六年级 奥数 组合图形面积计算
小学六年级奥数--面积计算(二)

二、精讲精练
练习3: 3.如图所示,AB=BC=8厘米,求阴影部分的面积。
二、精讲精练
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。 【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还 原成长方形后(如图所示)。
I和II的面积相等。 因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的 两组三角形面积分别相等,所以
二、精讲精练
练习5: 4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
谢谢观看
二、精讲精练 练习1: 1.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习1: 2.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习3: 3.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练
【例题2】求图中阴影部分的面积(单位:厘米)。 【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形 (如图所示)。
二、精讲精练
练习2: 3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
二、精讲精练
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影 部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相 等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于 长方形面积的一半(如图19-10右图所示)。所以 3.14×12×1/4×2=1.57(平方厘米)
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积 的一半。
3.14×-4×4÷2÷2=8.56(平方厘米) 答:阴影部分的面积是8.56平方厘米。
二、精讲精练
六年级 奥数 组合图形面积计算

面积计算(一)一, 求阴影部分的面积1.如下图,已知6=AB 厘米,10=AD 厘米,三角形ABE 和三角形ADF 的面积各占长方形ABCD 的31,三角形AEF 的面积是多少平方厘米?2.如下图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是多少平方厘米?3.在四边形ABCD 中,BD AC 和互相垂直并相交于O 点,四个小三角形的面积如下图所示,求阴影部分三角形BCO 的面积。
4.三角形E D ABC ,.中(如下图),是中点,S 甲比S 乙多5平方厘米,三角形ABC 的面积是多少平方厘米?5.图中扇形的半径6==OB OA 厘米,AOB ∠等于︒45,AC 垂直于点C ,那么图中阴影部分的面积是多少平方厘米?()取(14.3π6.下图的正方形是由大家熟悉的七巧板拼成的,边长是10厘米,那么阴影部分的面积是多少平方厘米?7.如下图,斜边长为30厘米的等腰直角三角形内有一个内接的正方形,那么阴影部分的面积是多少平方厘米?二,解答题。
1.由三角形面积分别为2,3,5,7的四个三角形拼成一个大三角形,如下图所示。
即已知:SAED∆=2, SAEC∆=5, SBDF∆=7, SBCF∆=3,那么SBEF∆是多少?2.如下图,BD=4厘米,DE=8厘米,EC=4厘米,F是AE的中点,ABC∆在BC边上的高为8厘米,DFE∆的面积是多少平方厘米?3运动会入场式要求运动员排成一个9行9列的正方形方阵,如果去掉3行3列,要减少多少名运动员?3.如图所示是由正方形和半圆组成的图形,其中P点为半圆的中点,Q点为正方形一边的中点,那么阴影部分的面积是多少?。
六年级上册秋季奥数培优讲义——6-03-组合图形(二)3-讲义-学生

第3讲组合图形求面积(二)【学习目标】1、复习圆的面积计算;2、熟练掌握组合图形的面积计算。
【知识梳理】1、容斥法:利用容斥原理求解图形面积;2、分组法:把要求的图形平均分组,然后进行计算;3、拆分法:把不规则图形拆分成几个规则的可以直接计算的图形;4、差不变:两个图形同时加上或者减去同一部分,差不变。
【典例精析】【例1】如图,在三角形ABC中,∠C=90°,AC=BC=10cm,A为扇形AEF的圆心且阴影部分①与②面积相等,求扇形所在圆的面积。
【趁热打铁-1】如图,以直角三角形的直角边长20厘米为直径画一个半圆,阴影部分①的面积比②的面积小16平方厘米,求BC的长。
(π取3.14)【例2】如图所示,圆的周长为12.56cm,A,C两点把圆周分成相等的两段弧,阴影部分①的面积与阴影部分②的面积相等。
求平行四边形ABCD 的面积。
【趁热打铁-2】如图所示,圆的半径OA=OB=5cm,AC=CD=8cm,AC 垂直于CD,BC=6cm 。
求IV III II I S S S S -++。
【例3】如图所示,两圆的半径都是2厘米,且图中两个阴影部分的面积相等,长方形21O ABO 的面积是_____平方厘米。
【趁热打铁-3】如图,两个半径相等的圈A 和圆B 相交三角形DBC 是等腰直角三角形,面积是100平方厘米,四边形ABCD 是平行四边形。
图中阴影部分的面积是_______平方厘米。
【例4】如图、两个小圆和三个小半圆的半径都是1. 求阴影那分的面积。
(π取3) 【趁热打铁-4】如图每个小圆的面积都是7平方厘米,则阴影部分的面积是。
【例5】如图,三个圆的半径都是2cm,则阴影部分的面积____cm2 。
【趁热打铁-5】下图中大圆的直径是10厘米,四个小圆完全相同,阴影部分的面积是。
【例6】如图,长方形的宽正好是大扇形半径的一半,求阴影部分的面积。
(单位:厘米)【趁热打铁-6】图中正方形的边长是6厘米,求阴影部分的面积。
六年级奥数题:六边形与组合六边形面积

六年级奥数题:六边形与组合六边形面积六年级奥数题涉及到了六边形和组合六边形的面积问题,接下来我们将介绍相关的概念和解题方法。
六边形的面积计算六边形是一种有六个边的多边形,我们可以使用不同的方法计算其面积。
以下是两种常见的计算方法:1. 使用正六边形计算公式:- 正六边形是所有边长度相等且角度均为120度的六边形。
其面积计算公式为:面积= (3√3/2) * 边长^2。
2. 使用任意六边形的面积计算公式:- 可以将任意六边形划分为三个等边三角形,并计算出这三个三角形的面积。
然后将这三个三角形的面积相加即可得到六边形的面积。
组合六边形的面积计算组合六边形是由不同形状的六边形拼接而成的复杂图形。
计算组合六边形的面积可以使用以下方法:1. 将组合六边形分解为多个简单形状:- 将组合六边形分解为若干个简单形状,如矩形、三角形等。
计算每个简单形状的面积,然后将它们相加即可得到组合六边形的面积。
2. 使用直接计算的方法:- 对于特定的组合六边形,可能存在直接计算其面积的方法,如将其划分为多个正六边形等。
根据具体情况选择相应的计算方法来求解面积。
示例题目下面是一个六年级奥数题的示例,供同学们练:题目:如图所示,ABCDE 是正六边形,AF=CJ=1,CB=CK=2,求△AKF 的面积。
解答:将正六边形 ABCDEF 划分为三个等边三角形 ABF、ACE 和 BCE。
已知 AF = 1,BF = 2,可计算出△ABF 的面积为(3√3/4)。
再计算△ABE 的面积为(3√3/4)。
根据△ABF 和△ABE 的面积,我们可以得出△AKF 的面积为△ABF - △ABE,即为(3√3/4) - (3√3/4) = 0。
因此,△AKF 的面积为 0。
总结六年级奥数题中涉及到了六边形及组合六边形的面积计算,可以根据给定的条件采用不同的计算方法解题。
通过掌握相关的面积计算公式和技巧,我们可以更好地应对六年级奥数题中的六边形与组合六边形面积的问题。
小学六年级奥数系列讲座:组合图形面积计算(含答案解析)

组合图形面积计算(一)一、知识要点在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练【例题1】求图中阴影部分的面积(单位:厘米)。
圆的面积。
【思路导航】如图所示的特点,阴影部分的面积可以拼成14=28.26(平方厘米)62×3.14×14答:阴影部分的面积是28.26平方厘米。
练习1:1.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14×2144-4×4÷2÷2=8.56(平方厘米)答:阴影部分的面积是8.56平方厘米。
练习2:1.计算下面图形中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。
又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。
所以3.14×12×1/4×2=1.57(平方厘米)答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。
举一反三--六年级奥数面积计算(1)

组合图形的面积(1)
13、图中BO=2DO,阴影部分 的面积是4平方厘米,求梯形 ABCD的面积是多少平方厘米?
14、如图,正方形ABCD的边长 是12厘米,CE=4厘米。求阴影 部分的面积。
组合图形的面积(1)
15、图中三角形ABC的面积是 36平方厘米,AC长8厘米,DE 长3厘米,求阴影部分的面积 (ADFC不是正方形)。 16、有两种自然的放法将正 方形内接于等腰直角三角形。 已知等腰直角三角形的面积 是36平方厘米,两个正方形 的面积分别是多少?
六年奥数——举一反三 面积计算(一)
组合图形的面积(1)
1、已知右面的两个正方形边长 分别为6分米和4分米,求图中阴 影部分的面积。
2、如图,这个长方形的长是9厘 米,宽是8厘米,A和B是宽的中 点,求长方形内阴影部分的面积。
组合图形的面积(1)
3、右图是两个相同的直角三 角形叠在一起,求阴影部分的 面积。(单位:厘米)
4、如图,长方形长18厘米, 宽12厘米,AE、AF两条线段 把长方形面积三等分,求三 角形AEF的面积。
组合图形的面积(1)
5、如图,三角形ABC的面积是 24平方厘米,且DC=2AD,E、 F分别是AF、BC的中点,那么 阴影部分的面积是多少?
6、如图,三角形ABC的面积是 90平方厘米,EF平行于BC, AB=3AE,那么三角形甲、乙、 丙的面积各是多少平方厘米?
组合图形的面积(1)
7、在等腰梯形ABCD中,AD=12 厘米,高DF=10厘米。三角形 CDE的面积是12平方厘米。求梯 形面积。
8、如图,三角形EDF的面积比三 角形ABE的面积大6平方厘米,已 知长方形ABDC的长和宽分别为6 厘米、4厘米,DF的长多少厘米?
组合图形的面积——小学奥数专题

组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
新人教版六年级组合面积、立体图形较难题、奥数

一、组合图形面积的计算1、计算下列图形的阴影面积(单位:cm)2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、如图,两个大小不等的正方形拼成一个图形,已知小正方形的边长是4厘米,阴影部分的面积是30平方厘米,求空白部分的面积是多少?5、下列两个图形中,正方形的边长都为4,求阴影面积。
二、立体图形1、下图是一个正方体木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大小不等的长方体60块。
那么,这60块长方体的表面积的和是平方米。
2、下图是由19个边长都是2厘米的正方体重叠而成的。
求这个立体图形的外表面积。
3、如图,一个正方体的纸盒中恰好能放入一个体积为628立方厘米的圆柱体,纸盒的容积有多大?(π取3.14)4、一个长、宽、高分别是21厘米、15厘米、12厘米的长方体,从它的上面尽可能大地切下一个正方体,然后从剩余部分中再尽可能大地切下一个正方体,最后再从第二次剩余部分尽可能大地切下一个正方体,剩下的体积是多少立方厘米?5、下图是一个边长为2厘米的正方体.在正方体的上面的正中向下挖一个边长为1厘米的正方体小间;接着在小洞的底面正中再向下挖一个边长为21厘米的小洞;第三个小洞的挖法与前两个相同,边长为41厘米.那么最后得到的立体图形的表面积是多少平方厘米?6、有五颗相同的骰子放成一排(如下图),五颗骰子底面的点数之和是多少?7、将左下图沿虚线折成一个立方体,它的相交于一个顶点处的三个面上的数字之和的最大值是多少?最小值是多少?8、右图中第1格内放着一个立方体木块,木块六个面上分别写着A,B,C,D,E,F六个字母,其中A与D,B与E,C与F相对。
如果将木块沿着图中方格滚动,那么当木块滚动到第21个格时,木块向上的面写的是哪个字母?9、某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如想图所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?三、利用分率解应用题1、一列火车从北京开往上海,已经行了全程的2/3,恰好是806公理,求这条路长多少公理?2、红星小学图书馆有文艺书640本,科技书是文艺书的7/8,科技书有多少本?3、利民厂一车间有工人400人,二车间比一车间少20%,二车间有多少人?4、某班有42人,男生是女生的1/5,男、女生各多少人?5、一段绳子的3/4比它的2/5长12米,求绳子的全长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面积计算(一)
一, 求阴影部分的面积
1.如下图,已知6=AB 厘米,10=AD 厘米,三角形ABE 和三角形ADF 的面积各占长方形ABCD 的3
1
,三角形AEF 的面积是多少平方厘米?
2.如下图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是多少平方厘米?
3.在四边形ABCD 中,BD AC 和互相垂直并相交于O 点,四个小三角形的面积如下图所示,求阴影部分三角形BCO 的面积。
4.三角形E
ABC,.
中(如下图),是中点,S甲比S乙多5平方厘米,三角
D
形ABC的面积是多少平方厘米?
5.图中扇形的半径6
∠等于︒
45,AC垂直于点C,
OA厘米,AOB
=
=OB
那么图中阴影部分的面积是多少平方厘米?()
π
.3
(14
取
6.下图的正方形是由大家熟悉的七巧板拼成的,边长是10厘米,那么阴影部分的面积是多少平方厘米?
7.如下图,斜边长为30厘米的等腰直角三角形内有一个内接的正方形,那么阴影部分的面积是多少平方厘米?
二,解答题。
1.由三角形面积分别为2,3,5,7的四个三角形拼成一个大三角形,如
下图所示。
即已知:S
AED
∆=2, S
AEC
∆
=5, S
BDF
∆
=7, S
BCF
∆
=3,那么S
BEF
∆
是
多少?
2.如下图,BD=4厘米,DE=8厘米,EC=4厘米,F是AE的中点,
ABC
∆在BC边上的高为8厘米,DFE
∆的面积是多少平方厘米?
3运动会入场式要求运动员排成一个9行9列的正方形方阵,如果去掉3行3列,要减少多少名运动员?
3.如图所示是由正方形和半圆组成的图形,其中P点为半圆的中点,
Q点为正方形一边的中点,那么阴影部分的面积是多少?。