奥数(组合图形的面积)
五年级奥数组合图形的面积

五年级奥数组合图形的面积Document number:NOCG-YUNOO-BUYTT-UU986-1986UT组合图形的面积1.基本平面图形特征及面积公式特征面积公式正方形①四条边都相等。
②四个角都是直角。
③有四条对称轴。
S=a2长方形①对边相等。
②四个角都是直角。
③有二条对称轴。
S=ab平行四边形①两组对边平行且相等。
②对角相等,相邻的两个角之和为180°③平行四边形容易变形。
S=ah三角形①两边之和大于第三条边。
②两边之差小于第三条边。
③三个角的内角和是180°。
④有三条边和三个角,具有稳定性。
S=ah÷2梯形①只有一组对边平行。
②中位线等于上下底和的一半。
S=(a+b)h÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。
1.已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。
2.右图是两个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:厘米)3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。
4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘米,DF的长是多少厘米5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求阴影部分的面积。
6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。
7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。
五年级奥数-组合图形的面积(二)姜璐

分析 :
1,因为三角形ABD与三角形ACD等底 等高,所以面积相等。因此,三角形 ABO的面积和三角形DOC的面积相等, 也是6平方厘米。 2,因为三角形BOC的面积是三角形 DOC面积的2倍,所以BO的长度是OD 的2倍,即三角形ABO的面积也是三角 形AOD的2倍。所以,三角形AOD的面 积是6÷2=3平方厘米。
练 习 三 2、下图的梯形ABCD中,下底是上底的2倍, E是AB的中点。那么梯形ABCD的面积是 三角形BDE面积的多少倍?
因为梯形和三角形等高 梯形ABCD的面积比三角形BDE面积为梯形上下底之和与三角 形底边长的比 即(1+2):1=3:1 梯形ABCD的面积是三角形BDE面积的3倍
例4 、在三角形ABC中,DC=2BD,
△ADE的面积=4×4÷2=8(平方厘米) ∵F长是9厘米的正三角形的面积是
边长为3厘米的正三角形面积的多少倍?
分析: 题中的已知条件不能计算出两种三 角形的面积,我们可以用边长是3厘 米的正三角形拼一个边长是9厘米的 正三角形,从而看出它们之间的倍 数关系。从下图中可以看出:边长9 厘米的正三角形是边长3厘米的正三 角形面积的9倍。
练 习 二
1、下图中,三角形ABC的面积是36平方厘米,三角
形ABE与三角形AEC的面积相等,如果AB=9厘米, FB=FE,求三角形AFE的面积。
36÷2=18(平方厘米) 18×2÷9=4(厘米) 0.5×4×4=8(平方厘米) 18-8=10(平方厘米)
2、图中两个正方形的边长分别是
10厘米和6厘米,求阴影部分的面积。
2、求图中阴影部分的面积。 (单位:厘米) 28×20=560(平方厘米)
例2 、下图中,边长为10和15的两个正方体并
五年级奥数组合图形面积

组合图形面积
1、求四边形ABCD的面积。
(单位:厘米)
2、下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点。
求AEF的面积。
3、图中的甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)
4、求图中阴影部分的面积。
5、图中ABCD是长方形,三角形EFD的面积比ABF的面积大6平方厘米,求ED的长。
6、下图中三个正方形的边长分别是1厘米、2厘米和3厘米。
求图中阴影部分的面积。
7、求下图长方形ABCD的面积。
(单位:厘米)
8、如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。
求四边
形ABCD的面积。
9、正方形的边长是2(a+b),已知图中阴影部分B的面积是7平方厘米,求阴影部分A和C的和是多少平方厘
米?。
五年级奥数组合图形的面积

五年级奥数组合图形的面积3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。
4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘米,DF的长是多少厘米?5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求阴影部分的面积。
6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。
7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少?8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。
问原来的三角形的面积是多少平方米?组合图形的面积作业1.在右图中,三角形EDF 的面积比三角形ABE 的面积大75平方厘米,已知正方形ABCD 的边长为15厘米,DF 的长是多少厘米?2.如图,ABCD 是一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE 的面积。
13.已知正方形乙的边长是8厘米,正方形甲的面积是36平方厘米,那么图中阴影部分的面积是多少?4.如图,A、B两点是长方形长和宽的中点,那么阴影部分占长方形的面积是多少?5.如图,在平行四边形ABCD中,E、F分别是AC、BC的三等分点,且平行四边形的面积为54平方厘米,求S。
△BEF6.计算右边图形的面积。
(至少用3种方法)(单位:米)。
五年级奥数组合图形的面积

组合图形的面积我们已经学过长方形、正方形、三角形、平行四边形、梯形面积的计算方法,组合图形面积的计算,就要综合运用各种面积计算公式。
解组合图形常用的方法有分解法和割补法。
对于稍复杂的组合图形,有时还要用到运动变换法。
画出辅助线,更容易找到各部分之间的关系。
例1:如图所示,正方形的边长为6厘米,求阴影部分的面积是多少?1、如图所示,两个完全一样的直角三角形重叠在一起,求阴影部分的面积。
(单位:cm)2、把边长是10cm的正方形卡片按下图的方法重叠起来,3张这样的卡片重叠以后组成的图形的面积是多少?3、有一块长方形草地,长16m,宽12m,中间有一条宽2m的小路,求草地(阴影部分)的面积。
例2、如图所示,两个正方形,求图中阴影部分的面积。
(长度单位:厘米)1、下面大正方形边长为3厘米,小正方形边长为2厘米,求阴影部分的面积。
2、如图所示,长方形ABCD,三角形ABP的面积为20平方厘米,三角形CDQ的面积为35平方厘米,求阴影部分的面积。
3、如图所示,四边形ACEH是梯形,ACEG是平行四边形,ABGH是正方形,CDFG是长方形。
已知AC=8厘米,HE=13厘米,求三角形CDE和三角形GFE的面积之和。
例3:如图所示,三角形ABC被分成四个小三角形,其中三个三角形的面积分别为8平方厘米,6平方厘米,12平方厘米,求阴影部分的面积。
1、平行四边形ABCD中,AE=EF=FB,AG=2CG,三角形GEF的面积是6平方厘米,平行四边形的面积是多少平方厘米?2、下图中ABCD是直角梯形,两条对角线把梯形分成4个三角形(O是AC和BD的交点)。
已知其中两个三角形的面积为3平方厘米和6平方厘米,求直角梯形ABCD的面积。
自主练习:1、在腰长为10cm,面积为34cm²的等腰三角形的底边上任取一点,设这个点到两腰的垂线段分别长为a cm,b cm,那么a+b的长度是多少厘米?2、长方形ABCD的周长是16cm,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68 cm²,求长方形ABCD的面积。
组合图形的面积——小学奥数专题

组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
五年级举一反三奥数题:组合图形的面积

6.如图所示,长方形的长是8cm,宽是6cm,A、面积B是宽的中点,求长方形内阴影部分的4. 如图所示,三角形ABC被分为四个小三角形,
12cm2,求阴影部分的面积。
其中三个三角形的面积分别为8cm2、
6cm2、
组合图形的面积(一)
基础卷
1. 如图所示,两个完全一样的直角三角形重叠在一起,求阴影部分的面积。
(单位:cm)
2. 把边长是10cm的正方形卡片按下图的方法重叠起来,3张这样的卡片重叠以后组成的图形的面积是多少?
3. 有一块长方形草地,长 16m,宽12m,中间有一条宽2m的小路,求草地(阴影部分)的面积。
B5 F
提高卷
1.在腰长为 线分别长 10cm ,面积为34cm 2的等腰三角形的底边上任取一点,设这个点到两腰的垂
bcm ,那么a+b 的长度是多少厘米? acm 、
2. 如图所示,ABCD 是正方形,三角形
4 cm, 求 DE 的的长度。
3.
如图所示,大正方形和小正方形的边长分别是4 cm , 3cm ,求阴影部分的面积。
4. 长方形ABCD 的周长是16cm ,在它的每条边上各画一个以该边为边长的正方形,已知 这四个正方形
的面积和是 68cm 2
,求长方形ABCD 的面积。
A
C
■
D
5.
如图
DEF 的面积比三角形
所示,在边长为 12cm的正方形 ABCD中,E、F是BC边上的三等分点, M、N是对角线BD上的三等分点,邱三角形 EMN的面积。
.
6.梯形 ABCF 的下底 BC 是 12cm,高 AB 是 18cm,CE=2DE,求 DF。
五年级奥数举一反三--组合图形面积

第18周组合图形面积(一)例1、一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2、正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
1、(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3、四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积(单位:厘米)3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4、下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
例5、图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多少厘米?2、图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阴影部分面积专题练习
一、求下列各图中阴影部分的面积。
(单位:厘米)1、
2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、如图,两个大小不等的正方形拼成一个图形,已知小正方形的边长是4厘米,阴影部分的面积是30平方厘米,求空白部分的面积是多少?
5、将直角三角形ABC向右平移6厘米,再向下平移1.5厘米,得到一个图形如图,已知三角形的底边BC长16厘米,求阴影部分的面积。
长方形ABCD内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.
解答:根据容斥关系:四边形EFGO的面积=三角形AFC+三角形DBF-白色部分的面积,三角形AFC+三角形DBF=长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即120-70=50所以四边形EFGO 的面积=60-50=10
如图,已知边长为5的额正方形ABCD和边长为的正方形CEFG共顶点C,正方形CEFG绕点C旋转60°,连接BE、DG,则ΔBCE的面积与ΔCDG的面积比是_____.
几何图形面积答案:将ΔCDG绕点C逆时针旋转900,得到ΔCBH,这样点E、C、H在同一直线上,且CE=CG=CH,所以ΔBCE的面积=ΔBCH的面积=ΔCDG的面积,所求面积比为1:1。