应,可使水较均匀地在地层推进,提高了波及系数;(4)提高表面电荷密度当驱油表面活性剂为阴离子型表面活性剂时,它在油珠和地层表面上吸附,可提高表面的电荷密度,增加油珠与地层表面的静电斥力,使油珠易被驱动界质带走,提高了洗油效率;(5)聚集并形成油带若从地层表面洗下来的油越来越多,则它们在向前移动时可发生相互碰撞。
当碰撞的能量能克服它们之间的静电斥力时,就可聚并并形成油带。
油带向前移动又不断聚并前进方向的油珠,使油带不断扩大,最后从生产井采出;(6)改变原油的流变性表面活性剂水溶液驱油时,一部分表面活性剂溶入油中,吸附在沥青质点上,可以增强其溶剂化外壳的牢固性,减弱沥青质点间的相互作用,削弱原油中大分子的网状结构,从而降低原油的极限动剪切应力,提高采收率。
提高采收率原理与方法 EOR

⑵降解 将高分子烃类降解为低分子的烃类,可降低原 油粘度和凝固点,增加原油的流动性。 3.产生气体 ①产生CO2、CH4、H2等气体,使油层压力增加; ②部分气体溶解在原油中,使原油体积膨胀,粘度
降低;
③产生的C02气体溶解于水生成碳酸,处理碳酸
盐岩地层,可提高孔隙度和渗透率。
4.解堵作用 就地发酵产生的有机酸和气体使井筒周围得到
包括:聚合物驱、活性剂驱、碱驱和复合驱。
1、聚合物驱
驱油机理
在注入水中加入水溶性高分子聚合物,增加水的粘度, 降低水相渗透率,减小流度比M,提高波及系数。此外可 以减小粘度指进,提高驱油效率。
药剂 聚丙烯酰胺、部分水解聚丙烯酰胺、黄原胶
存在问题
聚合物:热降解、盐降解、剪切降解、地层吸附
2.活性剂驱
一次采油一次采油天然能量天然能量依靠依靠二次采油二次采油物理机械和力物理机械和力学等宏观作用学等宏观作用立足立足人工注水人工注水注气注气第二节提高采收率的方法三次采油三次采油强化采油强化采油化学物理热化学物理热力生物或联合力生物或联合微观驱油作用微观驱油作用应用应用化学驱化学驱混相驱混相驱热力采油热力采油微生物采油微生物采油一化学驱油法通过向油藏注入化学剂以改善流体和岩石间的物化特征如降低界面张力改善流度比等从而提高采收率
对于地层油中轻质组分(C2-6)较少的油藏,可注 入适量加入乙烷、丙烷和丁烷的天然气,富气中 的较重组分不断凝析到原油中,最终使注入气与 原油混相的驱油方法。
驱油过程是先注一段富气,再注一段干气,然后 用水驱动。
注富气混相驱油过程
3.高压干气驱油法
当地层中原油组分含轻烃组分较多时,可向油藏 高压注干气,与原油充分接触,油中的轻质组分 C2-6 逆行到气体前缘,并使之富化,富化的气体 在推进过程中不断与新原油接触,进一步被富化, 最后达到混相。
提高原油采收率EOR

1第一章1.波及系数:指注入流体波及区域的体积与油藏总体积之比。
2.洗油效率:指注入流体在波及范围内,采出的油量与波及区内石油储量的体积之比。
3.采收率:油藏累计采出的油量与油藏地质储量比值的百分数。
从理论上来说,取决于波及效率(系数)(EV )和驱(洗)油效率(ED ) 。
因此,采收率(ER )定义为:ER (η)=EV · ED4.影响采收率的因素:(1)地层的不均质性(2)地层表面的润湿性(3)流度比(4)毛管数(5)布井 5.流度比:指驱油时驱动液流度与被驱动液(原油)流度之比。
w ro orw w o o w o o w w o w wo k k k k /k /k M μμμμμμλλ====6.毛管数:粘滞力与毛管力的比值。
毛管数增大,洗油效率提高,使采收率提高(即剩余油饱和度减少)-影响残余油饱和度的主要因素。
σμd d V Nc =7.增大毛管数的途径: (1)减小σ水驱油时,毛管数的数量级为10-6。
从图1-8可以看到,若将毛管数的数量级增至10-2,则剩余油饱和度趋于零。
若油水界面张力由101mN.m-1降至10-3mN.m-1数量级,即满足此要求。
因此提出表面活性剂驱和混相驱的采油法。
(2)增加µd这也是提出聚合物驱的依据。
(3)提高Vd 但有一定限度。
8.、第二章1.2.在亲水地层,毛细管上升现象是水驱油的动力,在亲油地层,毛细管下降现象是水驱油的阻力。
233.Jamin 效应:是指液珠或气泡通过喉孔时由于界面变形而对液流产生的阻力效应。
)R 1R 1(2p p 2112-=-σ4.(1)Jamin 效应始终是阻力效应,亲水地层Jamin 效应发生在油珠或气泡通过喉孔之前;亲油地层Jamin 效应发生在油珠或气泡通过喉孔之后。
(2)Jamin 效应具有叠加作用即总的Jamin 效应是各个喉孔Jamin 效应的加和。
5.润湿现象:固体表面上一种流体被另一种流体取代引起表面能下降的过程。
提高原油采收率原理 103页PPT文档

2010年11月10日
资源学院石油系 Yuan Caiping
第5页
热力采油的发展史
提高采收率原理 石油工程专业选修课
热力采油在EOR采油中的地位及潜力
几个主要国家稠油和沥青砂的储量:
加拿大:3820108t
委内瑞拉:2270108t
美国:300108t
中国:20108t 前苏联:242108t
第二节 蒸汽吞吐 一、蒸汽吞吐开采过程 二、蒸汽吞吐机理 三、影响蒸汽吞吐的因素 第三节 蒸汽驱 一、蒸汽驱采油机理 二、影响蒸汽驱效果的因素 第四节 火烧油层 一、火烧油层的采油机理 二、火烧油层的采油方法
2010年11月10日
资源学院石油系 Yuan Caiping
第2页
第八章 热力采油
2010年11月10日
本章重点:
1、稠油 2、蒸汽吞吐 3、蒸汽驱
资源学院石油系 Yuan Caiping
第3页
热力采油的发展史
提高采收率原理 石油工程专业选修课
热采发展史
任何技术的发展都是以生产的需要为动力,生产的 需要是热力采油技术发展的原动力。由于发现的稠油 无法用天然能量和注水进行正常开发,人们开始了研 究新技术。早期的研究包括:
• 中 国:2019年初:EOR的产量:40万桶/d 注蒸汽产量占50%
2010年11月10日
资源学院石油系 Yuan Caiping
第8页
第一节 基本理论
提高采收率原理 石油工程专业选修课
一、基本概念
1、热力采油方法:是指利用热能加热油藏, 降低原油的粘 度, 将原油从地下采出的一种提高采收率的方法。
热采的总的目的:加热油层提高原油温度,使原油易于流动。
学术硕士提高采收率原理与方法EOR思考题(2013)

第一章习题1. 与国外大型油田相比,试分析我国大型油田水驱采收率偏低的主要原因。
答:储层物性差——非均质性储层结构复杂(如小断块等)高温高盐原油性质差——粘度高、含蜡高、胶质和沥青质含量高2. 试分析我国EOR技术发展与应用的潜力。
3. 我国的石油资源有哪些特点,这些特点对于石油采收率有何影响?答:特点:我国油气资源相对短缺;水驱采收率低;东部原油产量已出现总递减,西部产量持续上升,保持了中国石油原油产量稳中有升;已开发油田大多数已处于高含水和高采出程度的双高阶段已开发储量;储采比略有下降。
影响:1).油藏地质特点是选择提高采收率方法的基础2).物料来源决定提高采收率发展的方向3).油价决定提高采收率的规模和时机4).地质和油藏工程研究是提高采收率技术成败的关键5).国家鼓励政策是促进提高采收率工作发展的保证第二章习题1. 简要分析裂缝对于油田开采和提高采收率的利与弊。
裂缝对于油田开采的利弊:利:驱油通道——尤其是特(超)低渗透油藏,裂缝是有效开采的必要条件。
弊:水窜通道——暴性水淹、注入水无效循环的原因。
提高采收率技术思路之一:在油藏深部封堵窜流通道2. 影响均匀厚油层水驱波及厚度的主要因素有那些?简单分析其影响机理。
①重力影响——对于地层倾角不大的均匀厚层在水驱油开发过程中,造成水波及厚度小的原因之一是重力效应。
注入水将优先沿油层底部推进,到油井见水时,上部有相当的厚度未被水波及。
②油水粘度比——油水粘度比越大,无水开采期的垂向波及厚度越小?重力差、油水粘度比增大→波及厚度减小③毛管力影响——3. 简述正韵律油层和反韵律油层的水驱特点。
①正韵律油层-----底部渗透率高,底部水洗程度高,垂向波及效率低。
②反韵律油层----上部渗透率高,底部水洗程度相对低些,垂向波及效率相对高些4. 在微细层理发育的油藏中,油水井的布置应注意什么问题?为什么?①对于板状交错层,水驱方向不能平行于斜层理走向,而应斜交,且角度大些更好,最好垂直(90˙)②若斜理延伸较远,注采井最好不要分布在同一倾斜层,这样有利于提高水的波及厚度。
石油行业提高石油采收率技术方案

石油行业提高石油采收率技术方案第一章石油采收率概述 (2)1.1 石油采收率定义及重要性 (2)1.2 提高采收率技术的发展趋势 (2)第二章油藏特性分析 (3)2.1 油藏类型及特性 (3)2.2 油藏评价方法 (3)2.3 油藏参数测定 (4)第三章水驱提高采收率技术 (4)3.1 水驱原理及分类 (4)3.2 水驱优化设计 (4)3.3 水驱效果评价 (5)第四章气驱提高采收率技术 (5)4.1 气驱原理及分类 (5)4.2 气驱优化设计 (6)4.3 气驱效果评价 (6)第五章热力驱提高采收率技术 (6)5.1 热力驱原理及分类 (6)5.2 热力驱优化设计 (7)5.3 热力驱效果评价 (7)第六章化学驱提高采收率技术 (8)6.1 化学驱原理及分类 (8)6.2 化学驱剂筛选及评价 (8)6.3 化学驱效果评价 (9)第七章微生物驱提高采收率技术 (9)7.1 微生物驱原理及分类 (9)7.2 微生物驱菌种筛选及培养 (9)7.3 微生物驱效果评价 (10)第八章混合驱提高采收率技术 (10)8.1 混合驱原理及分类 (10)8.1.1 混合驱原理 (10)8.1.2 混合驱分类 (10)8.2 混合驱优化设计 (11)8.2.1 混合驱参数优化 (11)8.2.2 混合驱工艺优化 (11)8.3 混合驱效果评价 (11)第九章提高采收率技术集成与优化 (12)9.1 技术集成策略 (12)9.2 技术优化方法 (12)9.3 集成优化效果评价 (12)第十章提高采收率技术的应用与前景 (13)10.1 提高采收率技术的应用案例 (13)10.2 提高采收率技术在我国的应用现状 (13)10.3 提高采收率技术的发展前景 (13)第一章石油采收率概述1.1 石油采收率定义及重要性石油采收率,是指从油藏中采出原油的能力,通常以油藏中原始地质储量的百分比来表示。
石油采收率是衡量油藏开发效果的关键指标,它反映了油藏开发的经济效益和技术水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 碱 驱
Alkaline Flooding
第五章 碱 驱
本章主要内容 ☆碱驱提高采收率的基本机理 ☆界面张力与碱质量分数关系曲线及其应用 ☆什么原油适合于碱驱 ☆碱与地层和地层流体作用 ☆碱驱存在的问题、改善方法
第一节 碱驱概述
碱驱是指以碱溶液作为驱油剂的驱油法。
●碱驱是一种提出最早(1917年) ●1927年申请第一个专利 ●试验最早(1930年),化学剂最便宜,操作最简单 ●美国进行了50个碱驱矿场试验,都未获得工业成功。驱 油机理最复杂,限制也多,因此矿场试验的规模和范围远 小于聚合物驱的一种提高采收率方法。
C17H35COOH
研究表明,原油中含 有脂肪酸、环烷酸和芳香 酸等各类羧酸。
脂肪酸主要是正构的,
现已鉴定出碳数到34的全
部正构脂肪酸,但也存在
少量轻度异构的脂肪酸。
R
*
COOH
COOH
CH2
COOH
n
原油中的石油酸Leabharlann 沥 青 质 模 型原油中的部分酸性物质可以和碱反应,生成 具有一定亲水亲油平衡能力的表面活性剂。
(3)碱水突破前采油量可以增加;
(4)油珠的聚并性质对过程有有利的影响。
四、由油湿反转为水湿(OW
(碱含量1%~5%,盐含量﹤5% )
WW)机理
在高的碱质量分数和低的盐含量下,碱可通 过改变吸附在岩石表面的油溶性表面活性剂在 水中的溶解度而解吸,恢复岩石表面原来的亲 水性,使岩石表面由油湿反转为水湿,提高洗 油效率,同时也可使油水相对渗透率发生变化, 形成有利的流度比,提高波及系数。
从粘附功公式可以看到,油水界面张力低意味着粘附功小,即油易从岩 石表面洗下来,提高了洗油效率。
w粘附= 油水(1+ cos )
式中, w粘附-粘附功; σ油水-油水界面张力; θ-油对岩石表面的润湿角。
碱与石油酸反应生成活性剂,降低了界面张力, 提高了洗油效率。
第二节 碱驱提高采收率的作用机理
原油中的石油酸
1
1% Na CO
2
3
0.8% Na CO
2
3
0.6% Na CO
0.1
2
3
IFT/(mN/m)
0.01
1E-3 0
20
40
60
80
100
t/min
不同浓度碳酸钠与陈庄13-15的动态界面张力
第二节 碱驱提高采收率的作用机理
影响碱水—原油界面张力的因素
原油中的酸性物质 碱 量 水中的含盐量
原油中的酸性物质
随着盐含量升高,低界面张力区增大,继 续升高,低界面张力区变窄,所以要有一
个最佳盐含量。 最佳盐含量在10000mg/L以下
图5-3 不同盐含量下界面张力与氢氧化钠质量分数的关系
二、乳化-携带(Emuls-Entrain)机理(碱含量小于
1%,盐的含量0.5~1.5%)
在低的碱质量分数和低的盐含量下,由碱与石油 酸反应生成的表面活性剂可使地层中的剩余油乳化, 形成微分散状的O/W型乳状液,并被碱水携带着通 过地层。 按此机理,碱驱应用有如下特点: (1)可以形成油珠相当小的乳状液; (2)通过乳化提高碱驱的洗油效率; (3)碱水突破前采油量不可能增加; (4)油珠的聚并性质对过程有较大影响。
第二节 碱驱提高采收率的作用机理
w(NaOH ) :1 0(水驱);2 0.005%; 3 0.01%;4 0.05%
碱驱与水驱的驱油效果对比
第二节 碱驱提高采收率的作用机理
一、低界面张力(LIFT)原理
在低的碱质量分数和一个最佳的盐含量下,碱与原油中酸性成分反应生
成表面活性剂,可使油水界面张力降至10-2mN·m-1以下。
第一节 碱驱概述
☆最好用在三次采油的早期阶段,因为这时含油 饱和度高,油多,油中的酸与碱反应生成的表面活
性物质也高;而且此时的krw低,λw低,Mwo低,
波及系数高,采收率高。
图5-1 碱驱的段塞图 1-剩余油;2-淡水;3-碱溶液;4-聚合物溶液;5-水
由于地层中的钙镁离子可与碱反应而消耗碱, 因此在注碱溶液前需注入一段塞的淡水;之后再 注入聚合物段塞以控制流度。
五、由水湿反转为油湿(WW OW)机理
(碱含量1%~5%,盐含量5~15% )
(1)在高的碱质量分数和高的盐含量下,碱与石油酸反应生成 的表面活性剂主要分配到油相并吸附到岩石表面上来,使岩石表 面从水湿转变为油湿。这样,非连续的剩余油可在其上形成连续 的油相,为原油流动提供通道. (2)碱驱生成的表面活性剂的亲油性和它产生的低界面张力, 导致油包水乳状液的形成 (3)乳状液中的水珠,堵塞流通孔道,使注人压力提高.高的 注入压力迫使油从乳化水珠与岩石表面之间的连续油相这条通道 排泄出去,留下高含水率的乳状液,达到提高原油采收率的目的。
酸性物质亲油基较小
酸性物质亲油基适中 酸性物质亲油基较大
酸性物质与碱反应 速度较快
酸性物质与碱反应 速度适中
酸性物质与碱反应 速度较慢
生成物亲水能力较强
生成物亲水亲油能力 平衡
生成物亲油能力较强
降低界面张力能力差 降低界面张力能力最好 降低界面张力能力差
通常认为C数为12-18时,像带有COO-的表活剂的活性最好
碱量
碱量低
碱量较高
碱量高
先和酸性较强的 石油酸反应
最佳碱量
相继和酸性较弱的 石油酸反应
增加水相极性
形成亲水能力较强的 界面张力超低 表面活性剂
相继形成亲油能力 较强的表面活性剂
增加界面张力
低界 面张 力区
图5-2 一种原油的界面张力与氢氧化钠质量分数关系
碱的质量分数一般低于0.01
盐含量/(mg·L-1): (1)-3.5×104;(2)-3.0×104 ; (3)-2.0×104 ;(4)-1.0×104 ; (5)-0.5×104 ;(6)-0.1×104 ; (7)-0。
图5-5 通过WW OW机理提高采收率
六、自发乳化与聚并机理
在最佳的碱质量分数下,原油可自发乳化到碱水之中。 这种自发乳化现象是由于油中的石油酸与碱水中的碱在 表面上反应产生表面活性剂,先是浓集在界面上,然后扩 散至碱水中引起的。 油中的石油酸主要为羧酸,它可与碱(氢氧化钠)反应 产生羧酸钠。羧酸钠在水中的聚集状况,决定于它的质量 分数。
三、乳化-捕集 (Emuls-Entrap)机理
(碱含量﹤1%,盐含量﹤0.5% )
在低的碱质量分数和低的盐含量下,由于低界面张力使油乳化 在碱水相中,但油珠半径较大,因此当它向前移动时,就被捕集, 增加了水的流动阻力,即降低了水的流度,从而改善了流度比, 增加了波及系数,提高了采收率。
按此机理,碱驱应有如下特点: (1 )油可在碱水相中形成乳状液; (2)分散的油珠会被捕集在较小孔道,改善了碱驱的波及系数;