六年级数学上册组合图形的周长和面积

合集下载

小学数学六年组合图形面积问题

小学数学六年组合图形面积问题

小学数学六年组合图形面积问题1.(2011•东莞)如图中圆的周长是62.8厘米,如果圆的面积和长方形的面积相等,计算涂色部分的周长.2.求下列图形的面积和周长周长:面积:周长:面积:3.求图中阴影部分的周长.(单位:厘米)4.如图所示,三角形ABC的边长都为6cm,分别以A、B、C三点为圆心,边长的一半为半径作弧,求阴影部分的周长.5.(2008•镇海区)如图,三角形AOC是边长为3厘米的正三角形,求阴影部分的面积.6.(2008•兴山县)计算阴影部分的面积.7.(2008•洛阳)如图:阴影部分的面积是50平方厘米,求图中圆环的面积.8.梯形面积51平方厘米,图中阴影影部分的面积(单位:厘米)9.图中两块阴影部分的面积相等,三角形ABC是直角三角形,BC是直径,长20厘米.计算AB 的长度.10.求阴影部分的面积(单位:厘米)11.(2012•郑州)ABCD和CDEF 都是正方形,DC等于12厘米,CB等于10厘米,求阴影部分的面积.12.(2012•郑州)计算如图阴影部分的面积.(单位:分米)13.(2012•仙游县)求出阴影部分的周长和面积.(单位:厘米)14.(2012•金沙县)如图,求阴影部分的面积.已知:r=10cm.15.(2012•衡阳)两个正方形组成下图所示的组合图形.已知组合图形的周长是52厘米,DG=4厘米,阴影部分的面积是_________平方厘米.16.(2011•汕头)求下图阴影部分面积.(单位:厘米)17.(2010•镇海区)图形计算.①一个环形铁片,外圆半径是0.6米,内圆半径是0.4米.它的面积是多少平方米?(π取3.14,得数保留两位小数)②求阴影部分的面积.(单位,厘米)18.(2010•雨花区)求阴影部分面积(空白部分面积为80平方厘米)19.(2010•尤溪县)求下列图形中阴影部分的面积.<单位:厘米>20.(2009•镇海区)在图中,O是圆心,OD=4,C是OB的中点.阴影部分的面积是14π,求直角三角形OAB的面积.21.(2009•南岗区)如图,半圆的直径AB长6厘米,半圆绕A点逆时针旋转60°,使直径AB到达AC的位置.求图中阴影部分的面积.22.(2008•杭州)如果你完成上述题目觉得正确无误后,可考虑解决以下问题,注意:本题不计入总分.两个正方形如图放置,其中D、C、G在同一条直线上,小正方形ECGF的边长为6,连AE、EG、AG,求图中阴影部分的面积.23.(2008•禅城区)图中,圆周长为12.56厘米,平行四边形ABCD 的面积为21.6平方厘米,求阴影部分的面积.(π取3.14)24.(2003•重庆)列式计算:①6除1.5的商,加上3,在乘3,积是多少?②1与0.5的和除以它们的差的2倍,商是多少?③如图:三角形ABC为直角三角形,BC为圆的直径,BC=20厘米,S1、S2阴六年数学图形面积问题- 7 - 影部分的面积,且S1=S2,求三角形ABC的面积?()25.在如图所示的长方形ABCO中,三角形ABD的面积比三角形BCD的面积大10平方厘米,求阴影部分的面积.26.如图:三角形ABC是等腰直角三角形,直角边为4厘米,求阴影部分面积.27.计算下图中阴影部分的面积.(单位:厘米)28.求图中阴影部分的面积(图中单位:厘米)六年数学图形面积问题- 8 - 29.如图中平行四边形的面积是90平方分米.求阴影部分的面积.30.求阴影部分的面积:。

六年级数学上册组合图形的周长和面积讲解

六年级数学上册组合图形的周长和面积讲解

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

人教版六年级数学上册期末复习重难点知识点第五单元圆同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。

每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。

加油!知识点一:圆的认识1.连接圆心和圆上任意一点的线段叫做半径。

2.通过圆心并且两端都在圆上的线段叫做直径。

3.一个圆有无数条半径,无数条直径。

4.圆是轴对称图形,它有无数条对称轴,任意一条直径所在的直线都是它的对称轴。

5.同一圆内,所有的半径都相等,所有的直径都相等,直径的长度是半径长度的2倍。

把圆沿任意一条直径对折,两边可以重合。

6.圆心确定了,圆的中心位置就确定了。

半径决定了圆的大小。

7.画圆的方法:定好圆心;确定半径的长度;画圆的时候注意线条的流畅。

知识点二:圆的周长1.其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

它是一个无限不循环小数,π=3.1415926535……但在实际应用中常常只取它的近似值,例如π≈3.14。

2.围成圆的曲线的长是圆的周长。

3.圆的周长=直径×圆周率。

4.C=πd 或C=2πr 。

知识点三:圆的面积1.圆的面积公式是由长方形的面积公式推导出来的。

2.圆的面积 S=πr ²。

知识点四:圆的面积公式的应用已知圆的直径求圆的面积时,可以根据公式S=π(2d )²直接求解。

知识点五:圆环的面积S 环=πR 2−πr 2S 环=π(R 2−r 2)知识点六:不规则图形的面积1.外方内圆的图形称为圆外切正方形。

2.外圆内方的图形称为圆内接正方形。

3. 知识点七:扇形1.圆上A 、B 两点之间的部分叫做弧,读作“弧AB ”。

2.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)

六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)

扇形和圆的组合图形的面积学生姓名年级学科授课教师日期时段核心内容扇形和圆的组合图形的面积课型一对一/一对N 教学目标掌握扇形和圆的组合图形的面积的计算重、难点1、会利用平面图形的周长和面积公式求平面图形的周长和面积。

2、会用割、补、分解、代换、增加辅助线等方法,将复杂问题变得简单。

课首沟通和学生交谈。

了解学生对圆的认识,对各计算公式是否掌握。

知识导图课首小测1.一个圆形花坛的半径是3m,它的面积是多少平方米?(已知圆的半径,求圆的面积)2.圆形花坛的直径是20m,它的面积是多少平方米?(已知圆的直径,求圆的面积)3.一个圆形蓄水池的周长是25.12m,这个蓄水池的占地面积是多少?(已知圆的周长,求圆的面积)4.求下图扇形的面积。

导学一:运用代换法将复杂的图形转化为简单的规则图形例 1. 图1中右半部分阴影面积比左半部分阴影面积大33平方厘米,AB=60厘米,CB垂直AB,求BC的长。

我爱展示1.如图1-1所示,两个圆的圆心分别为O1、O两圆半径都是1厘米,且图中两个阴影部分的面积相等。

求长方形ABO1O的面积。

2.如图1-2,所示,求右半部分阴影面积比左半部分阴影面积大多少平方厘米。

3.如图1-3:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少平方厘米?导学二:巧用各基本图形的计算公式求解知识点讲解 1:把R2看成一个整体例 1. 图2中已知阴影部分的面积是20平方分米,求环形的面积。

我爱展示1.下图中正方形的面积是8平方米,圆的面积是多少平方米?2.已知下图2-2中阴影部分三角形的面积是5平方米,求圆的面积。

3.已知下图2-3中阴影部分三角形的面积是7平方米,求圆的面积。

知识点讲解 2:从局部到整体,从整体到局部,牢记公式,巧妙应用。

例 1. 如图3,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?我爱展示1.下图3-1中,△ABC是等腰直角三角形,以为半径的圆弧交延长线于点,已知阴影部分的面积是求。

六年级上册数学《圆》单元整理和复习

六年级上册数学《圆》单元整理和复习

1 2 34 567 8
1 2 34 567 8 16 15 14 13 12 11 10 9 16 15 14 13 12 11 10 9
复习旧知

圆的面积
分的份数越多,拼成的图形越接近长方形。
C 2
r
复习旧知

圆的面积
C 2 = πr
r
因为: 长方形面积 = 长 × 宽
圆的面积 = πr × r S = πr 2
o
圆心确定圆的位置。 轴对称图形,对称轴是直径所在的直线,无数条对称轴。
复习旧知

圆的认识
3.什么是圆的半径、直径,在同圆或等圆中,它们有什 么关系?
d
O
r
d=2r r=d÷2
半径(或直径)决定圆的大小。
复习旧知

圆的周长
什么是圆的周长?
围成圆的曲线的长叫作圆的周长。
复习旧知

圆的周长
你见过拉磨吗?如果一头驴绕着一个半径为1.2m的圆走一圈, 大约要走多少米?
人教版 数学 六年级 上册

5圆
整理和复习
复习旧知

圆的认识 圆的周长 圆的面积 圆环的面积 组合图形的面积
扇形
圆 圆心 半径 直径
外圆内方 外方内圆
复习旧知

圆的认识
1.圆是一个什么样的图形?
圆是由一条曲线围成的封闭图形。它是平面图形。
复习旧知

圆的认识
2. 什么叫圆心?怎样确定一个圆的圆心?
复习旧知

圆环的面积
什么叫圆环?怎么计算圆环的面积?
在大圆中间挖去一个小圆,剩 下的部分就形成了一个圆环, 组成圆环的是两个同心圆。

六上数学组合图形

六上数学组合图形

组合图形及操作一1、半圆与指教三角形的组合。

单位cm2、圆环的内圆半径5cm,外圆半径8cm,计算面积。

3、画一个边长是4cm的正方形ABCD,在正方形ABCD 内,画一个最大的圆。

并用字母标出圆的圆心、直径和半径。

4、在右图中描出下面各点A(2,7)B(8,7)C(8,3)D(2,3)按顺序连接A、B、C、D四个点得到一个四边形,画出这个四边形的所有对称轴5、圆的半径是3cm,计算阴影部分的面积。

6、计算下面图形中阴影部分的面积及(1)(5)周长。

(1)(2)(3)(4)(5)(6)(7)(8)7、求运动场周长和面积8、正方形的面积是8cm²。

阴影部分的面积是多少平方厘米?9、如果所示,下水道圆形井盖半径是40cm,底座是一个边长超过井盖直径16cm的正方形带孔的框。

这个井盖底座的面积有多少平方厘米?10、圆形花坛周长是25.12m。

在花坛周围修一条宽为1m 的圆环形小路,小路的面积是多少平方米?11、一匹马被栓在一棵树下,拴马的绳子长8米,如果将绳子再放出一米,马儿能多吃多大面积的草?12、用15.7m长的篱笆靠墙围了一个半圆形的鸡舍,这个鸡舍的面积是多少平方米?如果将圆的半径增加1米,鸡舍的面积增加多少?13、如图所示,线段AB=4cm,求阴影部分面积和周长。

14、如图,正方形的面积是2cm²,求圆面积。

15、下面两个圆中的直角等腰三角形的面积都是5cm²,求圆面积。

16、图中圆与长方形面积相等,长方形的长是6.28m,阴影部分的面积是多少平方米?17、如图,钢管的厚度是0.8cm,内圆直径是5dm,它的横截面面积是多少平方厘米?(得数保留两位小数)18、操作题:以01为圆心画一个直径为5cm的圆,用字母标出圆的直径和半径。

以02为圆心画一个半径4cm的圆,与圆01形成一个只有一条对称轴的图形,并在圆02中画出一个圆心角为150°的扇形。

计算圆01和圆02的面积差。

(完整版)六年级数学上册组合图形的周长和面积

(完整版)六年级数学上册组合图形的周长和面积

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

西师大六年级数学上册全册教案之:第8课时 组合图形的面积

西师大六年级数学上册全册教案之:第8课时  组合图形的面积

西师大六年级数学上册全册教案之:第8课时组合图形的面积第8课时组合图形的面积【教学内容】教科书第23页例5,课堂活动第1~2题,练习六第1~3题。

【教学目标】1.知识与技能:(1)通过计算窗户的面积,掌握求组合图形面积或周长的方法。

(2)通过计算花坛周围小路的面积(课堂活动第2题),掌握求圆环面积的方法。

2.过程与方法:经历解决问题的过程,学会从不同的角度去分析解决生活中的现实问题,思考解决问题的不同策略和方案。

3.情感态度与价值观:体会学习圆的面积的现实意义和价值。

【重点难点】重点:掌握求简单组合图形面积的方法。

难点:能将组合图形分解成基本图形。

【教学过程】一、导入新课1.出示所学过的几何图形:长方形、正方形、平行四边形、三角形、梯形、圆。

让学生说说怎样求这些图形的面积?2.生活中,有些现实问题并不是直接求这些基本图形的面积。

例如:希望小学的阅览室有这样的窗户(呈现例1图),圆形花坛的周围有一条小路(呈现课堂活动第2题图)。

3.如何计算它们的面积?解决相关的问题呢?今天就开始学习:解决问题。

二、探究新知1.掌握求组合图形面积的基本策略。

(1)请看与这个窗户相关的信息(完整地呈现例1)。

(2)怎样算出这个窗户的面积?教学方案1:在学生回答的基础上,板书:窗户的面积=正方形的面积+半圆的面积,学生独立解答两个问题。

教学方案2:先让学生独立尝试解答以后,再通过交流反馈,总结出方法。

(3)小结:像这种组合图形的面积,我们一般把它分割成几个学过的图形,再把它们的面积加起来。

2.掌握求组合图形的不同策略。

(1)呈现变式题:求右图形的面积。

(2)独立思考:这个组合图形可以分解成哪些基本图形?(3)引导学生通过画辅助虚线,整理出各种思路。

(4)请同学们选择一种喜欢的思路来求出组合图形的面积。

3.掌握求阴影图形的基本策略。

(课堂活动第1题)(1)议一议:这3个图中的阴影部分的面积有什么关系?(2)交流:预设①:第2图中的2个半圆正好可组合成一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。

(单位:厘米)解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11.求阴影部分的面积。

(单位:厘米) 解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。

(π-π)×=×3.14=3.66平方厘米例12.求阴影部分的面积。

(单位:厘米)解:三个部分拼成一个半圆面积.π()÷2=14.13平方厘米例13.求阴影部分的面积。

(单位:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:8×8÷2=32平方厘米例14.求阴影部分的面积。

(单位:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米 .例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。

分析: 此题比上面的题有一定难度,这是"叶形"的一个半.解: 设三角形的直角边长为r,则=12,=6圆面积为:π÷2=3π。

圆内三角形的面积为12÷2=6,阴影部分面积为:(3π-6)×=5.13平方厘米例16.求阴影部分的面积。

(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6平方厘米例17.图中圆的半径为5厘米,求阴影部分的面积。

(单位:厘米)解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和。

所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。

解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米例19.正方形边长为2厘米,求阴影部分的面积。

解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。

所以面积为:1×2=2平方厘米例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。

解:设小圆半径为r,4=36, r=3,大圆半径为R,=2=18,将阴影部分通过转动移在一起构成半个圆环,所以面积为:π(-)÷2=4.5π=14.13平方厘米例21.图中四个圆的半径都是1厘米,求阴影部分的面积。

解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米例22.如图,正方形边长为8厘米,求阴影部分的面积。

解法一: 将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.阴影部分为一个三角形和一个半圆面积之和.π()÷2+4×4=8π+16=41.12平方厘米解法二: 补上两个空白为一个完整的圆.所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16所以阴影部分的面积为:π()-8π+16=41.12平方厘米例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以阴影部分的面积为:4π-8(π-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。

如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆.解:阴影部分为大正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米例25.如图,四个扇形的半径相等,求阴影部分的面积。

(单位:厘米)分析:四个空白部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。

解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB面积减去个小圆面积,为: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。

解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米例28.求阴影部分的面积。

(单位:厘米)解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π÷2-5×5]÷2=7.125所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π阴影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?解: 甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部分差即为:π×-×4×6=5π-12=3.7平方厘米例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。

求BC的长度。

解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积。

解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5两弓形PC、PD面积为:π-5×5所以阴影部分的面积为:37.5+π-25=51.75平方厘米例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。

求阴影部分的面积。

解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积等于三角形EBF面积,阴影部分可补成圆ABE的面积,其面积为:π÷4=9π=28.26平方厘米例33.求阴影部分的面积。

(单位:厘米)解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6=4.205平方厘米例34.求阴影部分的面积。

(单位:厘米)解:两个弓形面积为:π-3×4÷2=π-6阴影部分为两个半圆面积减去两个弓形面积,结果为π+π-(π-6)=π(4+-)+6=6平方厘米例35.如图,三角形OAB 是等腰三角形,OBC 是扇形,OB=5厘米,求阴影部分的面积。

解:将两个同样的图形拼在一起成为圆减等腰直角三角形[π÷4-×5×5]÷2=(π-)÷2=3.5625平方厘米例36.如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。

求长方形ABO 1O 的面积。

B解:因为两圆的半径相等,所以两个扇形中的空白部分相等。

又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。

所以3.14×12×14×2=1.57(平方厘米)答:长方形长方形ABO 1O 的面积是1.57平方厘米。

相关文档
最新文档