六年级奥数组合图形面积计算(20200614123204)

合集下载

六年级 奥数 组合图形面积计算

六年级 奥数 组合图形面积计算

面积计算(一)一, 求阴影部分的面积1.如下图,已知6=AB 厘米,10=AD 厘米,三角形ABE 和三角形ADF 的面积各占长方形ABCD 的31,三角形AEF 的面积是多少平方厘米?2.如下图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是多少平方厘米?3.在四边形ABCD 中,BD AC 和互相垂直并相交于O 点,四个小三角形的面积如下图所示,求阴影部分三角形BCO 的面积。

4.三角形E D ABC ,.中(如下图),是中点,S 甲比S 乙多5平方厘米,三角形ABC 的面积是多少平方厘米?5.图中扇形的半径6==OB OA 厘米,AOB ∠等于︒45,AC 垂直于点C ,那么图中阴影部分的面积是多少平方厘米?()取(14.3π6.下图的正方形是由大家熟悉的七巧板拼成的,边长是10厘米,那么阴影部分的面积是多少平方厘米?7.如下图,斜边长为30厘米的等腰直角三角形内有一个内接的正方形,那么阴影部分的面积是多少平方厘米?二,解答题。

1.由三角形面积分别为2,3,5,7的四个三角形拼成一个大三角形,如下图所示。

即已知:SAED∆=2, SAEC∆=5, SBDF∆=7, SBCF∆=3,那么SBEF∆是多少?2.如下图,BD=4厘米,DE=8厘米,EC=4厘米,F是AE的中点,ABC∆在BC边上的高为8厘米,DFE∆的面积是多少平方厘米?3运动会入场式要求运动员排成一个9行9列的正方形方阵,如果去掉3行3列,要减少多少名运动员?3.如图所示是由正方形和半圆组成的图形,其中P点为半圆的中点,Q点为正方形一边的中点,那么阴影部分的面积是多少?。

小学六年级奥数系列讲座:组合图形面积计算(含答案解析)

小学六年级奥数系列讲座:组合图形面积计算(含答案解析)

组合图形面积计算(一)一、知识要点在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

二、精讲精练【例题1】求图中阴影部分的面积(单位:厘米)。

圆的面积。

【思路导航】如图所示的特点,阴影部分的面积可以拼成14=28.26(平方厘米)62×3.14×14答:阴影部分的面积是28.26平方厘米。

练习1:1.求下面各个图形中阴影部分的面积(单位:厘米)。

2.求下面各个图形中阴影部分的面积(单位:厘米)。

3.求下面各个图形中阴影部分的面积(单位:厘米)。

【例题2】求图中阴影部分的面积(单位:厘米)。

【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

3.14×2144-4×4÷2÷2=8.56(平方厘米)答:阴影部分的面积是8.56平方厘米。

练习2:1.计算下面图形中阴影部分的面积(单位:厘米)。

2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。

求长方形ABO1O的面积。

【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。

又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。

所以3.14×12×1/4×2=1.57(平方厘米)答:长方形长方形ABO1O的面积是1.57平方厘米。

练习3:1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

六年级奥数组合图形面积计算教案设计

六年级奥数组合图形面积计算教案设计

六年级奥数组合图形面积计算教案设计在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

【例题1】求图中阴影部分的面积。

【思路导航】如图所示的特点,阴影部分的面积可以拼成圆的面积。

62××=答:阴影部分的面积是平方厘米。

练习1:1.求下面各个图形中阴影部分的面积。

2.求下面各个图形中阴影部分的面积。

3.求下面各个图形中阴影部分的面积。

【例题2】求图中阴影部分的面积。

【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形。

从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

×-4×4÷2÷2=答:阴影部分的面积是平方厘米。

练习2:1.计算下面图形中阴影部分的面积。

2.计算下面图形中阴影部分的面积。

3.计算下面图形中阴影部分的面积。

【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。

求长方形ABO1O的面积。

【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。

又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半。

所以×12×1/4×2=答:长方形长方形ABO1O的面积是平方厘米。

练习3:1.如图所示,圆的周长为厘米,AC两点把圆分成相等的两段弧,阴影部分的面积与阴影部分的面积相等,求平行四边形ABCD的面积。

2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

3.如图所示,AB=BC=8厘米,求阴影部分的面积。

【例题4】如图19-14所示,求阴影部分的面积。

【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后。

I和II的面积相等。

因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以6×4=24答:阴影部分的面积是24平方厘米。

专题10 面积计算(组合图形的面积)(原卷)

专题10 面积计算(组合图形的面积)(原卷)

2022-2023学年小学六年级思维拓展举一反三精编讲义专题10 面积计算(组合图形的面积)对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。

有些图形可以根据“容斥问题“的原理来解答。

在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

【典例分析01】如图20-1所示,求图中阴影部分的面积。

【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图20-2),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米【3.14×102×14-10×(10÷2)】×2=107(平方厘米)答:阴影部分的面积是107平方厘米。

解法二:以等腰三角形底的中点为中心点。

把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

(20÷2)2×12-(20÷2)2×12=107(平方厘米)知识精讲典例分析【典例分析02】如图20-6所示,求图中阴影部分的面积(单位:厘米)。

【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a )的面积,再用大扇形的面积减去空白部分(a )的面积。

如图20-7所示。

3.14×62×14 -(6×4-3.14×42×14 )=16.82(平方厘米)解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。

把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

3.14×42×14 +3.14×62×14 -4×6=16.28(平方厘米) 答:阴影部分的面积是16.82平方厘米。

六年级数学思维:组合图形的面积计算,例题解析!

六年级数学思维:组合图形的面积计算,例题解析!

六年级数学思维:组合图形的面积计算,例题解析!主要题型:一、求不规则图形面积(阴影部分面积);二、求不能直接利用公式计算的图形面积;三、求规则图形的面积,但条件比较隐蔽,用常规思路无法解答。

基本解题思路:解题的基本思路是,先通过分割、切拼、旋转、平移、翻折、缩放、等积替换等方法,把不规则图形转化为规则图形(或规则图形面积的和差),让隐蔽条件明朗化,再合理运用面积公式,巧求不规则图形面积。

解题技巧:这一块分六讲,以后会陆续更新,每一块各有侧重地介绍了六种求面积的计算方法,但每一种解题方法并不是孤立存在的,在实际解题时一道题常常需要综合运用多种方法,才能巧妙解题。

例如加减法求面积常需要对图形进行割补,而用割补法求面积常需要添加辅助线、平移、旋转、进行加减运算等。

在解答图形面积问题时,关键就是要注意寻找不同图形或同一个图形的各个部分之间的内在联系,可以变换角度或适当添加辅助线帮助观察,特别要注意观察图形边角的形状、长度和角度,及是否隐藏有等底等高之类的条件。

从而根据图形的形状特征,合理地进行分割重组,化不规则为规则,巧妙地运用题目给出的各种条件。

小学阶段常见的面积公式:长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a=a2三角形的面积=底×高÷2S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的面积=圆周率×半径×半径S=πr2今天我们讲第一块内容:加减法求面积方法介绍:根据组合图形的形状特征,从整体上观察,将不规则图形分解转化成几个基本规则图形,分别计算它们的面积。

再变化角度思考,通过相加或相减求出所求图形的面积。

例题1:求下图中阴影部分的面积(最后结果保留一位小数)。

(单位:厘米)【解析】:上图阴影部分可以分割成3个完全相同的弓形,先求出其中一个弓形的面积,再求出3个弓形的总面积就是所求阴影部分的面积。

组合图形的面积——小学奥数专题

组合图形的面积——小学奥数专题

组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。

(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3、有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5平方厘米。

求原来梯形的面积。

例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。

2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。

3、求下图长方形ABCD的面积(单位:厘米)。

例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。

三角形CDH的面积是多少平方厘米?1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。

2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。

2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。

求平行四边形的面积。

例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。

练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。

求AH长多2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。

小学数学组合图形的面积如何计算

小学数学组合图形的面积如何计算

小学数学组合图形的面积如何计算在生活中经常会碰到不规则图形,很难算出这些图形的面积,但我们可以把这些图形划分组合成其他好算的图形,这样就方便我们计算面积了。

一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积分析:半圆的面积+正方形的面积=总面积半圆的面积常用公式正方形面积常用公式二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如:下图,求阴影部分的面积。

分析:先求出正方形面积再减去里面圆的面积即可.圆的面积常用公式三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积.例如:下图,求阴影部分的面积。

分析:通过分析发现阴影部分就是一个底是2、高是4的三角形三角形面积常用公式[公式描述] 由不在同一直线上的三条线段,首尾顺次相接所得到的几何图形叫做三角形,已知三角形底a,高h,则S=ah/2。

四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如:下图,求阴影部分的面积。

分析:拆开图形,使阴影部分分布在正方形的4个角处,如下图。

五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可例如:下图,求两个正方形中阴影部分的面积。

分析:此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便(如下图)根据梯形两侧三角形面积相等原理(蝴蝶定理),可用三角形丁的面积替换丙的面积,组成一个大三角ABE,这样整个阴影部分面积恰是大正方形面积的一半.六、割补法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如:下图,若求阴影部分的面积。

分析:把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如:下图,求阴影部分的面积。

小学六年级数学 组合图形的面积

小学六年级数学                  组合图形的面积

梯形面积:S=(a+b)×h÷2
组合图形类型:多边形外、圆、扇形、弓 形与三角形、矩形、平行四边形、梯形等 图形组合而成的不规则图形
小学六年级数学 组合图ቤተ መጻሕፍቲ ባይዱ的面积
看题目要求是什么,问什么答什么,找出 隐含的条件
解题方法:变动图形的位置或对图形进行 分割、旋转、拼补、平移、翻折、对称
正方形面积:边长×边长 长方形面积:长×宽
掌握好概念和公式,每个组合图形的面积 计公式要牢记
圆的面积:S=πr² 圆的周长:C=2πr 或 C=πd 三角形面积:S=ah÷2
画辅助线可以更好地帮助我们找出各部分 之间的关系,有利于解题 仔细观察、认真思考,(不同的组合图形 有不同的解题方法,要根据题目灵活运 用)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面积计算(一)
一,求阴影部分的面积
1.如下图,已知6
AD厘米,三角形ABE和三角形ADF
AB厘米,10
1,三角形AEF的面积是多少平方厘米?的面积各占长方形ABCD的
3
2.如下图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是多少平方厘米?
3.在四边形ABCD中,BD
AC和互相垂直并相交于O点,四个小三角形的面积如下图所示,求阴影部分三角形BCO的面积。

4.三角形E
ABC,.
中(如下图),是中点,S甲比S乙多5平方厘米,三角
D
形ABC的面积是多少平方厘米?
5.图中扇形的半径6
OA厘米,AOB等于45,AC垂直于点C,
OB
那么图中阴影部分的面积是多少平方厘米?()
.3
(14

6.下图的正方形是由大家熟悉的七巧板拼成的,边长是10厘米,那么阴影部分的面积是多少平方厘米?
7.如下图,斜边长为30厘米的等腰直角三角形内有一个内接的正方形,那么阴影部分的面积是多少平方厘米?
二,解答题。

1.由三角形面积分别为2,3,5,7的四个三角形拼成一个大三角形,如
下图所示。

即已知:S
AED =2, S AEC=5, S
BDF
=7, S BCF=3,那么S
BEF

多少?
2.如下图,BD=4厘米,DE=8厘米,EC=4厘米,F是AE的中点,
ABC在BC边上的高为8厘米,DFE的面积是多少平方厘米?
3运动会入场式要求运动员排成一个9行9列的正方形方阵,如果去掉3行3列,要减少多少名运动员?
3.如图所示是由正方形和半圆组成的图形,其中P点为半圆的中点,
Q点为正方形一边的中点,那么阴影部分的面积是多少?。

相关文档
最新文档