五年级奥数组合图形面积一
五年级奥数专题组合图形面积

五年级奥数专题组合图形面积(一)1、一根铁丝长12厘米,要围成两个整厘米数的正方形,这两个正方形的面积分别是多少?1、有两个相同的长方形,长7厘米,宽3厘米,把它们按下图的样子重叠在一起,这个图形的面积是多少?3、有一个梯形,它的上底是6厘米,下底8厘米,如果只把上底增加4厘米,那么面积就增加6平方厘米。
求原来梯形的面积。
4、求下图长方形ABCD的面积。
(单位:厘米)5、如图,已知四条线段的长度分别是:AB=4厘米,CE=12厘米,CD=10厘米,AF=8厘米,并且有两个直角。
求四边形ABCD的面积。
6、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
7、图中,ABCD是长方形,E、F分别是AB、DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是多少平方厘米?组合图形面积(二)【一】一个正方形被分成3个大小、形状完全一样的长方形,每个小长方形的周长都是24厘米,求这个正方形的面积。
练习1、一个正方形被分成6个大小、形状完全一样的长方形,每个长方形的周长都是14厘米。
原来正方形的面积是多少?2、一块长方形布,周长是18米,长比宽多1米。
这块布的面积是多少?【二】下图是由6个相等的三角形拼成的图形,求这这图像的面积。
练习1、ABCD是正方形,求阴影部分的面积。
(单位:厘米)2、下图中,E、F分别是长和宽的中点,求阴影部分的面积。
(单位:厘米)【三】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)练习1、求下图中阴影部分的面积和。
2、求下图中阴影部分的面积。
(单位:厘米)【四】下图中,边长为10和15的两个正方形并放在一起,求三角形ABC(阴影部分)的面积。
练习1、下图中,三角形ABC的面积是72平方厘米,三角形ABE与三角形AEC面积相等,如果AB=18厘米,FB=FE,求三角形AFE的面积。
五年级奥数组合图形面积

五年级组合图形面积____月____日姓名_______知识要点:组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种,一是拼合组合,二是重叠组合。
由于组合图形具有条件相“等”的特点,往往使得问题的解决无从下手。
要正确解答组合图形的面积,应该注意以下几点:1、切实掌握有关简单图形的概念、公式,牢固建立空间概念。
2、仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的。
3、适当采用增加辅助线等方法帮助接题。
4、采用割、补、分解、代换等方法,可将复杂问题变得简单。
例题讲解:例1、一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?疯狂操练11、求四边形ABCD的面积。
(单位:厘米)2、有一个梯形,他的上底是5厘米,下底7厘米,如果只把上底增加3厘米,那么面积就增加4.5厘米。
求原来梯形的面积。
例2、下图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
疯狂操练21、如下图。
已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点。
求AEF的面积。
例3、图中的甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)疯狂操练31、计算下面图形的面积(单位:厘米)2、求图中阴影部分的面积。
例4、下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?疯狂操练41、如图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(提示:连接DB)单位:厘米。
例5、图中ABCD是长方形,三角形EFD的面积比ABF的面积大6平方厘米,求ED的长。
疯狂操练51、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
五年级奥数举一反三--组合图形面积

五年级奥数举一反三--组合图形面积例4、下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
例5、图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多少厘米?2、图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
3、正方形的边长是2(a+b),已知图中阴影部分B的面积是7平方厘米,求阴影部分A和C的和是多少平方厘米?第十九周组合图形的面积例题1、如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)1、求右图中阴影部分的面积。
2、求图中阴影部分的面积。
(单位:厘米)3、下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
例题2、下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。
1、下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2、图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3、图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
例题3、两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)1、如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?2、下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。
五年级奥数组合图形的面积

组合图形的面积【2 】1.根本平面图形特点及面积公式特点面积公式正方形①四条边都相等.②四个角都是直角.③有四条对称轴.S=a2长方形①对边相等.②四个角都是直角.③有二条对称轴.S=ab平行四边形①两组对边平行且相等.②对角相等,相邻的两个角之和为180°③平行四边形轻易变形.S=ah三角形①双方之和大于第三条边.②双方之差小于第三条边.③三个角的内角和是180°.④有三条边和三个角,具有稳固性.S=ah÷2梯形①只有一组对边平行.②中位线等于高低底和的一半.S=(a+b)h÷22.根本解题办法:由两个或多个简略的根本几何图形组合成的组合图形,要盘算如许的组合图形面积,先依据图形的根本关系,再应用分化.组合.平移.割补.添帮助线等几种办法将图形变成根本图形分离盘算.1.已知右面的两个正方形边长分离为6分米和4分米,求图中暗影部分的面积.2.右图是两个雷同的直角三角形叠在一路,求暗影部分的面积.(单位:厘米)3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内暗影部分的面积.4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分离为6厘米.4厘米,DF的长是若干厘米?5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求暗影部分的面积.6.右图是一块长方形公园绿地,绿地长24米,宽16米,中央有一条宽为2米的道路,求草地(暗影部分)的面积.7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E.F分离是AF.BC的中点,那么暗影部分的面积是若干?8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中央有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(暗影部分)的面积有多大?9.如图,一个三角形的底长5米,假如底延伸1米,那么面积就增长2平方米.问本来的三角形的面积是若干平方米?1米组合图形的面积功课1.在右图中,三角形EDF的面积比三角形ABE的面积大75平方厘米,已知正方形ABCD的边长为15厘米,DF的长是若干厘米?2.如图,ABCD是一个长12厘米,宽5厘米的长方形,求暗影部分三角形ACE的面积.3.已知正方形乙的边长是8厘米,正方形甲的面积是36平方厘米,那么图中暗影部分的面积是若干?4.如图,A.B两点是长方形长和宽的中点,那么暗影部分占长方形的面积是若干?5.如图,在平行四边形ABCD中,E.F分离是AC.BC的三等分点,且平行四边形的.面积为54平方厘米,求S△BEF6.盘算右边图形的面积.(至罕用3种办法)(单位:米)。
五年级奥数--组合图形的面积

组合图形的面积姓名知识、规律、方法1、常见的几种规则图形。
(1)三角形:有三条线段首位相接围成的图形。
分类:(2)四边形2、面积计算公式。
三角形:S=ah÷2 长方形:S=ab正方形:S=a2 平行四边形:S=ah梯形:S=(a+b)h÷2【例题1】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
【例题2】四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?【例题3】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?【例题4】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习:一、已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。
二、右图是两个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:厘米)三、如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。
四、右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。
五、如图,三角形ABC的面积是90平方厘米,EF平行于BC,AB=3AE,那么三角形甲、乙、丙的面积各是多少平方厘米?六、在等腰梯形ABCD中,AD=12厘米,高DF=10厘米。
三角形CDE的面积是24平方厘米。
求梯形面积。
七、在右图中,三角形EDF的面积比三角形ABE的面积大75平方厘米,已知正方形ABCD的边长为15厘米,DF的长是多少厘米?八、如图,ABCD是一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE的面积。
九、如图,A、B两点是长方形长和宽的中点,长为8,宽为6,那么阴影部分占长方形的面积是多少?十、在正方形ABCD中,AB是4厘米,三角形BCF比三角形DEF的面积多2平方厘米,求DE的长。
小学五年级《组合图形的面积》奥数教案

五年级备课教员:第十二讲组合图形的面积一、教学目标: 1.结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。
2.理解计算组合图形的多种方法,并能根据各种组合图形的条件,有效地选择计算方法,进行正确解答。
3.培养识图的能力和综合运用有关知识的能力,能合理的运用“割”、“补”等方法来计算组合图形的面积,在这一过程中感受转化的数学思想。
4.通过观察、思考、运用等过程,激发学生积极参与学习探究的热情,培养学生倾听、合作、交流的良好学习习惯。
二、教学重点:探索组合图形面积的计算方法:1.分割法:把一个复杂的组合图形分割成我们学过的几个简单的基本图形,通过求这几个简单的基本图形的面积来得到组合图形的面积。
2.添补法:充分利用已知的数据,恰当地使用辅助线,用添补的方法,把复杂的组合图形转化为简单的图形,从而计算出组合图形的面积。
3.挖空法:就是把多边形看成是一个完整的规则图形,计算它的面积以后,再减去空缺部分的面积。
三、教学难点:根据图形之间的联系,选择有效的方法求组合图形的面积,在学习中去探索掌握解决问题的思考策略及解决问题方法的最优化。
四、教学准备:课件、活页练习纸、展示图。
五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,让大家准备的七巧板,你们都准备了吗?生:准备了。
师:真棒,现在就请同学们拿出自己准备的七巧板,动动你们的小手,拼出自己最喜欢的图形给你的同桌看。
看看你和同桌谁拼的图形更好看。
生:(开始动手拼)师:(投影展示学生作品)同学们看,这位同学拼的图形像什么呀?生:小鱼。
师:能说说这条小鱼是怎么拼成的吗?生:由两个三角形拼成的。
师:同学们观察得真仔细。
师:老师现在再叫几位同学来分享,要说清楚你拼成的是什么,是怎么拼的。
生:我拼的是一只猫,是用七巧板的七个图形拼成的。
生:我拼的是一棵树,是用两个三角形和一个正方形拼成的。
生:……师:同学们有没有发现拼的图形都有一个共同的特征?是什么呢?生:拼成的图形都是由几个图形组合而成的。
五年级举一反三b答案

五年级举一反三b答案【篇一:五年级举一反三奥数题:组合图形的面积(一)b】>基础卷1. 如图所示,两个完全一样的直角三角形重叠在一起,求阴影部分的面积。
(单位:cm)2. 把边长是10cm的正方形卡片按下图的方法重叠起来,3张这样的卡片重叠以后组成的图形的面积是多少?3. 有一块长方形草地,长16m,宽12m,中间有一条宽2m的小路,求草地(阴影部分)的面积。
4. 如图所示,三角形abc被分为四个小三角形,其中三个三角形的面积分别为8cm2、6cm2、12cm2,求阴影部分的面积。
5. 已知正方形efgh的边长是4cm,求正方形abcd的面积。
积提高卷1. 在腰长为10cm,面积为34cm2的等腰三角形的底边上任取一点,设这个点到两腰的垂线分别长acm、bcm,那么a+b的长度是多少厘米?2. 如图所示,abcd是正方形,三角形def的面积比三角形abf的面积大6cm2,cd长4cm,求de的的长度。
3. 如图所示,大正方形和小正方形的边长分别是4cm,3cm,求阴影部分的面积。
4. 长方形abcd的周长是16cm,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68cm2,求长方形abcd的面积。
5. 如图所示,在边长为12cm的正方形abcd中,e、f是bc边上的三等分点,m、n是对角线bd上的三等分点,邱三角形emn的面积。
6. 梯形abcf的下底bc是12cm,高ab是18cm,ce=2de,求df。
【篇二:四年级举一反三奥数:包含与排除b版】/p> 1. 五年级有168人参加语文、数学考试,每人至少有一门功课获优,其中语文获优的有87人,数学获优的有109人,问:语文、数学都获优的有多少人?2. 某班有56名学生,在一次测试中有25人得满分,在第二次测试中有23人得满分,如果两次测试都没有得过满分的学生有18人,那么两次测试中都得满分的人有多少?3. 某学校外语教研组有15名懂英语的教师,12名懂日语的教师,两种语言都懂的教师有8人,问:改教研组共有多少名教师?4. 某班在一次测试中有28人语文获优,30人数学获优,其中语文、数学双优的有13人,另外还有8人语文、数学均未获优,这个班共有多少个学生?5. 数学小组有20名同学一起做两道数学思想题,做对第一题的有10人,做对第二道题的有15人。
五年级奥数专题第一讲组合图形面积(一)

五年级奥数专题第一讲组合图形面积(一)【一】用一块长8分米,宽4分米的长方形纸板与两块边长为4分米的正方形纸板拼成一个正方形。
拼成的正方形的面积是多少?练习1、把一个长10厘米、宽5厘米的长方形,分成两个大小一样的正方形。
每个正方形的面积是多少?2、用一个长8厘米,宽4厘米的长方形与7个边长为4厘米的正方形,拼成一个大正方形。
拼成的大正方形的面积是多少?【二】一个等腰直角三角线,最长的边20厘米,这个三角形的面积是多少平方厘米?练习1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是8厘米,求正方形EFGH的面积。
【三】下图正方形中套着一个长方形,正方形的边长是15厘米,长方形边长的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的一段的2倍。
求中间长方形的面积。
练习:1、如下图,已知大正方形的边长是14厘米, 2、下图长方形ABCD的面积是20平方厘米,求中间最小正方形的面积。
E、F都是所在边的中点。
求AEF 的面积。
【四】图中的甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)练习:1、计算下面图形的面积。
(单位:厘米)2、求图中阴影部分的面积。
(单位:厘米)【五】下图中正方形的边长为10厘米,CE为25厘米,梯形BCDF的面积是多少平方厘米?练习1、如图,正方形ABCD中AB=6厘米,EC=15厘米,求阴影部分的面积。
2、在一个直角三角线铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(提示:连接DB)单位:厘米。
【六】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习1、如图,平行四边形BCEF中,BC=10厘米,直角三角形中,AC=8厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多少厘米?2、下图中三个正方形的边长分别是2厘米、4厘米和6厘米。
求图中阴影部分的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18周组合图形面积(一)
例1 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?
1,求四边形ABCD的面积。
(单位:厘米)
2,已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3,有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中
间长方形的面积。
1,(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。
2,如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3,求下图长方形ABCD的面积(单位:厘米)。
例3 四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?
1,图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。
2,下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
(单位:厘米)
3,下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?
例4 下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多
少平方厘米?
1,如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2,在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3,图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
例5 图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习五
1,如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH
长多少厘米?
2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分
的面积。
3,正方形的边长是2(a+b),已知图中阴影部分B的面积是7平方厘米,求阴影部分A和C
的和是多少平方厘米?。